
UCRL-ID-120484

Smile

J.G. Fletcher

April 1988

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither t he
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and

. opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

' !,
. .

Smi 1 e

John G. Fletcher
April 15, 1988

This document defines the characteristics of Smile, a
system/machine-Lndependent local environment. This environment
consists primarily of a number of primitives (types, macros, procedure
calls, and variables) that a program may use; these primitives provide
facilities, such as memory allocation, timing, tasking and
synchronization, beyond those typically provided by a programming
language. The intent is that a program will be portable from system
to system and from machine to machine if it relies only on the
portable aspects of its programming language and on the Smile
pr i mi ti ves.

For this to be so, Smile itself must be implemented on each
system and machine, most likely using non-portable constructions; that
is, while the environment provided by Smile is intended to be
portable, the implementation of Smile is not necessarily so. In order
to make the implementation o f Smile as easy as possible and thereby
expedite the porting of programs to a new system or a new machine,
Smile has been defined to provide a minimal portable environment; that
is, simple primitives are defined, out of which more complex
facilities may be constructed using portable procedures. The
implementation of Smile can be as any of the following:
0 the underlying software environment for the operating system of

0 a "gueEit" system environment built upon a preexisting operating

0 an environment within a "user" process run by an operating

0 a single environment for an entire machine, encompassing both

In the first three of these cases the tasks provided by Smile are
"lightweight processesM multiplexed within preexisting processes or
the system, while in the last case they also include the system
processes themselves.

an otherwise "bare" machine,

system,

system, or

system and "user" processes.

Language

Much of the environment for a program is provided by the
programming language in which it is written, and Smile is intended to
provide only facilities not provided by that language. Therefore
Smile is based upon an assumption about what facilities are available
in the programming language used. The simplest statement of this
assumption is that the language provides the kinds of facilities
available in the language C; these include common data types,
structures, arrays, pointers, common control structures, potentially
recursive subroutines (that can be implemented using a stack), and
simple syntactic macros. Also the language used must compatibly link
with C, because it has been assumed that C is a suitable portable
language in which to implement Smile itself.

The Smile primitives that are not simply types, variables, or
constants are here specified as though they are procedures in the C
language. This does not imply that implementation in another language
is inappropriate. More importantly. it does not imply that the
primitives are in fact procedures; some of them may be implemented as
macros, and the programmer must take the precautions implied by that
possibility.

The discussion below covers;, not only the general,
implementation-independent characteristics o f Smile, but also some
aspects peculiar to a specific implementation, a C-language
implementation within the Unix operating system;, here called the
reference implementation; it should always be clear what in the
discussion is intended to be generally true and what is true only of
the reference implementation. The reference implementation of Smile
is itself largely portable, the system dependencies being isolated
into specific modules.

Smile is an environment. Routines that execute within that
environment should simply assume that it is there; they do not have to
do anything to create it. The environment is created by the action of
some program executing outside the environment, and, once existing,
the environment persists until activity within it indicates that it
should terminate; creation and termination of Smile are -discussed
further below. Routines executing within Smile and routines outside
Smile may be able to communicate, for example, through shared global
variables; such communication is also discussed below. However, the
discussion now continues by describing Smile from the point of view of
programs executing within that environment.

Memory

0

0

0

The (random access) memory available to a program, which
(depending on the implementation) may be "real" or "virtual", consists
of several parts:
0 Procedures contain the instructions that executing routines read

but do not modify. Therefore the same procedure may be
reentrantly and/or recursively used by several routines. The
term routine is here used to refer to an "instance of execution"
of a procedure, that is, an object represented by an "activation
record", "stack frame", or other rendition of an internal,
evolving state.
Stacks contain the filo (first Ln, last gut) state of routines.
Routines that operate entirely among themselves in a filo fashion
can share ,a single stack for this state, whicheis allocated and
deallocated as the routines are created and terminate.
Gkobals are permanent-ly allocated variables and constants
accessible to routines., in addition to the local variables that
constitute their state on a stack.
Blocks each contain a sequentially addressed portion of memory of
some size that may vary from block to block. Unlike procedures,
stacks, and globals, which are assumed to be allocated and/or
managed automatically by the mechanisms of the programming

page 3
language, b l o c k s are allocated and managed explicitly by
routines3 calling upon Smile primitives, as discussed next.

Smile measures the size of memory blocks in units of (8 bit)
bytes. It is recognized that some implementations (for example, those
using a "buddy system" allocator) may have particular sizes of blocks
that they preferentially allocate, that they may round up the size of
a requested block to the next preferred size, and that there may be
efficiencies in referring to a preferred size by other than its byte
count. Smile therefore recognizes the notion of a size code, a
negative integer that identifies one of the preferred sizes. So, when
requesting a block, a routine may specify the desired size either with
a byte count or with a size code, the two cases being distinguished by
the fact that the latter are negative, while the former are not.

Smile recognizes that the memory may consist of a number of
partitions, each partition being an independently addressed segment of
memory. A typical case is that there i5 one partition for the system
and one for each "user" process. However, it is only when there is a
single Smile, encompassing both system and "user" processes, that such
partitioning is relevant; a Smile that is limited to just the system
or just a single "user" process typically must deal with only a single
partition. The reference implementation consists of separate Smiles
for the system and for each "user" process (that uses Smile) ;
therefore, each such Smile has only one partition.

If there are multiple partitions within a Smile, then the notion
of a privilesed procedure is relevant. A privileged routine (one
executing a privileged procedure) is able to access all partitions,
while an unprivileged one is limited to just one partition, with which
it is associated. The intended implementation is that system routines
are privileged and "user" routines are not, except that certain
privileged procedures are "system calls", invocable by unprivileged
"user" routines. If there is only one partition, it is generally best
to regard all procedures as privileged. The partitions accessible by
a routine define the scope of that routine; that is, the scope of an
unprivileged routine is its partition, while the scope of a privileged
routine is the entire Smile. The extent to which restrictions, such
as those on unprivileged routines, are fully enforced by Smile is
system-dependent.

There are four Smile primitive procedures relating to memory
blocks:

0 int Memfnd (count)

returns the size code appropriate to the (byte) count argument,
that is, the code corresponding to the preferred size obtained by
rounding up that count. I. If the count is negative (indicating
that it is in fact, not a byte count, but a size code), then that
value is returned. In an implementation for which there are no
preferred sizes, the count itself may be returned as what is, in
effect, a (non-negative) size code. Memfnd(0) should always be
0 . Portable programs should not have size codes built into them;
they should use Memfnd to find the size codes corresponding to

int count;

Page 4
the byte counts of interest, and then use the results obtained
(which may or may not be negative) thereafter.

0 int Memsiz (code)
int code;

returns the byte count corresponding to the (site) code
argument. If the code is non-negative (indicating that it is in
fact, not a size code, but a byte count), then that value is
returned. Note that Memfnd(Memsiz(code)) == code but that
Memsiz (Memfnd(count) >= count.

0 char IcMemobt (mode, size)
char mode;
int size;

allocates a block of the size indicated by the size argument and
returns a pointer to it or, if no such block is available,
returns a Null value. The site may be either a byte count or a
site code, although the latter may be more efficient; a size of
zero is valid, although perhaps not very useful. The mode
argument may be either 0 or 1. If the mode is 0, then the
allocated block is within the partition- of the routine invoking
Memobt. If the mode is 1, then the invoking routine must be
privileged, and the allocated block is within a special partition
(e. g., the system) accessible only by privileged routines. The
mode is of course not significant if there is only one partition
(as is the case for the reference implementation).

0 char *Memgiv(block, size)
char *block;
int size;

discards the previously allocated block defined by the block and
size arguments and returns a Null value; the size should be the
same as was specified when the block was allocated. A Null value
for block results in no operation.

Ti me

Smile defines a type When, which is the type for time intervals;
this type is necessarily actuallly some form of integer, so that
arithmetic can-be performed. There are two Smile primitive procedures
relating. to time:

0 When Tick0
indicates the units in which time is measured by returning the
number of such units that make up one second. A particular time
interval of n seconds is .therefore expressed as nSTick 0 .

0 When Time0
returns <he current time measured insthe time units indicated by
Tick. The current time in seconds is therefore TimeO/TickO.
The initial instant from which this. time is measured is system
dependent and not defined within Smile; that is, Smile provides
only for measuring time intervals, not for calendar time or time
of day.

T a s k s

A t a s k is a c o l l e c t i o n of r o u t i n e s t h a t is s c h e d u l e d f o r
e x e c u t i o n by S m i l e , SO t h a t o n e task is e x e c u t e d for a w h i l e , t h e n
a n o t h e r , and so on , t h e e s e c u t i o n of e a c h t a s k g e n e r a l l y i n v o l v i n g t h e
s u c c e s s i v e i n v o c a t i o n s of a number of r o u t i n e s . T a s k s are t h r e a d s of
e x e c u t i o n t h a t , a t least l o g i c a l l y , e x e c u t e a s y n c h r o n o u s l y ,
c o n c u r r e n t l y , i n p a r a l l e l w i t h o n e a n o t h e r . A t a s k h a s an e v o l v i n g
s ta te t h a t c o n s i s t s p r i m a r i l y of t h e states of t h e r o u t i n e s making i t
up. T h i s s ta te is t h e r e f o r e on a s t a c k associated w i t h t h e task, a n d
e a c h task h a s its own s t a c k (i f c o r o u t i n e s are p r o v i d e d by t h e
l a n g u a g e , which t h e y are n o t i n t h e r e f e r e n c e i m p l e m e n t a t i o n , t h e n a
s i n g l e t a s k migh t r e q u i r e m u l t i p l e s t a c k s) . I n a d d i t i o n t o w h a t e v e r
s ta te is on i t 5 s t a c k , e a c h t a s k h a s some a d d i t i o n a l s ta te accessible
u s i n g t h e Smile p r i m i t i v e s , a s e x p l a i n e d below. A t a s k is a t a n y
moment i n o n e of f o u r states:
0 An i n a c t i v e t a s k h a s o n l y w h a t e v e r s tate is a c c e s s i b l e t h r o u g h

t h e Smile p r i m i t i v e s ; n o n e o f its s t a c k is a c t u a l l y i n u s e , a n d
t h e r e f o r e t h e s t a c k need n o t , and i n f a c t d o e s n o t , e x i s t . So
t h e i n a c t i v e s tate p r o v i d e s a way f o r a t a s k t o min imize t h e
r e s o u r c e s i t r e q u i r e s d u r i n g p e r i o d s o f i n a c t i v i t y ; also, h a v i n g
n o s t a c k a t s u c h t i m e s is e s s e n t i a l f o r a k i n d of t a s k d i s c u s s e d
below. I f t h e t a s k is n o t i n a c t i v e (is i n o n e of t h e t h r e e
s tates d i s c u s s e d n e x t) , t h e n i t is s a i d t o b e acti've and h a s a
s t a c k w i t h some s ta te on it.

0 fi s l e e p i n q t a s k d i f f e r s f r o m a n i n a c t i v e t a s k o n l y i n t h a t i t h a s
some state on its s t a c k . An i n a c t i v e or a s l e e p i n g t a s k is
q u i e s c e n t and w i l l n o t e x e c u t e u n t i l some e v e n t (as d i s c u s s e d
be low) causes it t o become a w a k e (a t e r m t h a t encompasses t h e t w o
states d i s c u s s e d n e x t) .

t o u s e a p r o c e s s o r and e n t e r t h e s ta te d e s c r i b e d n e x t , as
d e t e r m i n e d by t h e S m i 1 e s c h e d u l e r .

0 A r e a d y t a s k is p r e p a r e d t o e x e c u t e and is o n l y w a i t i n g its t u r n

0 A r u n n i n q t a s k is a c t u a l l y e x e c u t i n g on a p r o c e s s o r .
Each t a s k , ' a n d a l l t h e r o u t i n e s i n it, are a s s o c i a t e d w i t h a s i n g l e
memory p a r t i ti on.

S m i l e d e f i n e s a t y p e Task , which is t h e t y p e for i d e n t i f i e r s of
t a s k s . R o u t i n e s u s i n g S m i l e s h o u l d o n l y a s s i g n s u c h i d e n t i f i e r s as
t h e v a l u e s o f var iab les , p a s s t h e m as a r g u m e n t s t o p r o c e d u r e s , or
o t h e r w i s e u s e them i n a manner n o t d e p e n d e n t on how t h e t y p e is
a c t u a l l y implemented. F o r example , i n t h e r e f e r e n c e i m p l e m e n t a t i o n ,
Task is a c t u a l l y a p o i n t e r t o a d a t a s t r u c t u r e c o n t a i n i n g i n f o r m a t i o n
a b o u t a t a s k needed by S m i l e t o manage t h a t t a s k , b u t r o u t i n e s u s i n g
S m i l e s h o u l d n o t a t t e m p t t o access i t e m s i n t h a t s t r u c t u r e . T h e r e are
e i g h t S m i l e p r i m i t i v e p r o c e d u r e s r e l a t i n g t o t a s k s :

0 Task Tskob t (e n t r y , p a r a m e t e r , mode, s i te)
c h a r * (* e n t r y) 0 j
c h a r t p a r a m e t e r ;

i n t s i z e ;
.. c h a r mode;

Page 6
creates a new task and re tu rns i t s task i d e n t i f i e r or, i f no such
task can be created, re tu rns a N u l l value. (No actual task has a
N u l l i d e n t i f i e r .) The task w i l l begin execution a t the beginning
of the procedure defined by the en t r y argument; t ha t procedure i s
passed9 as i t s s ing le argument, the parameter argument, which i s
known as the task parameter. That i s , the i n i t i a l or main
r o u t i n e o f the task executes the en t r y procedure wi th the task
parameter as i t s argument; t h i s r o u t i n e t y p i c a l l y invokes other
rou t ines as i t c a r r i e s out the work o f the task. The mode
argument may be e i t h e r 0 or 1. I f t h e mode i s 0, then t h e new
task i s w i t h i n t h e p a r t i t i o n of the r o u t i n e invoking Tskobt. I f
the mode i s 1, then the invoking r o u t i n e m u s t be pr iv i leged, and
the new task i s the only task of a new p a r t i t i o n ; t h i s o f course
i s not permit ted i n implementations (such as the reference
implementation) t h a t only a l low one p a r t i t i o n . The s i t e
argument, which may be e i t h e r a byte count o r a s i ze code,
spec i f ies the s i z e o f the stack f o r t h e new task; a special
meaning f o r a s i z e o f zero i s discussed below.

0 Task Ego 0
re tu rns the i d e n t i f i e r o f the running task (a rou t ine of which
invoked Ego). Th is i s an i tem of a task 's s t a t e i n add i t i on t o
what i s on i t s stack, a l b e i t a constant one.

0 vo id Sleep 0
causes the executing task t o suspend execution and enter t he
sleeping state. There are three ways i n which a running task
ceases running:
0 I t may be preempted a t an a r b i t r a r y moment by the Smile

scheduler, i n which case i t becomes ready; preemption is
discussed f u r t h e r below.

0 It may execute SleepO, i n which case i t sleeps.
0 It may r e t u r n from i t s main rout ine: there are two cases:

0

0

If the value returned i s no t N u l l , then the task
becomes i n a c t i v e (and i t s stack i s discarded). The
returned value i s remembered by Smile as a new value
f o r t h e task parameter; when t h e task again becomes
active, then th is value w i l l be passed t o the en t r y
procedure as i t s argument, and t h e task w i l l resume'
execution there. That i s , each t ime t h a t a task i s
react ivated, i t gets a new stack and executes i t s en t ry
procedure, and t h a t procedure i s passed as i t 5 argument
the task parameter, which i s redef ined each t ime tha t
the task becomes inact ive. The task parameter i s the
remaining i tem i n a task's s t a t e (i n addi t ion t o the
s ta te on i t s stack and i t s i d e n t i f i e r , obtainable by
c a l l i n g Ega); t he i n t e n t i s t h a t t he task parameter
t y p i c a l l y be castable t o a p o i n t e r to a data s t ruc tu re
tha t contains a l l the s t a t e o f a t h e task (except f o r i t s
i d e n t i f i e r) t ha t i s t o surv ive whi le i t is inact ive.
If t h e value returned i s N u l l , then the task i s
permanently terminated, and i t s task i d e n t i f i e r becomes
meaningless. Terminating a task disposes of i t s stack
and any Smile records associated w i th it. It does not
dispose of anything else, such as blocks a l located by

0

Page 7
t h e t a s k or w h a t e v e r t h e t a s k p a r a m e t e r may h a v e
p o i n t e d to. I f a l l t h e t a s k s i n a p a r t i t i o n t e r m i n a t e ,
t h e n t h e p a r t i t i o n t e r m i n a t e s , and i f a l l t h e
p a r t i t i o n s t e r m i n a t e , t h e n S m i l e i t s e l f t e r m i n a t e s
(t h i s is d i s c u s s e d f u r t h e r b e l o w) .

Note t h a t a t a s k does not s t o p r u n n i n g b e c a u s e i t creates (w i t h
T s k o b t) or alerts (as d e s c r i b e d newt) a n o t h e r t a s k .

0

0

v o i d A l e r t (t a s k , i n t e r v a l)
T a s k task;
When i n t e r v a l ;

w a k e n s t h e t a s k i d e n t i f i e d b y t h e t a s k a rgumen t a f t e r t h e t i m e
i n t e r v a l d e f i n e d by t h e i n t e r v a l a rgument ; i f t a s k is Nul l or is
n o t w i t h i n t h e s c o p e of t h e r o u t i n e i n v o k i n g A l e r t , t h e n no
o p e r a t i o n is per formed. A f t e r a n i n a c t i v e or s l e e p i n g t a s k is
wakened, i t becomes r e a d y . When a t a s k t h a t is a l r e a d y a w a k e is
wakened, i t become6 I1hyper" and w i l l i m m e d i a t e l y r e w a k e n t h e n e x t
t i m e t h a t i t e x e c u t e s S l e e p or r e t u r n s f rom its main r o u t i n e w i t h
a non-Null v a l u e . More p r e c i s e l y , t h e Smile s c h e d u l e r remembers
f o r e a c h t a s k whe the r or n o t it is a w a k e (o n e b i t) and an alarm
t i m e ; i t o b e y s t h e f o l l o w i n g r u l e s :
0 When a n i n a c t i v e or s l e e p i n g t a s k becomes a w a k e , its alarm

t i m e is r e c o r d e d as e t e r n i t y (a t i m e so far i n t o t h e f u t u r e
t h a t it w i l l n e v e r b e r e a c h e d) .
Whenever A l e r t is c a l l e d , t h e alarm t i m e o f t h e i n d i c a t e d
t a s k is r e c o r d e d a p p r o p r i a t e l y (i. e., as t h e - t i m e t h a t is
t h e i n d i c a t e d i n t e r v a l i n t o t h e f u t u r e f r o m t h e c u r r e n t
t i m e) , u n l e s s t h e alarm t i m e a l r e a d y r e c o r d e d is earlier
t h a n t h e o n e a b o u t t o b e r e c o r d e d ; t h i s is so even i f t h e
t a s k is a w a k e . T h a t is, i f a t a s k is a l e r t e d several t i m e s
a f ter it h a s become a w a k e (and t h e n p e r h a p s s u b s e q u e n t l y
g o n e t o s l e e p or become i n a c t i v e) , t h e n o n l y t h e earliest of
t h e i n d i c a t e d w a k e up t i m e s is e f f e c t i v e .
A s l e e p i n g or i n a c t i v e t a s k becomes a w a k e i f i ts alarm t i m e
e q u a l s or p r e c e d e s t h e c u r r e n t t i m e . If a t a s k a t t e m p t s t o
g o t o s l e e p or become i n a c t i v e when t h e its alarm t i m e
a l r e a d y e q u a l s or. p r e c e d e s t h e c u r r e n t t i m e , t h e n i t is
viewed as momenta r i ly ' c e a s i n g and t h e n i m m e d i a t e l y resuming
b e i n g a w a k e ; so its alarm t i m e g e t s r e r e c o r d e d as e t e r n i t y .
A newly c r e a t e d t a s k is i n a c t i v e b u t h a s a n alarm t i m e equa l
t o t h e t i m e of its c r e a t i o n ; so i t becomes a w a k e as s o o n a s
t h e S m i l e s c h e d u l e r c a n act.

The i n t e n d e d b e h a v i o r f o r a t a s k is t h a t , b e f o r e i t g o e s t o s l e e p
or becomes i n a c t i v e , it s h o u l d f i r s t b e c e r t a i n t h a t t h e r e is
n o t h i n g more f o r i t t o do. A l s o , o n e t a s k s h o u l d alert a n o t h e r
o n l y a f t e r i t h a s i n d i c a t e d t o t h a t t a s k (e. g. , b y r e c o r d i n g
s u i t a b l e i n f o r m a t i o n i n s h a r e d . memory) what w o r k t h e r e is t o do.
I t is t h e n t h e case t h a t a t a s k , w i l l n e v e r b e l e f t a s l e e p or

* i n a c t i v e w h i l e t h e r e is w o r k f o r i t t o do , which ' could b e q u i t e
d i s a s t r o u s . H o w e v e r , t a s k s w i l l sometimes b e wakened
" s p u r i o u s l y " , t h a t is, o n l y t o f i n d t h a t t h e r e is no new w o r k ,
which, w h i l e p e r h a p s i n c o n v e n i e n t , h a s n o severe consequences .
T h r e e u s e f u l s p e c i a l cases of A l e r t h a v e been d e f i n e d :
0 W a k e (t a s k) , e q u i v a l e n t t o A l e r t (t a s k , 61, wakens t h e

i n d i c a t e d t a s k now.

0

0

0

0

0

Page 8
0 Alarm(in terva l) , equiva lent t o A le r t (Ego0, i n t e r v a l) . i s

used by a task t o se t an alarm f o r i t s e l f . Note t h a t
Alarm(0) i s equiva lent t o Wake(Ego0).
Pause(), equivalent t o (Alarm(O1 , Sleep0 1 , causes a
momentary h ia tus i n t h e execution of a task, pe rm i t t i ng
other tasks t o use t h e processor. I f a task goes t o sleep
or becomes i n a c t i v e when the current t ime has already
overtaken i t s alarm time, and the task therefore immediately
reawakens, then the Smile scheduler nevertheless does not
immediately continue t o run the task; instead i t c a r r i e s out
i t s scheduling algor i thm, as i t always does when a
ceases t o run, even f o r a moment.

char XTskget (task)

re tu rns the task parameter o f the task ind icated by the
argument; i f task i s N u l l o r i s no t w i t h i n t h e scope of
r o u t i n e invoking Tskget, then a N u l l value i s returned.

Task task;

task

task
the

char tTskput (task, parameter)
Task task;
char *parameter;

re tu rns the parameter argument, a f t e r making t h a t parameter the
task parameter o f the task ind ica ted by the task argument; i f
task i s Nu l l o r i s no t w i t h i n t he scope of t he rou t i ne invok ing
Tskput, then the task parameter i s no t changed, although t h e
value of the parameter (argument) i s returned.

vo id Lock 0
provides a p r i m i t i v e synchronizat ion among tasks. It i s used i n
conjunction w i t h Unlock (described next).

vo id Unlock0
i s used w i t h Lock t o synchronize tasks. The e f f e c t of Lock
extends t o a l l tasks w i t h i n t h e scope of the r o u t i n e invok ing
Lock. I f a r o u t i n e c a l l s Lock and re tu rns from it, then, un t i l
i t subsequently c a l l s Unlock, any other r o u t i n e w i t h the same
scope tha t c a l l s Lock w i l l not r e t u r n from i t but w i l l behave as
though i t i s repeatedly c a l l i n g PauseO; when Unlock i s c a l l e d by
a r o u t i n e w i t h t h a t same scope, then, i f any rou t ines are so
"trapped" by the Lock, one of them w i l l r e tu rn from it. This i s
a very simple synchronizat ion f a c i l i t y out o f which more complex
f a c i l i t i e s , such as semaphores, can be constructed, The
s i m p l i c i t y o f t he f a c i l i t y i s f u r t h e r guaranteed by the fo l l ow ing
r e s t r i c t i o n s on i t s use:
0 A task t h a t has c a l l e d Lock without yet subsequently c a l l i n g

Unlock should no t c a l l Lock again, or c a l l Sleep, o r r e t u r n
from i t s main rout ine.
4 task should no t c a l l Unlock unless i t has f i r s t c a l l e d
Lock, and i t s c a l l s t o Lock an'd Unlock should a l ternate.

I f any of these r e s t r i c t i o n s are violated, then the behavior i s
undefined.

0

9 Page 9 An interrupt task is a task created by calling Tskobt with a size
of zero. Whenever an interrupt task becomes active, it uses the top
of the stack of some other task; that other task can of course not run
again until the interrupt task has become inactive once more. Stack
sizes must of course be selected to provide for their possible use by
interrupt tasks, if there are any. An interrupt task typically is
preemptively scheduled upon the occurrence of some event (a form of
scheduling not provided in the reference implementation); such a task
normally never calls Sleep, so that, when it is not awake, it is
inactive and has no stack-

An implementation of Smile may be either preemptive or not. A
global constant Prempt, provided by Smile, is zero if and only if the
implementation is preemptive uses only a single processor.
The reason that preemption and multiprocessing are thus linked
together is that, from the point of view of programs using Smile, i f
either is present, then "critical" sections of program must be
protected, using constructions typically built out of Lock and
Unlock. So, if Prempt is zero, then these constructions may be
conditionally compiled into no operations; in fact, if Prempt is zero,
then Lock and Unlock themselves are typically implemented as no
operations. (Also, in the case of a single processor with preemption,
Lock can be implemented as disabling preemption and Unlock as
reenabling it.) However, if there is no preemption (even though there

. may be multiprocessing), then programs may have to call Pause at
suitable intervals or otherwise assure that no task can-indefinitely
occupy a processor. To be prepared for both the possibility of
preemption and the possibility of no preemption, a programmer must
provide both critical regions and strategic pauses.

Permanent State

A system typically has some state characterizing its behavior
that should survive, even if the system "crashes" and has to be "dead
started". There are two Smile primitive' procedures, callable only by
privileged routines, for saving and retrieving permanent state:

0 int Retrv (buffer, size)
char Sbuf f er;
int size;

fetches the permanent state into the memory area indicated by the
buffer and size arguments and returns zero, or it returns a
non-zero value if such cannot be done; the reason for the failure
in the latter case may be encoded into the non-zero value, but
Smile does not define the meanings of such values. The size may
be either a byte count or a site code. If there is more
permanent state that the size indicates, then only the first part
.of that atate is fetched; if there i s less, then the end of 'the
buffer is padded with zeros. The program working with the
permanent state is expected to know its format and size.
Typically a system using Smile calls Retrv exactly once, while
initializing.

0 int Save (buffer, size)

page 10
char Xbuf f er;
i n t s i t e ;

s tores as t h e permanent s t a t e the in fo rmat ion from the memory
area i n d i c a t e d by the buffer and s i z e arguments and re tu rns zero,
o r i t r e t u r n s a non-zero value if such cannot be done; the reason
f o r the f a i l u r e i n the l a t t e r case may be encoded i n t o the
non-zero value, but Smile does not de f ine t h e meaning of such
values. The s i z e may be e i t h e r a by te count o r a s i ze code. It
i s intended t h a t a l l the permanent s t a t e i s being stored; the
behavior i f the s i z e i s more or l ess than t h e ava i lab le space fo r
t h a t s t a t e i s defined only t o the extent what Retrv fetches
inc ludes everyth ing t h a t the most recen t l y preceding Save has
stored, prov ided t h a t t ha t does not exceed t h e ava i lab le space.
T y p i c a l l y a system using Smile c a l l s Save r a r e l y , only when
permanent c h a r a c t e r i s t i c s are redefined.

Symbolic Constants

The p r i m t i v e procedures w i th no arguments can a lso be treated as
symbolic constants, which Smile has defined as fo l lows:
#def ine T ICK T i c k 0
#def ine TIME Time 0
#def ine EGO E g o 0
#define SLEEP (SleepO, (char $1 N u l l)
#def ine PAUSE (PauseO, (char $1 N u l l)
#define LOCK (LockO, (char $ 0 N u l l)
#define UNLOCK (UnlockO, (char $ 1 N u l l)

Booting

To b r i n g Smile i n t o existence a program (which o f course already
e x i s t s outs ide t h a t environment) should c a l l t h e fo l l ow ing procedure:

0 i n t S m i l e (entry, parameter, s ize)
char f (Sentry) 0 ;
char *parameter;
i n t s i z e ;

i n i t i a l i z e s t h e environment, i n e f f e c t executes Tskobttentry,
'parameter, 0, s i ze) t o create a s ing le task (the mode o f 0
i n d i c a t i n g t h a t t h a t task shares memory w i t h t h e program tha t
ca l l ed S m i l e) , and then causes t h a t task t o run. That task i n
general c rea tes more tasks, and the several tasks run under the
cont ro l of t h e Smile scheduler. Smile r e t u r n s only i f a l l the
tasks terminate; t he returned value i s zero unless there was some
form o f f a i l u r e (e. g., stack overflow). However, some
implementations o f Smile may never return, even when no tasks
remain; such implementations provide f o r resumption o f a c t i v i t y
i n a manner such as i s discussed below. The s i z e argument m u s t
be non-zero, unless tasks are t o be i n t e r r u p t tasks, i n which
case the re is on ly one stack, namely t h a t of t he rou t i ne invoking
Smile.

p a g e 11
So t h e idea is t h a t , o n c e S m i l e is b r o u g h t i n t o e s i s t e n c e , i t

"takes o v e r " and d o e s n o t r e l i n q u i s h c o n t r o l u n t i l i t h a s n o t h i n g more
t o d o (and p e r h a p s n o t e v e n t h e n) . I n p r a c t i c e t h i s is n o t
n e c e s s a r i l y so, as is s e e n i n t h e f o l l o w i n g d i s c u s s i o n o f t h e
r e f e r e n c e i mp 1 emen t a t i on .

R e f e r e n c e Imp1 e m e n t a t i on

I t is p o s s i b l e f o r a l l t h e t a s k s t o b e s l e e p i n g o r i n a c t i v e a t
o n c e ; a c t i v i t y r e sumes when t h e c u r r e n t t i m e r e a c h e s t h e alarm t i m e of
o n e of them. Even i f a l l t h e i r alarm t i m e s are e t e r n i t y , a c t i v i t y c a n
still resume, b e c a u s e t h e r e f e r e n c e i m p l e m e n t a t i o n p e r m i t s r o u t i n e s
e x e c u t i n g o u t s i d e t h e e n v i r o n m e n t of Smile t o call T s k o b t and A l e r t
(and Wake and A l a r m) . R a t h e r t h a n s i m p l y a i m l e s s l y l o o p i n g w h i l e
w a i t i n g f o r o n e of t h e t a s k s t o reawaken, when n o n e are a w a k e , t h e
r e f e r e n c e i m p l e m e n t a t i o n g i v e s up c o n t r o l of t h e p r o c e s s o r by c a l l i n g
a s u i t a b l e sys tem-dependent p r o c e d u r e , i n d i c a t i n g a t i m e a t which
S m i l e w i s h e s t o resume e x e c u t i o n ; t h i s p r o c e d u r e s h o u l d r e t u r n e i t h e r
when t h a t t i m e is r e a c h e d or when Tskobt or A l a r m is invoked . (F o r
"use r " p r o c e s s e s , t h i s p r o c e d u r e is a "sys tem ca l l " and s h o u l d a l so
p r o v i d e f o r t h e n e e d s of o t h e r f a c i l i t i e s -- s u c h as t h e APST
p r i m i t i v e s , d i s c u s s e d e l s e w h e r e -- t h a t may h a v e t h e i r own r e a s o n s f o r
c a l l i n g t h e sys t em.) F u r t h e r m o r e , f o r t h e r e f e r e n c e i m p l e m e n t a t i o n i n
t h e s y s t e m (i . e., n o t i n a " u s e r " p r o c e s s) , i f a l l t h e t a s k s
t e r m i n a t e , t h e n S m i l e d o e s n o t r e t u r n ; i n s t e a d it w a i t s - f o r Tskob t t o
b e i n v o k e d and t h e n r e s u m e s b y r u n n i n g t h e t a s k t h u s c r e a t e d .

For t h e r e f e r e n c e " u s e r " i m p l e m e n t a t i o n , t h e programmer c a n
s u p p l y a p r o c e d u r e c a l l e d main , which (d i r e c t l y or i n d i r e c t l y t h r o u g h
o t h e r p r o c e d u r e s) c a n call S m i l e ; a f t e r Smile r e t u r n s , it may b e
c a l l e d a g a i n .
t h e n a s t a n d a r d o n e is u s e d , which h a s t h e f o l l o w i n g b e h a v i o r :
0 The a r g u m e n t s of main commonly c a l l e d a r g v a n d a r g c are s t o r e d

0 Then S m i l e (p r i m e , (c h a r 10 N u l l , prmsz) is called; e x t e r n c h a r

0

I f n o main p r o c e d u r e is s u p p l i e d b y t h e programmer,

i n t o g l o b a l v a r i a b l e s Argv and Argc.

* p r i m e 0 and e x t e r n i n t prmsz must b e d e f i n e d by t h e programmer.
When S m i l e r e t u r n s , t h e va lue it r e t u r n s is r e t u r n e d b y main.

The r e f e r e n c e i m p l e m e n t a t i o n package, programmed i n C, is i tself
p a r t i a l l y p o r t a b l e . The n o n - p o r t a b l e p a r t (which must be reprogrammed
fo r e a c h new s y s t e m or mach ine) is i n f i l e s named "smpar"
(gys t em/mach ine parameters), w h i l e t h e p o r t a b l e p a r t is i n f i les named
" s m i l e " ; i n a d d i t i o n , a f i l e named "smain" (Smile main) p r o v i d e s t h e
d e f a u l t main p r o c e d u r e f o r a C program. To u s e t h e package , a program
s o u r c e f i l e must i n c l u d e t h e f o l l o w i n g t w o h e a d e r f i l e s i n t h e
i n d i c a t e d o r d e r :
0 s m p a r - h and
0 s m i l e . h ,
a n d i t must b e l i n k e d w i t h t h e o b j e c t f i l e s compi l ed from:
0 smpar .c ,
0 smile.c, and
0 s m a i n .-c ,

page 12
the last being used if and only if the program does not supply its own
main procedure for C. The three object files are in the library file:
0 1 ibl incs. a;
the main procedure in the library will not be loaded if the program
supplies its own.

Appendix: Remarks on Tasking

Tasking is in most situations probably the most important
functionality provided by Smile, yet it is perhaps also the least
familiar. This appendix provides some comments on a view of tasking
that underlies the Smile design.

The purpose of multiple tasks is to provide multiple
asynchronous, concurrent, para1 le1 threads of execution. Sequential
actions normally should be done using a single task. For example, a
task, having carried out the beginning of some sequential activity,
could fork ti. e., create, by calling Tskobt) a second task to carry
out the rest o f the activity and then immediately terminate itself; a
more straightforward and efficient approach would be to have the first
task itself simply continue and complete the activity. Even when
there must be many tasks, a good guideline is that each sequential
activity is the work of a single task.

A common use of tasks is to perform simultaneously'many similar
sequential activities. Following the above guideline, each such
activity can be assigned to a separate task, and the reentrant program
for the tasks can for the most part be written as though there were
only one such activity. For example, a server can be implemented as
an unlimited collection of tasks, each waiting for a request from a
client, getting the request, doing what is requested, replying, and
then terminating.' Of course, there cannot really be an unlimited
number of tasks'dt any one time; so there is in fact only some small
number of them that are waiting for requests, enough of them to handle
any expected peak flurry of requests. When one of the waiting tasks
receives a request, it immediately forks another task, so as to keep
the number of waiting tasks at the desired number. Except for this
act of forking, server initialization, and possible critical sections
of program that can only be executed by one or a few tasks at a time,
the program for each task is essentially what it would be if there
were only a single client.

The preceding is an example of the general notion that multiple
tasks can be used to wait for multiple events. Another example is
that the APST communication primitives intend that each stream on
which message activity is simultaneously awaited is handled by a
separate task.

It is assumed that the language provides global variables
(accessible by all routines in a partition) and local variables
(accessible by a single routine). There is also usually a need for
task variables (accessible-by all routines in, a task). Smile provides
for these with the task parameter, which (after appropriate casting)
is intended to be a pointer to a data structure that contains the task

t p a g e 13
v a r i a b l e s ; u n f o r t u n a t e l y , t h e s e v a r i a b l e s are a b i t less c o n v e n i e n t t o
access t h a n g l o b a l or local v a r i a b l e s , b e c a u s e t h e y i n v o l v e a
s t r u c t u r e r e f e r e n c e . The t a s k v a r i a b l e s a l so p r o v i d e a way f o r t h e
r o u t i n e c r e a t i n g a t a s k t o p a s s t o t h a t t a s k s o m e p a r a m e t e r s d e f i n i n g
what i t is t o do.

I n g e n e r a l , e n t r y t o and esit f r o m a c r i t i ca l s e c t i o n of program,
e x e c u t i o n of which is l i m i t e d t o some number of t a s k s (o f t e n j u s t o n e)
a t a t i m e , mus t b e c o n t r o l l e d b y some k i n d of l o c k o u t p r o c e d u r e s (s u c h
as semaphore p r o c e d u r e s) . T h e s e p r o c e d u r e s h a v e t h e i r own i n t e r n a l
l o c k o u t p r o b l e m s , which are i n t e n d e d t o b e s o l v e d b y u s i n g t h e
p r i m i t i v e s Lock and Unlock. F o r example , a t y p i c a l l o c k o u t p r o c e d u r e
may i n v o l v e e x a m i n i n g a v a r i a b l e , c o n d i t i o n a l l y c h a n g i n g t h a t v a l u e ,
and p e r h a p s m a n i p u l a t i n g a queue; t h e s e a c t i o n s ; , which are b r i e f ; , c a n
b e b r a c k e t e d b y Lock and Unlock. Lock and Unlock t h e m s e l v e s are
g e n e r a l l y too p r i m i t i v e t o b e u s e d as l o c k o u t p r o c e d u r e s fo r e x t e n d e d
c r i t i ca l s e c t i o n s .

Index

B bit 3. 4. 5. 13. 17. 19. 21
bfg end 4. 8
b d e r 3
control 4
data 4
E bit 3, 4. 5. 10, 12. 13. 16. 17. 19. 20,

21
end-code 5
Error Codes

Numeric
-101 21
-103 21
-12 21
-129 21
-14 21
-192 22
-226 22
-34 21
-35 21
-36 21
-37 21
-38 21
-8 21
-9 21

Symbolic
Xbgn 21
Xcap 21
Xend 21
Xerr 22
Xch 21
Xlsn 21
Xrej 21
Xsep 21
Xseq 21
Xsid 21
xstv 22
xfyp 21
xusg 21
xval21

Fabs 7.8
Fend 7
Fete 7
Fimm 6.8
Find 7
Ftrn 6
go 12. 16,21
LINCS emrs 5
little end 4,8
Mcon5. 10

6

Mlob 5. 10
Mmul5. 10
Mrcv 5
mtyp 7
musg 7
mval7
N bit 5. 12, 13. 17
Pabort 19
Pcancl 18. 19

mlng 7

Pclose 20
Perror 17. 18
Pglvec 15. 16
Pglved 15. 16
Pinit 20
Pobtnc 13
Pobtnd 13. 14. 16
Popen 9. 10.20
Pparam 11
Precvc 16. 21
Precvd 16. 17.21
Presentation layer 4
primitives 3
Psendc 12. 13, 15
Psendd 12, 13. 14. 16
rejected 8
Sabort 19
Scandl9
Sclose 20
Serror 18
Session layer 4
Sgive 15
sinit 20.21
Sobtn 14
Sopen 10
sparam 11
Srecv 17.21
Ssend 12, 13. 14
stream 3
struct tmap 6
Tabort 19
Tbit 7
Tcancll9
Tcap 7.8
Tchr 7,8
Tclose 20
Terror 18
Tgive 15
Tinft 20
Tint 7
That 7
Tobtn 14
tokens 4
Topen 10
Tparam 11
transmit now 5. 12, 13. 17
Transport layer 3
Baw 7.8
Trecv 17
Tsend 13. 14
mar7
Wbit 3,4, 5. 12, 13, 17. 19, 20. 21

'3

