Reservoir characterization by cross-hole seismic imaging. Final report, September 15, 1989--June 30, 1994

PDF Version Also Available for Download.

Description

Better characterization of reservoirs requires better images of those reservoirs. This report documents the research undertaken at the Massachusetts Institute of Technology`s Earth Resources Laboratory (ERL) to improve seismic tomographic images. In addition, the new imaging method was applied to a data set collected in a producing oil field. The method developed is nonlinear travel time tomography. This technique uses the travel time of the first arriving energy at a receiver and distributes that time back along realistic ray paths. This is an important distinction between this method and previous methods that used either straight ray paths from source to ... continued below

Physical Description

Medium: P; Size: 106 p.

Creation Information

Turpening, R.M.; Matarese, J.R. & Toksoez, M.N. July 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Better characterization of reservoirs requires better images of those reservoirs. This report documents the research undertaken at the Massachusetts Institute of Technology`s Earth Resources Laboratory (ERL) to improve seismic tomographic images. In addition, the new imaging method was applied to a data set collected in a producing oil field. The method developed is nonlinear travel time tomography. This technique uses the travel time of the first arriving energy at a receiver and distributes that time back along realistic ray paths. This is an important distinction between this method and previous methods that used either straight ray paths from source to receiver or fixed ray paths (ray paths fixed by an a priori model). The nonlinearity arises during each iteration in the matching of observed travel times with those determined from a model. In this technique the model is updated during each iteration (the velocity structure is changed) and new ray paths are computed in that update model. Thus the resulting image is based on physically realistic ray paths. Tomography resolution is not merely a simple function of the wavelength of the seismic energy used but also involves a measure of how well a given region has been sampled by ray paths. Moreover, the ray paths must represent a wide variation in inclination as they pass through a given spatial cell. This imaging technique was applied to a compressional wave data set collected at ERL`s Michigan Test Site located in the Northern Reef Trend of MI. It consists of two deep boreholes that straddle a producing reef. Two hundred source positions and two hundred receiver positions were used to obtain 40,000 ray paths. Although ERL`s boreholes are 2,000 ft apart, kilohertz data was obtained. The resulting image of the reservoir showed a low velocity zone inside the reef and a thin layer of low velocity that intersected one of the boreholes. The presence of this thin layer was confirmed by logs and borehole engineering.

Physical Description

Medium: P; Size: 106 p.

Notes

OSTI as DE95016149

Source

  • Other Information: PBD: Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95016149
  • Report No.: DOE/ER/14084--4
  • Grant Number: FG02-89ER14084
  • DOI: 10.2172/86870 | External Link
  • Office of Scientific & Technical Information Report Number: 86870
  • Archival Resource Key: ark:/67531/metadc794519

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Feb. 1, 2016, 5:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Turpening, R.M.; Matarese, J.R. & Toksoez, M.N. Reservoir characterization by cross-hole seismic imaging. Final report, September 15, 1989--June 30, 1994, report, July 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc794519/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.