UCRL-ID-120484

Smile

J.G. Fletcher

April 1988

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefuiness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




page 1
Smile

John G. Fletcher
April 15, 1988

This document defines the characteristics of Smile, a
System/machine-independent local environment. This environment
consists primarily of a number of primitives (types, macros, procedure
calls, and variables) that a program may use; these primitives provide
facilities, such as memory allocation, timing, tasking and
synchronization, beyond those typically provided by a programming
language. The intent is that a program will be portable from system
to system and from machine to machine if it relies only on the
portable aspects of its programming language and on the Smile
primitives.

For this to be so, Smile itself must be implemented on each
system and machine, most likely using non—portable constructions; that
is, while the environment provided by Smile is intended to be
portable, the implementation of Smile is not necessarily so. In order
to make the implementation of Smile as easy as possible and thereby
expedite the porting of programs to a new system or a new machine,
Smile has been defined to provide a minimal portable environment: that
is, simple primitives are defined, out of which more complex
facilities may be constructed using portable procedures. The
implementation of Smile can be as any of the following:

o the underlying software environment for the operating system of
an otherwise "bare" machine,

o a "guest" system environment built upon a preexisting operating
system,

o an environment within a "user" process run by an operating
system, or

o a single environment for an entire machine, encompassing both

system and "user" processes.
In the first three of these cases the tasks provided by Smile are
"lightweight processes” multiplexed within preexisting processes or
the system, while in the last case they also include the system
processes themselves.

Language

Much of the environment for a program is provided by the
ptrrogramming language in which it is written, and Smile is intended to
provide only facilities not provided by that language. Therefore
Smile is based upon an assumption about what facilities are available
in the programming language used. The simplest statement of this
assumption is that the language provides the kinds of facilities
available in the language C:; these include common data types,
structures, arrays, pointers, common control structures, potentially
recursive subroutines (that can be implemented using a stack), and
simple syntactic macros. Also the language used must compatibly link
with C, because it has been assumed that C is a suitable portable
language in which to implement Smile itself.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED MASTER




page 2

The Smile primitives that are not simply types, variables, or
constants are here specified as though they are procedures in the C
language. This does not imply that implementation in another language
is inappropriate. More importantly, it does not imply that the
primitives are in fact procedures; some of them may be implemented as
macros, and the programmer must take the precautions implied by that

possibility.

The discussion below covers, not only the general,
implementation—-independent characteristics of Smile, but also some
aspects peculiar to a specific implementation, a C-language
implementation within the Unix operating system, here called the
reference implementation; it should always be clear what in the
discussion is intended to be generally true and what is true only of
the reference implementation. The reference implementation of Smile
is itself largely portable, the system dependencies being isolated
into specific modules.

Smile is an environment. Routines that execute within that
environment should simply assume that it is there; they do not have to
do anything to create it. The environment is created by the action of
some program executing outside the environment, and, once existing,
the environment persists until activity within it indicates that it
should terminate; creation and termination of Smile are discussed
further below. Routines executing within Smile and routines outside
Smile may be able to communicate, for example, through shared global
variables; such communication is also discussed below. However, the
discussion now continues by describing Smile from the point of view of
programs executing within that environment.

Memory

The (random access) memory available to a program, which
(depending on the implementation) may be "real" or "virtual', consists
of several parts:

o Procedures contain the instructions that executing routines read
but do not modify. Therefore the same procedure may be
reentrantly and/or recursively used by several routines. The
term routine is here used to refer to an "instance of execution®
of a procedure, that is, an object represented by an "activation
record", "stack frame"”, or other rendition of an internal,
evolving state.

o Stacks contain the filo (first in, last out) state of routines.
Routines that operate entirely among themselves in a filo fashion
can share a single stack for this state, which:.is allocated and
deallocated as the routines are created and terminate.

o Globals are permanently allocated variables and constants
accessible to routines, in addition to the local variables that
caonstitute their state on a stack.

o Blocks each contain a sequentially addressed portion of memory of
some size that may vary from block to block. Unlike procedures,
stacks, and globals, which are assumed to be allocated and/or
managed automatically by the mechanisms aof the programming

—_—
.




page 3
language, blocks are allocated and managed explicitly by
routines® calling upon Smile primitives, as discussed next.

Smile measures the size of memory blocks in units of (8 bit)
bytes. It is recognized that some implementations (for example, those
using a "buddy system" allocator) may have particular sizes of blocks
that they preferentially allocate, that they may round up the size of
a requested block to the next preferred size, and that there may be
efficiencies in referring to a preferred size by other than its byte
count. Smile therefore recognizes the notion of a size code, a
negative integer that identifies one of the preferred sizes. So, when
requesting a block, a routine may specify the desired size either with
a byte count or with a size code, the two cases being distinguished by
the fact that the latter are negative, while the former are not.

Smile recoqnizes that the memory may consist of a number of
partitions, each partition being an independently addressed segment of
memory. A typical case is that there is one partition for the system
and one for each "user" process. However, it is only when there is a
single Smile, encompassing both system and "user" processes, that such
partitioning is relevant; a Smile that is limited to just the system
or just a single "user" process typically must deal with only a single
partition. The reference implementation consists of separate Smiles
for the system and for each "user" process (that uses Smile);
therefore, each such Smile has only one partition.

I+ there are multiple partitions within a Smile, then the notion
of a privileged procedure is relevant. A privileged routine (one
executing a privileged procedure) is able to accessg all partitions,
while an unprivileged one is limited to just one partition, with which
it is associated. The intended implementation is that system routines
are privileged and "user" routines are not, except that certain
privileged procedures are "system calls", invocable by unprivileged
“*user" routines. If there is only one partition, it is generally best
to regard all procedures as privileged. The partitions accessible by
a routine define the scope of that routine; that is, the scope of an
unprivileged routine is its partition, while the scope of a privileged
routine is the entire Smile. The extent to which restrictions, such
as those on unprivileged routines, are fully enforced by Smile is
system—dependent.

There are four Smile primitive procedures relating to memory
blocks: .

o int Memfnd (count)
int counts

returns the size code appropriate to the (byte) count argument,
that is, the code corresponding to the preferred size obtained by
rounding up that count. . If the count is negative (indicating
that it is in fact, not a byte count, but a size code), then that
value is returned. In an implementation for which there are no
preferred sizes, the count itself may be returned as what is, in
effect, a (non—-negative) size code. Memfnd{(0) should always be
0. Portable programs should not have size codes built into them;
they should use Memfnd to find the size codes corresponding to




page 4
the byte counts of interest, and then use the results obtained
(which may or may not be negative) thereafter.

int Memsiz (code)

int code;
returns the byte count corresponding to the (size) code

argument. If the code is non-negative (indicating that it is in
fact, not a size code, but a byte count), then that value is
returned. Note that Memfnd (Memsiz (code)) == code but that
Memsiz (Memfnd (count)) >= count.

char XMemobt (mode, size)

char modesj;

int sizej;

allocates a block of the size indicated by the size argument and
returns a pointer to it or, if no such block is available,
returns a Null value. The size may be either a byte count or a
size code, although the latter may be more efficient; a size of
zero is valid, although perhaps not very useful. The mode
argument may be either O or 1. If the mode is O, then the
allocated block is within the partition- of the routine invoking
Memobt. If the mode is 1, then the invoking routine must be
privileged, and the allocated block is within a special partition
(e. g., the system) accessible only by privileged routines. The
mode is of course not significant if there is only one partition
(as is the case for the reference implementation).

char %XMemgiv(block, size)

char *blocks

int size;
discards the previously allocated block defined by the block and
size arquments and returns a Null values the size should be the
same as was specified when the block was allocated. A Null value
for block results in no operation.

Time

Smile defines a type When, which is the type for time intervals;

this type is necessarily actuallly some form of integer, so that
arithmetic can.be perfaormed. There are two Smile primitive procedures

relating to time:

(=)

When Tick()
indicates the units in which time is measured by returning the

number af such units that make up one second. A particular time
interval of n seconds is therefore expressed as n¥Tick().

When Timq() . .
returns the current time measured in ‘the time units indicated by

Tick. The current time in seconds is therefore Time()/Tick().
The initial instant from which this time is measured is system
dependent and not defined within Smile; that is, Smile provides
only for measuring time intervals, not for calendar time or time

of day.




page S

Tasks

A task is a collection of routines that is scheduled for
execution by Smile, so that one task is executed for a while, then
another, and so an, the execution of each task generally inveolving the
successive invocations of a number of routines. Tasks are threads of
execution that, at least logically, execute asynchronously,
concurrently, in parallel with one another. A task has an evolving
state that consists primarily of the states of the routines making it
up. This state is therefore on a stack associated with the task, and
each task has its own stack (if coroutines are provided by the
language, which they are not in the reference implementation, then a
single task might require multiple stacks). In addition to whatever
state is on its stack, each task has some additional state accessible
using the Smile primitives, as explained below. A task is at any
moment in one of four states:

o An inactive task has only whatever state is accessible through
the Smile primitives; none of its stack is actually in use, and
therefore the stack need not, and in fact does not, exist. So
the inactive state provides a way for a task to minimize the
resources it requires during periods of inactivity; also, having
no stack at such times is essential for a kind of task discussed
below. If the task is not inactive (is in one of the three
states discussed next), then it is said to be active and has a
stack with some state on it.

o A sleeping task differs from an inactive task only in that it has
some state on its stack. An inactive or a sleeping task is
guiescent and will not execute until some event (as discussed
below) causes it to become awake (a term that encompasses the two
states discussed next).

o A ready task is prepared to execute and is only waiting its turn
to use a processor and enter the state described next, as
determined by the Smile scheduler.

o A running task is actually executing on a processor.

Each task, and all the routines in it, are associated with a single

memory partition.

Smile defines a type Task, which is the type for identifiers of
tasks. Routines using Smile should only assign such identifiers as
the values of variables, pass them as arguments to procedures, or
otherwise use them in a manner not dependent on how the type is
actually implemented. For example, in the reference implementation,
Task is actually a pointer to a data structure containing information
about a task needed by Smile to manage that task, but routines using
Smile should not attempt to access items in that structure. There are
eight Smile primitive procedures relating to tasks: :

o Task Tskobt (entry, parameter, mode, size)
char X (kentry) ();
char Xparameter;
char modes;
int sizes




. page 6
creates a new task and returns its task identifier or, if no such
task can be created, returns a Null value. (No actual task has a
Null identifier.) The task will begin execution at the beginning
of the procedure defined by the entry argument; that procedure is
passed, as its single argument, the parameter argument, which is
known as the task parameter. That is, the initial or main
routine of the task executes the entry procedure with the task
parameter as its argument; this routine typically invokes other
routines as it carries out the work of the task. The mode
argument may be either O or 1. If the mode is 0, then the new
task is within the partition of the routine invoking Tskobt. If
the mode is 1, then the invoking routine must be privileged, and
the new task is the only task of a new partition; this of course
is not permitted in implementations (such as the reference
implementation) that only allow one partition. The size
argument, which may be either a byte count or a size code,
specifies the size of the stack for the new task; a special
meaning for & size of zero is discussed below.

Task Ego ()

returns the identifier of the running task (a routine of which
invoked Ego). This is an item of a task’s state in addition to
what is on its stack, albeit a constant one.

void Sleep () .
causes the executing task to suspend execution and enter the

sleeping state. There are three ways in which a running task

ceases running:

o It may be preempted at an arbitrary moment by the Smile
scheduler, in which case it becomes ready; preemption is
discussed further below.

o It may execute Sleep(), in which case it sleeps.
o It may return from its main routine; there are two cases:
o If the value returned is not Null, then the task

becomes inactive (and its stack is discarded). The
returned value is remembered by Smile as a new value
for the task parameter; when the task again becomes
active, then this value will be passed to the entry
procedure as its argument, and the task will resume-
execution there. That is, each time that a task is
reactivated, it gets a new stack and executes its entry
procedure, and that procedure is passed as its argument
the task parameter, which is redefined each time that
the task becomes inactive. The task parameter is the
remaining item in a task’s state (in addition to the
state on its stack and its identifier, obtainable by
calling Ega); the intent is that the task parameter
typically be castable to a pointer to a data structure
that contains all the state of the task (except for its
identifier) that is to survive while it is inactive.

o If the value returned is Null, then the task is
permanently terminated, and its task identifier becomes
meaningless. Terminating a task disposes of its stack
and any Smile records associated with it. It does not
dispose of anything else, such as blocks allocated by




page 7
the task or whatever the task parameter may have
pointed to. If all the tasks in a partition terminate,
then the partition terminates, and if all the
partitions terminate, then Smile itself terminates
{this is discussed further below).

Note that a task does not stop running because it creates (with
Tskobt) or alerts (as described next) another task.

void Alert (task, interval)
Task task:
When intervalj

wakens the task identified by the task argument after the time

interval defined by the interval argument; if task is Null or is

not within the scope of the routine invoking Alert, then no
operation is performed. After an inactive or sleeping task is
wakened, it becomes ready. When a task that is already awake is
wakened, it becomes “"hyper" and will immediately rewaken the next
time that it executes Sleep or returns from its main routine with

a non—-Null value. More precisely, the Smile scheduler remembers

for each task whether or not it is awake (one bit) and an alarm

time; it obeys the following rules:

o When an inactive or sleeping task becomes awake, its alarm
time is recorded as eternity (a time so far into the future
that it will never be reached).

o Whenever Alert is called, the alarm time of the indicated
task is recorded appropriately (i. e., as the-time that is
the indicated interval into the future from the current
time), unless the alarm time already recorded is earlier
than the one about to be recorded:; this is so even if the
task is awake. That is, if a task is alerted several times
after it has become awake {(and then perhaps subsequently
gone to sleep or become inactive), then only the earliest of
the indicated wake up times is effective.

o A sleeping or inactive task becomes awake if its alarm time
equals or precedes the current time. If a task attempts to
go to sleep or become inactive when the its alarm time
already equals or. precedes the current time, then it is
viewed as momentarily ceasing and then immediately resuming
being awake; so its alarm time gets rerecorded as eternity.
A newly created task is inactive but has an alarm time equal
to the time of its creation; so it becomes awake as soon as
the Smile scheduler can act.

The intended behavior for a task is that, before it goes to sleep

or becomes inactive, it should first be certain that there is

nothing more for it to do. Also, one task should alert another
only after it has indicated to that task (e. g., by recording
suitable information in shared memory) what work there is to do.

It is then the case that a task will never be left asleep or

inactive while there is work for it to do, which could be quite

disastrous. However, tasks will sometimes be wakened )

"spuriously", that is, only to find that there is no new work,

which, while perhaps inconvenient, has no severe consequences.

Three useful special cases of Alert have been defined:

a Wake(task), equivalent to Alert(task, 0), wakens the
indicated task now.

M P Dn i e Pk i i £ N~ SO 7 e M ST et M Al v oy SO A DR T IR 7 o oYY




page 8

o Alarm(interval), equivalent to Alert(Egqo(), interval), is
used by a task to set an alarm for itself. Note that
Alarm(0) is equivalent to Wake(Ego()).

o Pause(), equivalent to (Alarm(0), Sleep()), causes a
momentary hiatus in the execution of a task, permitting
other tasks to use the processor. If a task goes to sleep
or becomes inactive when the current time has already
overtaken its alarm time, and the task therefore immediately
reawakens, then the Smile scheduler nevertheless does not
immediately continue to run the task; instead it carries out
its scheduling algorithm, as it always does when a task
ceases to run, even for a moment.

char %XTskget (task)

Task task;
returns the task parameter of the task indicated by the task

argument; if task is Null or is not within the scope of the
routine invoking Tskget, then a Null value is returned.

char xTskput (task, parameter)

Task task;

char Xparameter;

returns the parameter argument, after making that parameter the
task parameter of the task indicated by the task argument; if
task is Null or is not within the scope of the routine invoking
Tskput, then the task parameter is not changed, although the
value of the parameter (argument) is returned.

void Lock ()
provides a primitive synchronization among tasks. It is used in

conjunction with Unlock (described next).

void Unlock ()
is used with Lock tao synchronize tasks. The effect of Lock

extends to all tasks within the scope of the routine invoking

Lock. If a routine calls Lock and returns from it, then, until

it subsequently calls Unlock, any other routine with the same

scope that calls Lock will not return from it but will behave as
though it is repeatedly calling Pause(); when Unlock is called by

a routine with that same scope, then, if any routines are so

"trapped" by the Lock, one of them will return from it. This is

a very simple synchronization facility out of which more complex

facilities, such as semaphores, can be constructed. The

simplicity of the facility is further guaranteed by the following
restrictions on its use:

o A task that has called Lock without yet subsequently calling
Unlock should not call Lock again, or call Sleep, or return
from its main routine.

o A task should not call Unlock unless it has first called
Lock, and its calls to Lock and Unlock should alternate.

If any of these restrictions are violated, then the behavior is

undefined.

i . L rr—— e e e




page 9

An interrupt task is a task created by calling Tskobt with a size
of zero. Whenever an interrupt task becomes active, it uses the top
of the stack of some other task; that other task can of course not run
again until the interrupt task has become inactive once more. Stack
sizes must of course be selected to provide for their possible use by
interrupt tasks, if there are any. An interrupt task typically is
preemptively scheduled upon the occurrence of some event (a form of
scheduling not provided in the reference implementation); such a task
normally never calls Sleep, so that, when it is not awake, it is
inactive and has no stack.

An implementation of Smile may be either preemptive or not. A
global constant Prempt, provided by Smile, is zero if and only if the
implementation is not preemptive and uses only a single processor.
The reason that preemption and multiprocessing are thus linked
together is that, from the point of view of programs using Smile, if
either is present, then "critical" sections of program must be
protected, using constructions typically built out of Lock and
Unlock. So, if FPrempt is zero, then these constructions may be
conditionally compiled into no operations; in fact, if Prempt is zero,
then Lock and Unlock themselves are typically implemented as no
operations. (Also, in the case of a single processor with preemption,
Lock can be implemented as disabling preemption and Unlock as
reenabling it.) However, if there is no preemption (even though there
may be multiprocessing), then programs may have to call Pause at
suitable intervals or otherwise assure that no task can-indefinitely
occupy a processor. To be prepared for both the possibility of
preemption and the possibility of no preemption, a programmer must
provide both critical regions and strategic pauses.

Permanent State

A system typically has some state characterizing its behavior
that should survive, even if the system "crashes" and has to be "dead
started". There are two Smile primitive procedures, callable only by
privileged routines, for saving and retrieving permanent state:

o int Retrv (buffer, size)

char Xbutfer;g

int size;
fetches the permanent state into the memory area indicated by the
buffer and size arguments and returns zero, or it returns a
non—zera value if such cannot be done; the reason for the failure
in the latter case may be encoded into the non—zero value, but
Smile does not define the meanings of such values. The size may
be either a byte count or a size code. If there is more
permanent state that the size indicates, then only the first part
‘of that state is fetched; if there is less, then the end of ‘the
buffer is padded with zeros. The program working with the
permanent state is expected to know its format and size.
Typically a system using Smile calls Retrv exactly once, while
initializing.

o int Save (buffer, size)

I R o S e A RN 7 oo e i




page 10

char Xbuffer;

int size;
stores as the permanent state the information from the memory
area indicated by the buffer and size arguments and returns zero,
or it returns a non—zero value if such cannot be done; the reason
for the failure in the latter case may be encoded into the
non-zero value, but Smile does not define the meaning of such
values. The size may be either a byte count or a size code. It
is intended that all the permanent state is being stored; the
behavior if the size is more or less than the available space for
that state is defined only to the extent what Retrv fetches
includes everything that the most recently preceding Save has
stored, provided that that does not exceed the available space.
Typically a system using Smile calls Save rarely, only when
permanent characteristics are redefined.

Symbolic Constants

The primtive procedures with no arguments can also be treated as
symbolic constants, which Smile has defined as follows:
#define TICK Tick()
#define TIME Time()
#define EGO Ego ()
#define SLEEP (Sleep(), (char %) Null)
#define PAUSE (Pause(), {(char Xx) Null)
#define LOCK (Lock(), (char X)) Null)
#define UNLOCK (Unlock(), (char Xx) Null)

Booting

To bring Smile into existence a program (which of course already
exists outside that environment) should call the following procedure:

o int Smile (entry, parameter, size)

char x(xentry) ();

char Xparameter;

int size;

initializes the environment, in effect executes Tskobt(entry,
‘parameter, O, size) to create a single task (the mode of O
indicating that that task shares memory with the program that
called Smile), and then causes that task to run. That task in
general creates more tasks, and the several tasks run under the
control of the Smile scheduler. Smile returns only if all the
tasks terminate; the returned value is zero unless there was some
form of failure (e. g., stack overflow). However, some
implementations of Smile may never return, even when no tasks
remain; such implementations provide for resumption of activity
in a manner such as is discussed below. The size argument must
be non-zero, unless all tasks are to be interrupt tasks, in which
case there is only one stack, namely that of the routine invoking

Smile.

o o e oy —ehp— TP, e SeTNT YOWRANTET Y TEMNA WS Tv 8 G TAERMTYTT B RITTRL 4T ewwser T o




page 11
So the idea is that, once Smile is brought into existence, it
"takes over" and does not relinquish control until it has nothing more
to do (and perhaps not even then). In practice this is not
necessarily so, as is seen in the following discussion of the
reference implementation.

Reference Implementation

It is possible for all the tasks to be sleeping or inactive at
once; activity resumes when the current time reaches the alarm time of
one of them. Even if all their alarm times are eternity, activity can
still resume, because the reference implementation permits routines
executing outside the environment of Smile to call Tskobt and Alert
(and Wake and Alarm). Rather than simply aimlessly looping while
waiting for one of the tasks to reawaken, when none are awake, the
reference implementation gives up control of the processor by calling
a suitable system—dependent procedure, indicating a time at which
Smile wishes to resume executioni this procedure should return either
when that time is reached or when Tskobt or Alarm is invoked. (For
"user" processes, this procedure is a "system call" and should also
provide for the needs of other facilities —— such as the AFST
primitives, discussed elsewhere —-— that may have their own reasons for
calling the system.) Furthermore, for the reference implementation in
the system (i. e., not in a "user" process), if all the tasks
terminate, then Smile does not return; instead it waits for Tskobt to
be invoked and then resumes by running the task thus created.

For the reference "user" implementation, the programmer can
supply a procedure called main, which (directly or indirectly through
other procedures) can call Smile; after Smile returns, it may be
called again. If no main procedure is supplied by the programmer,
then a standard one is used, which has the following behavior:

o The arguments of main commonly called argv and argc are stored
into global variables Argv and Argc.

o Then Smile(prime, (char %) Null, prmsz) is called; extern char
¥xprime() and extern int prmsz must be defined by the programmer.

o When Smile returns, the value it returns is returned by main.

The reference implementation package, programmed in C, is itself
partially portable. The non-portable part (which must be reprogrammed
for each new system or machine) is in files named "smpar" )
(system/machine parameters), while the portable part is in files named
“smile"; in addition, a file named “smain" (Smile main) provides the
default main procedure for a C program. To use the package, a program
source file must include the following two header files in the
indicated order:

(] smpar.h and

o smile.h, : .

and it must be linked with the object files compiled from:
o smpar.c,

o smile.c, and

o smain.c,




page 12
the last being used if and only if the program does not supply its own
main procedure for C. The three object files are in the library file:

o liblincs. a;
the main procedure in the library will not be loaded if the program

supplies its own.

Appendix: Remarks on Tasking

Tasking is in most situations probably the most important
functionality provided by Smile, yet it is perhaps also the least
familiar. This appendix provides some comments on a view of tasking
that underlies the Smile design.

The purpose of multiple tasks is to provide multiple
asynchronous, concurrent, parallel threads of execution. Sequential
actions normally should be done using a single task. For example, a
task, having carried out the beginning of some sequential activity,
could fork (i. e., create, by calling Tskobt) a second task to carry
out the rest of the activity and then immediately terminate itself; a
more straightforward and efficient approach would be to have the first
task itself simply continue and complete the activity. Even when
there must be many tasks, a good guideline is that each sequential
activity is the work of a single task.

A common use of tasks is to perform simultaneously many similar
sequential activities. Following the above guideline, each such
activity can be assighed to a separate task, and the reentrant program
for the tasks can for the most part be written as though there were
only one such activity. For example, a server can be implemented as
an unlimited collection of tasks, each waiting for a request from a
client, getting the request, doing what is requested, replying, and
then terminating. Of course, there cannot really be an unlimited
number of tasks at any one time; so there is in fact only some small
number of them that are waiting for requests, enough of them to handle
any expected peak flurry of requests. When one of the waiting tasks
receives a request, it immediately forks another task, so as to keep
the number of waiting tasks at the desired number. Except for this
act of forking, server initialization, and possible critical sections
of program that can only be executed by one or a few tasks at a time,
the program for each task is essentially what it would be if there

were only a sinhgle client.

The preceding is an example of the general notion that multiple
tasks can be used to wait for multiple events. Another example is
that the APST communication primitives intend that each stream on
which message activity is simultaneously awaited is handled by a

separate task.

It is assumed that the language provides global variables
(accessible by all routines in a partition) and local variables
(accessible by a single routine). There is also usually a need for
task variables (accessible by all routines in a task). Smile provides
for these with the task parameter, which (after appropriate casting)
is intended to be a pointer to a data structure that contains the task

Ty TG TN T Wy p T TR TN T T T TR T T, VESRS T T T

v —— e




page 13
variables; unfortunately, these variables are a bit less convenient to
access than global or local variables, because they involve a
structure reference. The task variables also provide a way for the
routine creating a task to pass to that task some parameters defining
what it is to do.

In general, entry to and exit from a critical section of program,
evecution of which is limited to some number of tasks (often just one)
at a time, must be controlled by some kind of lockout procedures (such
as semaphore procedures). These procedures have their own internal
lockout problems, which are intended to be solved by using the
primitives Lock and Unlock. For example, a typical lockout procedure
may involve examining a variable, conditionally changing that value,
and perhaps manipulating a queue; these actions, which are brief, can
be bracketed by Lock and Unlock. Lock and Unlock themselves are
generally too primitive to be used as lockout procedures for extended
critical sections.




21

Index

B bit 3, 4, 5, 13, 17, 19, 21
big end 4, 8

buffer 3

control 4

data 4

E bit 3, 4, 5. 10, 12, 13, 16, 17, 19, 20,

end-code 5
Error Codes
Numeric
-101 21
-103 21
-12 21
-129 21
-14 21
-192 22
-226 22
-34 21
-35 21
-36 21
-37 21
-38 21
-821
-9 21
Symbolic

Xbgn 21
Xcap 21
Xend 21
Xerr 22
Xich 21
Xlsn 21
Xrej 21
Xsep 21
Xseq 21
Xsid 21
Xstv 22
Xtyp 21
Xusg 21
Xval 21

Fabs 7, 8

Fend 7

Fetc 7

Fimm 6, 8

Find 7

Ftrn 6

go 12, 16, 21

LINCS errors 5

little end 4, 8

Mcon 5, 10

mflg 6

ming 7

Milob 5, 10

Mmul 5, 10

Mrecv 5

mtyp 7

musg 7

mval 7

N bit 5, 12, 13, 17

Pabort 19

Pcancl 18, 19

Pclose 20

Perror 17, 18
Pgivec 15, 16
Pglved 15, 16
Pinit 20

Pobtnc 13

Pobtnd 13, 14, 16
Popen 9, 10. 20
Pparam 11

Precve 16, 21
Precvd 16, 17, 21
Presentation layer 4
primitives 3
Psendc 12, 13, 15
Psendd 12, 13, 14, 16
rejected 8

Sabort 19

Scancl 19

Sclose 20

Serror 18

Session layer 4
Sgive 15

Sinit 20, 21

Sobtn 14

Sopen 10

Sparam 11

Srecv 17, 21
Ssend 12, 13, 14
stream 3

struct tmap 6
Tabort 19

Thit 7

Teancl 19

Tcap 7, 8

Tchr 7, 8

Tclose 20

Terror 18

Tgive 15

Tinit 20

Tint 7

Tnat 7

Tobtn 14

tokens 4

Topen 10

Tparam 11
transmit now 5, 12, 13, 17
Transport layer 3
Traw 7, 8

Trecv 17

Tsend 13, 14
Tvar 7

Whbit 3, 4, 5, 12, 13, 17, 19, 20, 21

VT AT R W S\ TN T T e - o — o 2o o



