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Using ADIFOR 1.0 to Compute Hessians 
by 

Paul Hovland 

Abstract 

ADIFOR provides a simple means to produce code for the first derivatives of functions 
through the technique of automatic differentiation. However, the fact that ADIFOR 
currently cannot produce code to compute second derivatives limits its usefulness for 
certain applications. This paper describes how ADIFOR and related tools can be used 
to produce code that does compute second derivatives and discusses how to use this 
code. Conclusions are presented about the limitations of this method and how it might 
compare with second-derivative code produced directly by ADIFOR. 

1 Introduction 

When a scientist wishes to compute the gradient of a function for optimization or sensitivity 
analysis, ADIFOR provides a simple means to produce derivative code via automatic differentiation 
[l]. However, many optimization methods require the Hessian of the objective function. Currently, 
ADIFOR does not produce code for second derivatives. But, by applying ADIFOR twice, it is 
possible to  produce code for the Hessian. The next section outlines a procedure for creating code for 
second derivatives. Section 3 provides more detailed discussion of why certain steps are required and 
how they should be executed. Section 4 discusses seed matrix initialization as it applies to this second 
derivative code. Section 5 provides a simple example of the technique. The final section discusses 
some of the limitations of the technique and describes how the resultant code might resemble and 
differ from the code that would be produced by a future version of ADIFOR. 

2 Procedure 

This paper assumes that the user is already familiar with ADIFOR and the various files involved 

The procedure required to produce code capable of computing second derivatives is as follows: 

in its use. Those readers not familiar with ADIFOR are referred to [3,4] for an introduction. 

1. Create an ADIFOR script (.adf) file. Be sure to include a “SEP -” line. 

2. Create a composition (.comp) file. 

3. Run ADIFOR (adif o r  f unc . adf f unc . cornp). 

4. Run make on the ADMakefile. 

5.  Create a main program to call the new top-level subroutine. 

6.. Create a new composition file, including the new main program, all ADIFOR-generated sub- 
routines, and, if necessary, i n t r i n s i c . f .  



7. If intrinsic .f is not needed (there are no intrinsic functions requiring the exception handler), 

8. Run adpre using this composition file. 

9. Edit the resulting * -ad, f files so that $ is changed to _. 

skip to Step 11. 

10. Change the . ad.f extension to .f, or modify the composition file to use the new file names. 

11. Create a new ADIFOR script file, changing the separator (for clarity), and prefacing the OUT 

12. Run ADIFOR again (adif o r  g-func. adf g l u n c .  comp). 

13. Run make on the ADMakefile. 

14. Create a new main program that does the proper initializations and calls g$gfunc. 

variable(s) with g-. 

3 Discussion 

The reason for some of the steps in Section 2 may not be obvious. This section explains the 
motivation behind these procedures. It also includes brief notes about the tools being used. 

ADIFOR employs a two-stage process to produce derivative code. In the first step, ADIFOR 
analyzes the program, stores intermediate information, and creates a makefile. This makefile invokes 
Adtrans, the ADIFOR translator, which translates the intermediate information into source code. 
The default separator character of $ causes problems for the make utility. This is normally not a 
problem, because of the naming convention for the files created by ADIFOR, basically the original 
subroutine name followed by an extension. However, when ADIFOR is applied twice, the subroutine 
names from the first application contain the separator character. Thus, the separator character for 
the first application of ADIFOR must be something other than $. For this reason, we suggest a 
separator character of - in Step 1. 

The exception-handling routines [2] provide an impediment to applying ADIFOR a second time 
because these routines are implemented as functions, but ADIFOR currently deals only with sub- 
routines. Steps 8-10 describe how the ADIFOR preprocessor, Adpre, can be used to overcome this 
problem. However, if the exception-handling routines, found in the file intrinsic. f, are not needed 
these steps can be omitted, as mentioned in Step 7. The ADIFOR preprocessor is described in [4], 
but its use can be summarized by three steps: 

1. Set the RBiiOME environment variable using setenv R N i i O M E  /anydir. 

2. Create a composition file, as with ADIFOR. 

3. Execute Adpre, specifying the composition file name, as for example, adpre -P gifunc. comp. 

For similar reasons to those discussed above, the $ character that occurs in the files produced by 
Adpre (which have the .f extension replaced by .ad.f) must replaced by another character, such 
as -. 

The Hessian is essentially the derivatives of the gradient with respect to the independent variable. 
Thus, the ADIFOR script file for the second application of ADIFOR should specify the top-level 
ADIFOR-generated subroutine as TOP, the gradient as OUT, and the same IN variablests). In 
order to make it easier to distinguish between the gradient objects of the first pass and the gradient 
objects of the second pass, and also to prevent name conflicts, a different separator character (such 
as $) should be used. 
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4 Initialization 

The initialization of seed matrices is nontrivial even for first-derivative programs [3]. In the case 
of second derivatives, the situation can become even more complex. The code produced by the 
method outlined above is capable of computing the matrix product SI x H x g, where H is the 
Hessian. The two seed matrices, SI and Sz, arise from the double application of ADIFOR. If x is 
the only independent variable, these seed matrices will have the names g i  and g$x. If all that is 
desired is the Hessian, these seed matrices should be initialized to an identity matrix, for example 
by using the code shown in Figure 1. 

If only an m x p region of the Hessian is desired, this can be computed by initializing g$x and 
g x  such that the appropriate p elements of g$f and rn elements of g 9  are computed. A special 
case of this situation arises when a particular column or row of the Hessian is desired. The third 
column of the Hessian could be computed by using the initialization in Figure 2. Note that this is 
the transpose of the column because of the way ADIFOR stores derivatives. Since the Hessian is 
symmetric, this is less important. 

The ability to compute one column at a time can be used to exploit the symmetry of the Hessian. 
An example of how this might be accomplished is shown in Figure 3. However, it is important to 
note that the overhead of recomputing the function and a portion of the gradient on each iteration 
implies that this method will not be significantly more efficient than the full Hessian computation 
and may even be more expensive. 

Perhaps the most promising application for seed matrix initialization is when the pre- and post- 
multiplication of the Hessian by a vector or pair of vectors is desired. For example, if we wish to 
compute t T H y ,  the simple initialization is sufficient. This capability may be particularly useful for 
optimization techniques like the conjugate gradient method. 

do i = 1, n 
do j = 1, n 
g,x(j, i) = 0.0 
g$x(j, i) = 0.0 

enddo 
g-x(i, i) = 1.0 
g$x(i, i) = 1.0 

enddo 
g$p$ = n 
g-p- = n 

Figure 1: Seed matrix initialization using identity matrices to compute the Hessian 
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do i = 1, n 
do j = 1, n 

enddo 
g,x(i, i) = 1.0 
g$x(l, i) = 0.0 

g-x(j, i) = 0 . 0  

enddo 
g$x(1,3) - 1.0 
g$p$ = 1 
g-p, = n 

Figure 2: Seed matrix initialization using n x n and 1 x n matrices to compute a column 
of the Hessian 

do k = 1, n 
do i - 1 ,  n 

do j = 1, k 

enddo 
g,x(i, i) = 1.0 
g$x(l, i) = 0 . 0  

g,x(j, i) = 0.0 

enddo 
g$x(l,k) = 1.0 
g$p$ = 1 
g-p, = k 
call  g$g-func(. . . . ) 

enddo 

Figure 3: Algorithm using column computations to exploit the Hessian’s symmetry 

5 Example 

Consider the example program in Figure 4. This program simply computes the function 
n 

i= 1 

An ADIFOR script file for this program is 

IN x 
OUT f 
TOP func 
PMAX 5 
SEP - 
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program example 

real x(51,f 
integer i 

x(1) = 1.0 
x(2) = 3.0 
x(3) = 2.0 
x(4) = 6.0 
x(5) = 4.0 

subroutine func(x,f,n) 

integer n, i 
real f ,xh) 

fz1.0 
do i=l,n 

enddo 
f-f *x(i) 

f = sqrt(f) 
call func(x,f ,5) 

do i=1,5 

enddo 
write(*,*) 'f = '.f 

write(*,*) 'x(',i,') = ',x(i) 

return 
end 

end 

Figure 4: A simple example program 

and an appropriate composition file is 

func.f 
main. f 

Applying ADIFOR yields a subroutine g 9 u n c 3  (listed in the Appendix) capable of computing 
the gradient of this function. An appropriate main program for this subroutine is shown in Figure 
5 .  

A composition file for the gradient program is 

g-main. f 
func . 3 .  f 
intrinsic.f 

If Adpre is executed on this composition, several changes occur. The most significant changes 
involve converting the functions in intrinsic. f to subroutines and modifying the calls in gfunc-3 
accordingly. For example, the line 

fbar = g$sqrt(f, r-1) 

in g 9 u n c 3  becomes 

call g-sqrtsubr(f, r-1, fbar) 

after processing with Adpre and the global replacement of $ by _. 
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program example 

real  ~ ( 5 1 ,  f, g,x(5, 5 ) ,  g,f(5) 
integer i, j 

x(1)  = 1 .0  
x (2 )  = 3 .0  
x(3) = 2 . 0  
x (4 )  = 6 . 0  
x(5) = 4 . 0  

do i = 1 ,  5 
do j = 1, 5 

enddo 
g-x ( i ,  i) = 1.0 

g-x ( j ,  i) a 0 . 0  

enddo 

do i = 1 ,  5 

enddo 
write (*, *) ’f = ’, f 
do i = 1 ,  5 

enddo 

write (*, *> ‘ x ( ’ ,  i, ’> = ’, x ( i >  

write (*, *> ’ g - f ( ’ ,  i ,  ’> = ’, g - f ( i )  

end 

Figure 5 :  An example program using the ADIFOR-generated gradient subroutine 
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program example 

x(1) = 1.0 
x(2) - 3.0 
x(3) = 2.0 
x(4) = 6.0 
x(5) = 4.0 

do i =  1, 5 
do j = 1, 5 
g-x(j, i) = 0 . 0  
g$x(j, i) = 0 . 0  

enddo 
g-x(i, i) = 1.0 
g$x(i, i) = 1.0 ~ 

enddo 

do i = 1, 5 

enddo 
write (*, *) ’f = ’, f 
do i -  1, 5 

enddo 
do i =  1, 5 

vrite (*, *) ’x(’, i, ’1 = ’, x(i) 

write (*, *) ’g,f(’, i, ’1 = ’, g-f(i) 

do j = 1, 5 

enddo 
write (*, *) ’Hess(’, i, ’,’,j,’) = ’, g$g-f(j,i) 

enddo 

end 

Figure 6:  An example program using the ADIFOR-generated Hessian subroutine 
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With an ADIFOR script file such as 

IN x 
OUT g-f 
PMAX 5 
TOP g-func-3 
SEP 8 

ADIFOR can be applied a second time to yield the Hessian code. As was discussed in Section 4, the 
driver code for this subroutine can initialize variables in a number of different ways. The simplest 
scheme, where the entire Hessian is computed at once, is used in the main program in Figure 6. 

6 Conclusions 

Even though ADIFOR does not currently support second derivatives, it is possible to produce 
code to compute a Hessian by using two passes of ADIFOR. This approach is applicable to all sorts of 
second derivatives, not just Hessians, but the example of a Hessian has been used for simplicity. The 
approach described suffers from certain limitations. Foremost is the restriction that the symmetry of 
the Hessian is not exploited, and unneeded computations are performed. Additional overhead comes 
from computing the gradient twice. When second-derivative capabilities are built into ADIFOR, it 
is desirable that this overhead be eliminated. At the same time, there are certain characteristics of 
the code generated by this procedure that would be desirable in an ADIFOR implementation. In 
particular, the ability to compute a rectangular region of the Hessian or a matrix-Hessian-matrix 
product via special seed matrix initializations could be of great benefit to a computational scientist. 
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Appendix: ADIFOR-generated Subroutine for Computing Hessians 

DISCLAIHER 

This f i l e  was generated on 05/24/94 by the version of 
ADIFOR compiled on 07/13/93. 

ADIFOR was prepared as an account of work sponsoredby an 
agency of the  United States  Government, Rice University, and 
the University of Chicago. 
States  Government nor any agency thereof,  nor Rice University, 
nor the  University of Chicago, including any of t he i r  employees 
or off icers ,  makes any warranty, express or implied, o r  assumes 
any lega l  l i a b i l i t y  or responsibil i ty f o r  the accuracy, complete- 
ness, or usefulness of any information or  process disclosed, or 
represents t ha t  its use would not infringe pr ivately owned r igh t s  

Neither the  author(s),  the  United 

Formal g-f is act ive.  
Formal f is active.  
Formal x is active.  

integer g$p$ 
integer g$pmax$ 
parameter (g$pmax$ = 5) 
integer g$i$ 
r e a l  fbaar 
r e a l  r$1 
integer ldg$x 
integer ldg$f 
integer ldg$g-f 

Formal f is active.  
Formal x is active.  

integer g-p- 
integer g-pmax, 
parameter (g-pmax- = 5) 
integer g-i- 
r e a l  r-1 
r e a l  gsr-1 (g$pmax$) 
r e a l  fbar  
r e a l  g$fbar(g$pmax$) 
integer ldg-x 
integer ldg-f 

integer n ,  i 
r e a l  f ,  x(n) 
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99977 

C 

real g$f (ldg$f), g$x(ldg$x. n) 
real g-f (ldg-f) , g-x(ldg-x, n) 
real g$g,f (ldg$g-f, ldg-f) 

real g-sqrt 
external g-sqrt 
real g$sqrt 
external g$sqrt 
if (g$p$ .gt. g$pmax$) then 
print *, ’Parameter g$p is greater than g$pmax.’ 
stop 

endif 
if (g-p- .gt. g-pmax-) then 
print *, ’Parameter g-p is greater than g-pmax. ’ 
stop 

endif 
f = 1.0 
do 99979 g$i$ = 1, g$p$ 
g$f (g$i$) = 0.0 

do 99991, g-i- = 1, g-p- 
g-f (g-i-1 = 0.0 
do 99978 g$i$ = 1, g$p$ 

99979 continue 

g$g-f(g$i$, g-i-1 = 0.0 
99978 continue 
99995 continue 
99999 continue 
99991 continue 

C f = f * x(i) 
C r-1 = x(i) 

do 99989, i = 1, n 

do 99977 g$i$ = 1, g$p$ 

continue 
r-1 = x(i) 
do 99990, g-i- = 1, g-p, 

g$r-l(g$i$) = g$x(g$i$, i) 

g-f(g-i-) = r-1 * g-f(g-i-) + f * g-x(g-i-, i) 
r$l = g-f(g,i,) 
fbaar = g-x(g,i-, i) 
do 99976 g$i$ = 1, g$p$ 
g$g-f(g$i$, g-i-1 = r$l * g$r,l(g$i$) + fbaar * g$f(g$i$) 

*+ r-1 * g$g-f(g$i$, g-i-1 
99976 continue 

99993 continue 
99998 continue 
99990 continue 
C f = f * r-1 

g-f(g-i-) = r-1 * r$l + f * g-xCg-i-, i) 

do 99975 g$i$ = 1, g$p$ 
g$f (g$i$) = r-1 * g$f (g$i$) + f * g$r-l (g$i$) 

99975 continue 

99994 continue 
99997 continue 
99989 continue 

f = f * r-1 

10 



C 
C 

C 

f = sqrt(f) 
r-1 = sqrt(f) 
r$l = sqrt(f) 
fbaar = g$sqrt(f, r$l) 
do 99974 g$i$ = 1, g$p$ 
g$r,l(g$i$) = fbaar * g$f(g$i$) 

99974 continue 
r-1 = r$l 
call g$g,sqrtsubr$7(g$p$, f, g$f (11, ldg$f, r-1, g$r-1(1) g$pma 

*x$, fbar, g$fbar(l), g$pmax$) 
do 99988, g-i, = 1, g-p- 
g,f(g-i-) = fbar * g-f(gA) 
r$1 = g-fcg-i-) 
do 99973 g$i$ = 1, g$p$ 
g$g-f(g$i$, g-iJ = r$l * g$fbar(g$i$) + fbar * g$g,f(g$i$, 

*g-i-) 
99973 continue 

99992 continue 
99996 continue 
99988 continue 

g-f(g-i-1 = fbar * r$l 

f = r-1 
do 99972 g$i$ = 1, g$p$ 
g$f (g$i$) = g$r-l(g$i$) 

99972 continue 

return 
end 
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