Synthetic polymer-layer silicate clay composites

PDF Version Also Available for Download.

Description

Synthetic hectorites were hydrothermally crystallized with direct incorporation of water-soluble polyvinyl alcohol (PVA), a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two cellulosic polymers: hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). The molecular weight of polyvinyl alcohols had little effect on the success of hydrothermal hectorite synthesis, d-spacing, or amount of polymer incorporated; the basal spacings range from 19.5 {angstrom} to 20.8 {angstrom} and the percent of polymer incorporated ranges from 20.4 wt% to 23.0 wt%. Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {angstrom}, and less cationic PDDA is incorporated into hectorite (7.8 wt% organic) than the other ... continued below

Physical Description

11 p.

Creation Information

Carrado, K.A.; Elder, D.L. & Thiyagarajan, P. July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Synthetic hectorites were hydrothermally crystallized with direct incorporation of water-soluble polyvinyl alcohol (PVA), a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two cellulosic polymers: hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). The molecular weight of polyvinyl alcohols had little effect on the success of hydrothermal hectorite synthesis, d-spacing, or amount of polymer incorporated; the basal spacings range from 19.5 {angstrom} to 20.8 {angstrom} and the percent of polymer incorporated ranges from 20.4 wt% to 23.0 wt%. Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {angstrom}, and less cationic PDDA is incorporated into hectorite (7.8 wt% organic) than the other neutral polymers (17.8-23.0 wt% organic). The basal spacing for synthetic HPMC-hectorite is the largest at 25.2 {angstrom}. Small angle neutron scattering was used to further examine the PVA-clay systems.

Physical Description

11 p.

Notes

OSTI as DE95013674

Source

  • 209. American Chemical Society (ACS) national meeting, Anaheim, CA (United States), 2-6 Apr 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95013674
  • Report No.: ANL/CHM/CP--85031
  • Report No.: CONF-950402--1
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 90711
  • Archival Resource Key: ark:/67531/metadc794540

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Feb. 1, 2016, 1:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 24

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Carrado, K.A.; Elder, D.L. & Thiyagarajan, P. Synthetic polymer-layer silicate clay composites, article, July 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc794540/: accessed July 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.