Scalable Diode-Pumped Solid State Laser Architecture for Inertial Fusion Energy

S. A. Payne
C. D. Marshall
M. A. Emanuel
R. J. Beach
C. D. Orth
H. T. Powell
W. F. Krupe

This paper was prepared for submittal to the
CLEO/Pacific Rim '95
Chiba, Japan
July 11–14, 1995

February 16, 1995

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A study of diode-pumped solid state lasers for fusion energy is presented, including performance of a subscale laser oscillator and amplifier, radiation-hardness of the final optic, and a system-level modeling exercise.
Flashlamp-pumped Nd:glass solid state lasers have served as the main driver by which the physics of inertial confinement fusion has been studied. As a consequence of much progress in this area, there now exists the belief that a megajoule-scale Nd:glass laser will drive the fusion target to ignition. In this paper, we discuss how flashlamp-pumped Nd:glass solid state technology can be parlayed into advanced architectures based on diode-pumped solid state lasers (DPSSLs), and thereby provide a means for devising an efficient (~10%), high repetition-rate (~10 Hz) system for inertial fusion energy (IFE).

The proposed laser architecture is illustrated in Fig. 1, where it is seen that diode arrays are arranged to longitudinally-pump 11 slabs of the gain medium. The gain medium is known as Yb:S-FAP, a 1.047 μm laser material judged to be near optimal for IFE. The Yb:S-FAP crystals are to be cooled by flowing helium gas across the optical aperture. The laser is envisioned to operate as a multipass amplifier, utilizing a polarizer/Pockels cell pair. The beam is converted to the third harmonic at 0.349 μm.
and focused onto the fusion target. The last optic which the laser beam traverses must be able to survive the flux of ionizing radiation emanating from the target.

We have pursued an experimental program aimed at examining the main technical issues confronting the DPSSL. Toward this end we have constructed a small subscale Yb:S-FAP DPSSL amplifier and oscillator, and have verified that the gain (Fig. 2a) and output power (Fig. 2b) are consistent with our expectations. The experiments of Figs. 1 and 2 entail the use of a 3 kW laser diode array operating at 900 nm with 1 msec pulses, which is concentrated down with a lens duct to >10 kW/cm² at the Yb:S-FAP gain medium.

IFE schemes employing lasers depend on the existence of a final optic that is survivable in the neutron/γ-ray environment near the fusion chamber. We have developed a final optic concept to satisfy the IFE objectives, where fused silica is held at an elevated temperature (~400°C) in order to rapidly anneal out the defects and color centers. The result of room temperature n⁰/γ-ray irradiation of Corning 7980 fused silica appears in Fig. 3, where it is seen that there is little absorption at the laser wavelength of 349 nm.

We have developed an extensive computer code to model the cost-of-electricity (COE) for IFE power plants, by incorporating all of the essential laser physics and costing, and have calculated a COE of 8.6¢/kW · hr. One of the crucial issues confronting DPSSLs for IFE involves the ultimate cost of the laser diodes 20–30 years hence in a fusion economy. By our estimates, a sustained market demanding only several MW of diode power per year would lead to costs on the order of $1/watt. It is our belief, based on detailed cost center analysis, that a GW-level market would yield a diode price of $0.07/watt (7¢/watt).

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.
Figure captions

Fig. 1. Schematic representation of diode-pumped solid state laser driver for inertial fusion energy.

Fig. 2. Amplifier gain (a) and long-pulse oscillator efficiency (b) for a diode-pumped Yb:S-FAP laser.

Fig. 3. Absorption spectra of fused silica appearing after n⁰/γ-ray irradiation.
Fig. 1. Schematic representation of diode-pumped solid state laser driver for inertial fusion energy.
Figure 2. Amplifier gain (a) and long-pulse oscillator efficiency (b) for a diode-pumped Yb:S-FAP laser.
Figure 3. Absorption spectra of fused silica appearing before and after \(n^0/\gamma \)-ray irradiation.