A NOTE ON
SEVEN ANALOGOUS PROPERTIES BETWEEN
STIRLING NUMBERS OF THE FIRST KIND
AND BINOMIAL COEFFICIENTS

Tommy Wright

RECEIVED
JUN 29 1995
OSTI

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A NOTE ON
SEVEN ANALOGOUS PROPERTIES BETWEEN
STIRLING NUMBERS OF THE FIRST KIND
AND BINOMIAL COEFFICIENTS

Tommy Wright
Mathematical Sciences Section
Oak Ridge National Laboratory
P. O. Box 2008 Bldg 6012
Oak Ridge, Tennessee 37831-6367

Date Published: June 1995

Research was supported by the
ASA/NSF/Census Research Fellow Program
of the U. S. Bureau of the Census.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Martin Marietta Energy Systems, Inc.
for the
U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-84OR21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
TABLE OF CONTENTS

ABSTRACT v
1. INTRODUCTION 1
2. SOME ANALOGOUS PROPERTIES OF THE COEFFICIENTS \[\binom{n}{r} \] and \(\binom{n}{r} \) 1
ACKNOWLEDGMENT 5
REFERENCES 5
A NOTE ON
SEVEN ANALOGOUS PROPERTIES BETWEEN
STIRLING NUMBERS OF THE FIRST KIND
AND BINOMIAL COEFFICIENTS

Tommy Wright

ABSTRACT

This notes gives seven analogous properties between Stirling numbers of the first kind and binomial coefficients.
1. INTRODUCTION

If n and r are both nonnegative integers where $r \leq n$, the binomial coefficient $\binom{n}{r}$ is given by

$$\binom{n}{r} \equiv \frac{n!}{r!(n-r)!}.$$ \hspace{1cm} (1)

The symbol $\binom{n}{r}$ is called a binomial coefficient because it is the coefficient of the $(r+1)^{th}$ term in the expansion of $(1+x)^n$ by the binomial theorem. Furthermore, these coefficients are the entries in Pascal's triangle. For a recent historical treatment of Pascal's arithmetic triangle's roots, which stretch backward before Christ, see Edwards (1987). The binomial coefficient plays a fundamental role in several areas including combinatorics, applied probability, and probability sampling (Knuth, 1981; Graham, Knuth, and Patashnik, 1989; Ross, 1989; Wilf, 1989; and Wright, 1989, 1991).

If n and r are both nonnegative integers where $r \leq n$, the Stirling Number of the First Kind $\left[\begin{array}{c} n \\ r \end{array}\right]$ is defined as

$$\left[\begin{array}{c} n \\ r \end{array}\right] \equiv \text{the sum of all possible products of } n-r \text{ integers taken from the first } n \text{ positive integers.} \hspace{1cm} (2)$$

For $r = n$, we define $\left[\begin{array}{c} n \\ n \end{array}\right] = 1$. Note that $\left[\begin{array}{c} n \\ 0 \end{array}\right] = n!$. Thus if $n = 4$ and $r = 2$, $\left[\begin{array}{c} 4 \\ 2 \end{array}\right] = 1 \cdot 2 + 1 \cdot 3 + 1 \cdot 4 + 2 \cdot 3 + 2 \cdot 4 + 3 \cdot 4 = 35$. Also $\left[\begin{array}{c} 4 \\ 0 \end{array}\right] = 4! = 24$ and $\left[\begin{array}{c} 4 \\ 4 \end{array}\right] = 1$. In general, the number of terms in the sum $\left[\begin{array}{c} n \\ r \end{array}\right]$ is $\binom{n}{r}$.

In a result analogous to the binomial theorem, it can be shown that

$$\prod_{i=1}^{k} (i+x) = \sum_{r=0}^{k} \left[\begin{array}{c} k \\ r \end{array}\right] x^r.$$ \hspace{1cm} (3)

The quantities $\left[\begin{array}{c} n \\ r \end{array}\right]$ have a triangular arrangement which is similar to Pascal's triangle for the binomial coefficients. (Graham, Knuth, and Patashnik (1989); and Wright (in press))

2. SOME ANALOGOUS PROPERTIES OF THE COEFFICIENTS $\left[\begin{array}{c} n \\ r \end{array}\right]$ AND $\binom{n}{r}$

In this section, we list several properties of the coefficients $\left[\begin{array}{c} n \\ r \end{array}\right]$. For each property, an analogous result is noted for Pascal's triangle. The proofs of these properties are straightforward.

Property 1.

$$\left[\begin{array}{c} n \\ r \end{array}\right] = n \left[\begin{array}{c} n-1 \\ r \end{array}\right] + (n-1) \left[\begin{array}{c} n-2 \\ r-1 \end{array}\right] + \cdots + (n-r) \left[\begin{array}{c} n-(r+1) \\ 0 \end{array}\right].$$
Example 1.

\[\begin{bmatrix} 5 \\ 2 \end{bmatrix} = 5 \begin{bmatrix} 4 \\ 2 \end{bmatrix} + 4 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 0 \end{bmatrix}. \]

Analogous Property and Example:

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-2}{r-1} + \binom{n-3}{r-2} + \cdots + \binom{n-(r+1)}{0}.
\]

\[
\binom{5}{2} = \binom{4}{2} + \binom{3}{1} + \binom{2}{0}.
\]

Property 2.

\[
\begin{bmatrix} n \\ r \end{bmatrix} = \begin{bmatrix} n-1 \\ r-1 \end{bmatrix} + n \begin{bmatrix} n-2 \\ r-1 \end{bmatrix} + n(n-1) \begin{bmatrix} n-3 \\ r-1 \end{bmatrix} + \cdots + n(n-1) \cdots (r+1) \begin{bmatrix} r-1 \\ r-1 \end{bmatrix}.
\]

Example 2.

\[\begin{bmatrix} 5 \\ 2 \end{bmatrix} = 5 \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 5 \cdot 4 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 5 \cdot 4 \cdot 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]

Analogous Property and Example:

\[
\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-2}{r-1} + \binom{n-3}{r-1} + \cdots + \binom{r-1}{r-1}.
\]

\[
\binom{5}{2} = \binom{4}{1} + \binom{3}{1} + \binom{2}{1} + \binom{1}{1}.
\]

Where \(x \) is a real number, define \([x] \equiv \) the greatest integer less than or equal to \(x \). Property 3 is a symmetry property.

Property 3.

\[
\sum_{r=0}^{[n/2]} \begin{bmatrix} n \\ 2r \end{bmatrix} = \sum_{r=0}^{[n/2]} \begin{bmatrix} n \\ 2r + 1 \end{bmatrix}.
\]

Example 3.

\[\begin{bmatrix} 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 2 \end{bmatrix} + \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \end{bmatrix}. \]
Analogous Property and Example:

\[
\sum_{r=0}^{\lfloor n/2 \rfloor} \binom{n}{2r} = \sum_{r=0}^{\lfloor n/2 \rfloor} \binom{n}{2r + 1}.
\]

\[
\binom{5}{0} + \binom{5}{2} + \binom{5}{4} = \binom{5}{1} + \binom{5}{3} + \binom{5}{5}.
\]

Property 4.

\[
\sum_{r=0}^{n} \binom{n}{r} = (n + 1) \sum_{r=0}^{n-1} \binom{n-1}{r}.
\]

Example 4.

\[
\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 5 \left\{ \binom{3}{0} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} \right\}.
\]

Analogous Property and Example:

\[
\sum_{r=0}^{n} \binom{n}{r} = 2 \sum_{r=0}^{n-1} \binom{n-1}{r}.
\]

\[
\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 2 \left\{ \binom{3}{0} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} \right\}.
\]

Property 5 follows from Property 4.

Property 5.

\[
\sum_{r=0}^{n} \binom{n}{r} = (n + 1)!.
\]

Example 5.

\[
\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 5!.
\]

Analogous Property and Example:

\[
\sum_{r=0}^{n} \binom{n}{r} = 2^n.
\]

\[
\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 2^4.
\]
For the nonnegative integers x and y where $x \leq y$, define P^y_x to be

$$ P^y_x = \frac{y!}{(y-x)!}. \quad (4) $$

Property 6.

$$ \sum_{m=0}^{n} P^{n+1}_{n-m} \sum_{r=0}^{m} \binom{m}{r} = \sum_{m=0}^{n} P^{n+1}_{n-m}(m+1)! = (n+1)(n+1)!. $$

Example 6. For $n = 3$,

\[
P^3_3 \left[\binom{0}{0} \right] + P^3_2 \left[\binom{1}{0} + \binom{1}{1} \right] + P^3_1 \left[\binom{2}{0} + \binom{2}{1} + \binom{2}{2} \right] + P^3_0 \left[\binom{3}{0} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} \right]
\]

\[= 4 \cdot 3 \cdot 2(1!) + 4 \cdot 3(2!) + 4(3!) + (4!) = 4(4!). \]

Analogous Property and Example:

\[
\sum_{m=0}^{n} \sum_{r=0}^{m} \binom{m}{r} = \sum_{m=0}^{n} 2^m = 2^{n+1} - 1.
\]

For $n = 3$,

\[
\binom{0}{0} + \left\{ \binom{1}{0} \right\} + \left\{ \binom{1}{1} \right\} + \left\{ \binom{2}{0} \right\} + \left\{ \binom{2}{1} \right\} + \left\{ \binom{2}{2} \right\} + \left\{ \binom{3}{0} \right\} + \left\{ \binom{3}{1} \right\} + \left\{ \binom{3}{2} \right\} + \left\{ \binom{3}{3} \right\} = 2^4 - 1.
\]

Property 7.

\[
\sum_{i=0}^{r} \binom{n}{i} = (n+1) \sum_{i=0}^{r-1} \binom{n-1}{i} + n \binom{n-1}{r}.
\]

Example 7. For $n = 6$ and $r = 4$,

\[
\binom{6}{0} + \binom{6}{1} + \binom{6}{2} + \binom{6}{3} + \binom{6}{4} = (6+1) \left\{ \binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} \right\} + 6 \binom{5}{4}.
\]

Analogous Property and Example:

\[
\sum_{i=0}^{r} \binom{n}{i} = 2 \sum_{i=0}^{r-1} \binom{n-1}{i} + \binom{n-1}{r}.
\]

For $n = 6$ and $r = 4$,

\[
\binom{6}{0} + \binom{6}{1} + \binom{6}{2} + \binom{6}{3} + \binom{6}{4} = 2 \left\{ \binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} \right\} + \binom{5}{4}.
\]
Acknowledgment. The support from the U. S. Bureau of the Census to the author while serving as a research fellow is gratefully acknowledged.

REFERENCES

INTERNAL DISTRIBUTION

1. C. K. Bayne
2. J. J. Beauchamp
3. K. O. Bowman
4. C. C. Brandt
5. T. S. Darland
6. E. F. D'Azevedo
7. D. J. Downing
8. D. M. Flanagan
9. E. L. Frome
10. P. Hu
11-15. M. R. Leuze
16. M. D. Morris
17. C. E. Oliver
18. G. Ostrouchov
19-23. S. A. Raby
24. C. H. Romine
25. R. L. Schmoyer
26-30. R. F. Sincovec
31-35. T. Wright
36. D. A. Wolf
37. Central Research Library
39. ORNL Patent Office
40. Y-12 Technical Library
41-45. Laboratory Records Department
46. Laboratory Records Dept. - RC

EXTERNAL DISTRIBUTION

52. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37830.

53. Dr. How J. Tsao, Management Services Division, Eastman Kodak, Rochester, NY 14652-3302.

54. Professor Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box 1892, Houston, TX 77251.