Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean

PDF Version Also Available for Download.

Description

This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (in ... continued below

Creation Information

Golomb, Dan; Barry, Eugene; Ryan, David; Lawton, Carl; Pennell, Stephen; Swett, Peter et al. November 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (in fact, it is the natural ingredient of shells and corals); (c) it buffers the carbonic acid that forms when CO{sub 2} dissolves in water. For large-scale sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion a device is needed that mixes the ingredients, liquid carbon dioxide, seawater, and a slurry of pulverized limestone in seawater continuously, rather than incrementally as in a batch reactor. A practical mixing device is a Kenics-type static mixer. The static mixer has no moving parts, and the shear force for mixing is provided by the hydrostatic pressure of liquid CO{sub 2} and CaCO{sub 3} slurry in the delivery pipes from the shore to the disposal depth. This semi-annual progress report is dedicated to the description of the static mixer and the results that have been obtained using a bench-scale static mixer for the continuous formation of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion. The static mixer has an ID of 0.63 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} in artificial seawater (3.5% by weight NaCl) and liquid CO{sub 2} are co-injected into the mixer. From the mixer, the resulting emulsion flows into a Jerguson cell with two oblong windows on opposite sides, then it is vented. A fully ported ball valve inserted after the Jerguson cell allows the emulsion to be stopped in the cell. In such a manner the emulsion can be photographed while it is flowing through the cell, or after it has stagnated in the cell. A slurry of 10 g/L CaCO{sub 3} (Sigma Chemicals C-4830 reagent grade) in artificial seawater, co-injected into the static mixer at a rate of 1.5 L/min with liquid CO{sub 2} at a rate of 150 mL/min, at temperature 5-10 C, pressure 10 MPa, produced an emulsion with mean globule diameter in the 70-100 {micro}m range. In a HPBR, using the same materials, proportions, temperature and pressure, mixed with a magnetic stir bar at 1300 rpm, the mean globule diameter is in the 200-300 {micro}m range. Evidently, the static mixer produces an emulsion with smaller globule diameters and narrower distribution of globule diameters than a batch reactor.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FC26-02NT41441
  • DOI: 10.2172/861379 | External Link
  • Office of Scientific & Technical Information Report Number: 861379
  • Archival Resource Key: ark:/67531/metadc794472

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2005

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Dec. 8, 2016, 8:25 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Golomb, Dan; Barry, Eugene; Ryan, David; Lawton, Carl; Pennell, Stephen; Swett, Peter et al. Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean, report, November 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc794472/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.