Kinetics and mechanisms of NO{sub x}: Char reduction. Quarterly technical progress report, 31 January 1995--30 April 1995

PDF Version Also Available for Download.

Description

This project is concerned with the mechanism of reduction of both NO and N{sub 2}O by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}, but that the NO-carbon reactions might also contribute to formation of N{sub 2}. The precise role of carbon in N{sub 2} reduction and formation has yet to be established. Interest in the ... continued below

Physical Description

15 p.

Creation Information

Suuberg, E.M.; Lilly, W.D. & Aarna, I. August 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This project is concerned with the mechanism of reduction of both NO and N{sub 2}O by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}, but that the NO-carbon reactions might also contribute to formation of N{sub 2}. The precise role of carbon in N{sub 2} reduction and formation has yet to be established. Interest in the N{sub 2} and N{sub 2}O-char reactions has been significant in connection with both combustor modeling, as well as in design of post-combustion NO{sub x} control strategies. In our studies, a DuPont thermogravimetric analyzer (TGA) is used for the char reactivity studies. The temperature and mass are recorded as function of time, using a Macintosh computer and software for simultaneous apparatus control and data acquisition. Specific surface areas of char samples were determined by the N{sub 2} BET method at 77 K. A standard flow-type adsorption device (Quantasorb) was used for the measurements. Prior to surface area analysis, all samples were outgassed in a flow of nitrogen at 573 K for 3 hours. The carbonaceous solids used were resin char, graphite, coconut char and a Wyodak coal char. As was noted in the last report, carbons derived from different original materials show quite similar behaviors, in terms of the trends, but there are significant differences in actual reaction rates. It was shown that the spread of the reaction rate data from different studies, when expressed on a mass of carbon reactant- or surface area-basis, was almost the same.

Physical Description

15 p.

Notes

OSTI as DE95016264

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95016264
  • Report No.: DOE/PC/94218--3
  • Grant Number: FG22-94PC94218
  • DOI: 10.2172/93653 | External Link
  • Office of Scientific & Technical Information Report Number: 93653
  • Archival Resource Key: ark:/67531/metadc794434

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Feb. 2, 2016, 1:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Suuberg, E.M.; Lilly, W.D. & Aarna, I. Kinetics and mechanisms of NO{sub x}: Char reduction. Quarterly technical progress report, 31 January 1995--30 April 1995, report, August 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc794434/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.