
ANL/MCS-TM- 195

Using ADIFOR 1.0 to Compute Hessians

Paul Hovland

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 3783 1

Prices available from (615) 576-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-195

Using ADIFOR 1.0 to Compute Hessians

bY

Paul HovlanlE"

Mathematics and Computer Science Division

Technical Memorandum No. 195

April 1995

This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38; through NSF Cooperative Agreement No. CCR-8809615; by a U.S. Department of Defense
NDSEG Fellowship; and by NASA Purchase Order L25935D.

'Current address: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 2412 Digital
Computer Lab, 1304 W. Springfield Ave., Urbana, IL 61801

Contents

Abstract

1 Introduction

2 Procedure

3 Discussion

4 Initialization

5 Example

6 Conclusions

Appendix: ADIFOR-generated Subroutine for Computing Hessians

References

...
111

1

9

12

Using ADIFOR 1.0 to Compute Hessians
by

Paul Hovland

Abstract

ADIFOR provides a simple means to produce code for the first derivatives of functions
through the technique of automatic differentiation. However, the fact that ADIFOR
currently cannot produce code to compute second derivatives limits its usefulness for
certain applications. This paper describes how ADIFOR and related tools can be used
to produce code that does compute second derivatives and discusses how to use this
code. Conclusions are presented about the limitations of this method and how it might
compare with second-derivative code produced directly by ADIFOR.

1 Introduction

When a scientist wishes to compute the gradient of a function for optimization or sensitivity
analysis, ADIFOR provides a simple means to produce derivative code via automatic differentiation
[l]. However, many optimization methods require the Hessian of the objective function. Currently,
ADIFOR does not produce code for second derivatives. But, by applying ADIFOR twice, it is
possible to produce code for the Hessian. The next section outlines a procedure for creating code for
second derivatives. Section 3 provides more detailed discussion of why certain steps are required and
how they should be executed. Section 4 discusses seed matrix initialization as it applies to this second
derivative code. Section 5 provides a simple example of the technique. The final section discusses
some of the limitations of the technique and describes how the resultant code might resemble and
differ from the code that would be produced by a future version of ADIFOR.

2 Procedure

This paper assumes that the user is already familiar with ADIFOR and the various files involved

The procedure required to produce code capable of computing second derivatives is as follows:

in its use. Those readers not familiar with ADIFOR are referred to [3,4] for an introduction.

1. Create an ADIFOR script (.adf) file. Be sure to include a “SEP -” line.

2. Create a composition (.comp) file.

3. Run ADIFOR (adif o r f unc . adf f unc . cornp).

4. Run make on the ADMakefile.

5. Create a main program to call the new top-level subroutine.

6.. Create a new composition file, including the new main program, all ADIFOR-generated sub-
routines, and, if necessary, i n t r i n s i c . f .

7. If intrinsic .f is not needed (there are no intrinsic functions requiring the exception handler),

8. Run adpre using this composition file.

9. Edit the resulting * -ad, f files so that $ is changed to _.

skip to Step 11.

10. Change the . ad.f extension to .f, or modify the composition file to use the new file names.

11. Create a new ADIFOR script file, changing the separator (for clarity), and prefacing the OUT

12. Run ADIFOR again (adif o r g-func. adf g l u n c . comp).

13. Run make on the ADMakefile.

14. Create a new main program that does the proper initializations and calls g$gfunc.

variable(s) with g-.

3 Discussion

The reason for some of the steps in Section 2 may not be obvious. This section explains the
motivation behind these procedures. It also includes brief notes about the tools being used.

ADIFOR employs a two-stage process to produce derivative code. In the first step, ADIFOR
analyzes the program, stores intermediate information, and creates a makefile. This makefile invokes
Adtrans, the ADIFOR translator, which translates the intermediate information into source code.
The default separator character of $ causes problems for the make utility. This is normally not a
problem, because of the naming convention for the files created by ADIFOR, basically the original
subroutine name followed by an extension. However, when ADIFOR is applied twice, the subroutine
names from the first application contain the separator character. Thus, the separator character for
the first application of ADIFOR must be something other than $. For this reason, we suggest a
separator character of - in Step 1.

The exception-handling routines [2] provide an impediment to applying ADIFOR a second time
because these routines are implemented as functions, but ADIFOR currently deals only with sub-
routines. Steps 8-10 describe how the ADIFOR preprocessor, Adpre, can be used to overcome this
problem. However, if the exception-handling routines, found in the file intrinsic. f, are not needed
these steps can be omitted, as mentioned in Step 7. The ADIFOR preprocessor is described in [4],
but its use can be summarized by three steps:

1. Set the RBiiOME environment variable using setenv R N i i O M E /anydir.

2. Create a composition file, as with ADIFOR.

3. Execute Adpre, specifying the composition file name, as for example, adpre -P gifunc. comp.

For similar reasons to those discussed above, the $ character that occurs in the files produced by
Adpre (which have the .f extension replaced by .ad.f) must replaced by another character, such
as -.

The Hessian is essentially the derivatives of the gradient with respect to the independent variable.
Thus, the ADIFOR script file for the second application of ADIFOR should specify the top-level
ADIFOR-generated subroutine as TOP, the gradient as OUT, and the same IN variablests). In
order to make it easier to distinguish between the gradient objects of the first pass and the gradient
objects of the second pass, and also to prevent name conflicts, a different separator character (such
as $) should be used.

2

4 Initialization

The initialization of seed matrices is nontrivial even for first-derivative programs [3]. In the case
of second derivatives, the situation can become even more complex. The code produced by the
method outlined above is capable of computing the matrix product SI x H x g, where H is the
Hessian. The two seed matrices, SI and Sz, arise from the double application of ADIFOR. If x is
the only independent variable, these seed matrices will have the names g i and g$x. If all that is
desired is the Hessian, these seed matrices should be initialized to an identity matrix, for example
by using the code shown in Figure 1.

If only an m x p region of the Hessian is desired, this can be computed by initializing g$x and
g x such that the appropriate p elements of g$f and rn elements of g 9 are computed. A special
case of this situation arises when a particular column or row of the Hessian is desired. The third
column of the Hessian could be computed by using the initialization in Figure 2. Note that this is
the transpose of the column because of the way ADIFOR stores derivatives. Since the Hessian is
symmetric, this is less important.

The ability to compute one column at a time can be used to exploit the symmetry of the Hessian.
An example of how this might be accomplished is shown in Figure 3. However, it is important to
note that the overhead of recomputing the function and a portion of the gradient on each iteration
implies that this method will not be significantly more efficient than the full Hessian computation
and may even be more expensive.

Perhaps the most promising application for seed matrix initialization is when the pre- and post-
multiplication of the Hessian by a vector or pair of vectors is desired. For example, if we wish to
compute t T H y , the simple initialization is sufficient. This capability may be particularly useful for
optimization techniques like the conjugate gradient method.

do i = 1, n
do j = 1, n
g,x(j, i) = 0.0
g$x(j, i) = 0.0

enddo
g-x(i, i) = 1.0
g$x(i, i) = 1.0

enddo
gp = n
g-p- = n

Figure 1: Seed matrix initialization using identity matrices to compute the Hessian

3

do i = 1, n
do j = 1, n

enddo
g,x(i, i) = 1.0
g$x(l, i) = 0.0

g-x(j, i) = 0 . 0

enddo
g$x(1,3) - 1.0
gp = 1
g-p, = n

Figure 2: Seed matrix initialization using n x n and 1 x n matrices to compute a column
of the Hessian

do k = 1, n
do i - 1 , n

do j = 1, k

enddo
g,x(i, i) = 1.0
g$x(l, i) = 0 . 0

g,x(j, i) = 0.0

enddo
g$x(l,k) = 1.0
gp = 1
g-p, = k
call g$g-func(. . . .)

enddo

Figure 3: Algorithm using column computations to exploit the Hessian’s symmetry

5 Example

Consider the example program in Figure 4. This program simply computes the function
n

i= 1

An ADIFOR script file for this program is

IN x
OUT f
TOP func
PMAX 5
SEP -

4

program example

real x(51,f
integer i

x(1) = 1.0
x(2) = 3.0
x(3) = 2.0
x(4) = 6.0
x(5) = 4.0

subroutine func(x,f,n)

integer n, i
real f ,xh)

fz1.0
do i=l,n

enddo
f-f *x(i)

f = sqrt(f)
call func(x,f ,5)

do i=1,5

enddo
write(*,*) 'f = '.f

write(*,*) 'x(',i,') = ',x(i)

return
end

end

Figure 4: A simple example program

and an appropriate composition file is

func.f
main. f

Applying ADIFOR yields a subroutine g 9 u n c 3 (listed in the Appendix) capable of computing
the gradient of this function. An appropriate main program for this subroutine is shown in Figure
5 .

A composition file for the gradient program is

g-main. f
func . 3 . f
intrinsic.f

If Adpre is executed on this composition, several changes occur. The most significant changes
involve converting the functions in intrinsic. f to subroutines and modifying the calls in gfunc-3
accordingly. For example, the line

fbar = g$sqrt(f, r-1)

in g 9 u n c 3 becomes

call g-sqrtsubr(f, r-1, fbar)

after processing with Adpre and the global replacement of $ by _.

5

program example

real ~ (5 1 , f, g,x(5, 5) , g,f(5)
integer i, j

x(1) = 1 .0
x (2) = 3 .0
x(3) = 2 . 0
x (4) = 6 . 0
x(5) = 4 . 0

do i = 1 , 5
do j = 1, 5

enddo
g-x (i , i) = 1.0

g-x (j , i) a 0 . 0

enddo

do i = 1 , 5

enddo
write (*, *) ’f = ’, f
do i = 1 , 5

enddo

write (*, *> ‘ x (’ , i, ’> = ’, x (i >

write (*, *> ’ g - f (’ , i , ’> = ’, g - f (i)

end

Figure 5 : An example program using the ADIFOR-generated gradient subroutine

6

program example

x(1) = 1.0
x(2) - 3.0
x(3) = 2.0
x(4) = 6.0
x(5) = 4.0

do i = 1, 5
do j = 1, 5
g-x(j, i) = 0 . 0
g$x(j, i) = 0 . 0

enddo
g-x(i, i) = 1.0
g$x(i, i) = 1.0 ~

enddo

do i = 1, 5

enddo
write (*, *) ’f = ’, f
do i - 1, 5

enddo
do i = 1, 5

vrite (*, *) ’x(’, i, ’1 = ’, x(i)

write (*, *) ’g,f(’, i, ’1 = ’, g-f(i)

do j = 1, 5

enddo
write (*, *) ’Hess(’, i, ’,’,j,’) = ’, g$g-f(j,i)

enddo

end

Figure 6: An example program using the ADIFOR-generated Hessian subroutine

7

With an ADIFOR script file such as

IN x
OUT g-f
PMAX 5
TOP g-func-3
SEP 8

ADIFOR can be applied a second time to yield the Hessian code. As was discussed in Section 4, the
driver code for this subroutine can initialize variables in a number of different ways. The simplest
scheme, where the entire Hessian is computed at once, is used in the main program in Figure 6.

6 Conclusions

Even though ADIFOR does not currently support second derivatives, it is possible to produce
code to compute a Hessian by using two passes of ADIFOR. This approach is applicable to all sorts of
second derivatives, not just Hessians, but the example of a Hessian has been used for simplicity. The
approach described suffers from certain limitations. Foremost is the restriction that the symmetry of
the Hessian is not exploited, and unneeded computations are performed. Additional overhead comes
from computing the gradient twice. When second-derivative capabilities are built into ADIFOR, it
is desirable that this overhead be eliminated. At the same time, there are certain characteristics of
the code generated by this procedure that would be desirable in an ADIFOR implementation. In
particular, the ability to compute a rectangular region of the Hessian or a matrix-Hessian-matrix
product via special seed matrix initializations could be of great benefit to a computational scientist.

8

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

Appendix: ADIFOR-generated Subroutine for Computing Hessians

DISCLAIHER

This f i l e was generated on 05/24/94 by the version of
ADIFOR compiled on 07/13/93.

ADIFOR was prepared as an account of work sponsoredby an
agency of the United States Government, Rice University, and
the University of Chicago.
States Government nor any agency thereof, nor Rice University,
nor the University of Chicago, including any of t he i r employees
or off icers , makes any warranty, express or implied, o r assumes
any lega l l i a b i l i t y or responsibil i ty f o r the accuracy, complete-
ness, or usefulness of any information or process disclosed, or
represents t ha t its use would not infringe pr ivately owned r igh t s

Neither the author(s), the United

Formal g-f is act ive.
Formal f is active.
Formal x is active.

integer gp
integer g$pmax$
parameter (g$pmax$ = 5)
integer gi
r e a l fbaar
r e a l r$1
integer ldg$x
integer ldg$f
integer ldg$g-f

Formal f is active.
Formal x is active.

integer g-p-
integer g-pmax,
parameter (g-pmax- = 5)
integer g-i-
r e a l r-1
r e a l gsr-1 (g$pmax$)
r e a l fbar
r e a l g$fbar(g$pmax$)
integer ldg-x
integer ldg-f

integer n , i
r e a l f , x(n)

9

99977

C

real g$f (ldg$f), g$x(ldg$x. n)
real g-f (ldg-f) , g-x(ldg-x, n)
real g$g,f (ldg$g-f, ldg-f)

real g-sqrt
external g-sqrt
real g$sqrt
external g$sqrt
if (gp .gt. g$pmax$) then
print *, ’Parameter g$p is greater than g$pmax.’
stop

endif
if (g-p- .gt. g-pmax-) then
print *, ’Parameter g-p is greater than g-pmax. ’
stop

endif
f = 1.0
do 99979 gi = 1, gp
g$f (g$i$) = 0.0

do 99991, g-i- = 1, g-p-
g-f (g-i-1 = 0.0
do 99978 gi = 1, gp

99979 continue

g$g-f(g$i$, g-i-1 = 0.0
99978 continue
99995 continue
99999 continue
99991 continue

C f = f * x(i)
C r-1 = x(i)

do 99989, i = 1, n

do 99977 gi = 1, gp

continue
r-1 = x(i)
do 99990, g-i- = 1, g-p,

g$r-l(g$i$) = g$x(gi, i)

g-f(g-i-) = r-1 * g-f(g-i-) + f * g-x(g-i-, i)
r$l = g-f(g,i,)
fbaar = g-x(g,i-, i)
do 99976 gi = 1, gp
g$g-f(g$i$, g-i-1 = r$l * g$r,l(g$i$) + fbaar * g$f(gi)

*+ r-1 * g$g-f(g$i$, g-i-1
99976 continue

99993 continue
99998 continue
99990 continue
C f = f * r-1

g-f(g-i-) = r-1 * r$l + f * g-xCg-i-, i)

do 99975 gi = 1, gp
g$f (g$i$) = r-1 * g$f (gi) + f * g$r-l (g$i$)

99975 continue

99994 continue
99997 continue
99989 continue

f = f * r-1

10

C
C

C

f = sqrt(f)
r-1 = sqrt(f)
r$l = sqrt(f)
fbaar = g$sqrt(f, r$l)
do 99974 gi = 1, gp
g$r,l(g$i$) = fbaar * g$f(gi)

99974 continue
r-1 = r$l
call g$g,sqrtsubr$7(gp, f, g$f (11, ldg$f, r-1, g$r-1(1) g$pma

*x$, fbar, g$fbar(l), g$pmax$)
do 99988, g-i, = 1, g-p-
g,f(g-i-) = fbar * g-f(gA)
r$1 = g-fcg-i-)
do 99973 gi = 1, gp
g$g-f(g$i$, g-iJ = r$l * g$fbar(g$i$) + fbar * g$g,f(gi,

*g-i-)
99973 continue

99992 continue
99996 continue
99988 continue

g-f(g-i-1 = fbar * r$l

f = r-1
do 99972 gi = 1, gp
g$f (g$i$) = g$r-l(gi)

99972 continue

return
end

11

References

[l] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR:
Generating derivative codes from Fortran programs. Scientific Programming, 1(1):ll-29, 1992.

[2] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Techni-
cal Report ANL/MCS-TM-159, Mathematics and Computer Science Division, Argonne National
Laboratory, 1991.

[3] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians.
Technical Report ANL/MCS-TM-158, Mathematics and Computer Science Division, Argonne
National Laboratory, 1991.

[4] Christian H. Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. Get-
ting started with ADIFOR. Technical Report ANL/MCS-TM-164, Mathematics and Computer
Science Division, Argonne National Laboratory, 1992.

12

