Hierarchical image-based rendering using texture mapping hardware

PDF Version Also Available for Download.

Description

Multi-layered depth images containing color and normal information for subobjects in a hierarchical scene model are precomputed with standard z-buffer hardware for six orthogonal views. These are adaptively selected according to the proximity of the viewpoint, and combined using hardware texture mapping to create ''reprojected'' output images for new viewpoints. (If a subobject is too close to the viewpoint, the polygons in the original model are rendered.) Specific z-ranges are selected from the textures with the hardware alpha test to give accurate 3D reprojection. The OpenGL color matrix is used to transform the precomputed normals into their orientations in the ... continued below

Physical Description

620 Kilobytes pages

Creation Information

Max, N January 15, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Multi-layered depth images containing color and normal information for subobjects in a hierarchical scene model are precomputed with standard z-buffer hardware for six orthogonal views. These are adaptively selected according to the proximity of the viewpoint, and combined using hardware texture mapping to create ''reprojected'' output images for new viewpoints. (If a subobject is too close to the viewpoint, the polygons in the original model are rendered.) Specific z-ranges are selected from the textures with the hardware alpha test to give accurate 3D reprojection. The OpenGL color matrix is used to transform the precomputed normals into their orientations in the final view, for hardware shading.

Physical Description

620 Kilobytes pages

Source

  • 10th Eurographics Workshop on Rendering, Granada (ES), 06/21/1999--06/23/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-132830
  • Report No.: YN0100000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 9377
  • Archival Resource Key: ark:/67531/metadc794546

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 15, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • May 6, 2016, 1:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Max, N. Hierarchical image-based rendering using texture mapping hardware, article, January 15, 1999; California. (digital.library.unt.edu/ark:/67531/metadc794546/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.