LEU Conversion Feasibility Studies for the BMRR and HFBR

R.B. Pond, N.A. Hanan, and J.E. Matos
Technology Development Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

To be presented at:
1997 ANS Winter Meeting and Embedded Topical Meetings
Albuquerque, New Mexico
November 16-20, 1997

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
INTRODUCTION

Feasibility studies have been performed to convert both the Brookhaven Medical Research Reactor (BMRR) and the High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory from the use of HEU (93%) fuel to the use of LEU (<20%) fuel. The studies are intended to determine suitable LEU fuels that will provide fuel lifetime and neutron flux performance similar to the current HEU fuels. Both reactors use MTR-type fuel assemblies: the BMRR has 18 fuel plates with 140g 235U (0.43 gU/cm3) and the HFBR has 20 plates, of which 18 are fuel with 351g 235U (1.1 gU/cm3).

REACTOR MODELS

The BMRR is a 3 MW light-water cooled, graphite reflected reactor used for medical and research purposes. A model of the BMRR is shown in Fig. 1. The reactor has two irradiation facilities that have tailored neutron spectra. A thermal neutron irradiation facility (TNIF) is used for animal research and an epi-thermal neutron irradiation facility (ENIF) is used for boron capture neutron therapy (BCNT).

The HFBR is a heavy-water cooled and moderated reactor with multiple beam tubes, and several in-core and ex-core experiment locations. A model of the HFBR is shown in Fig. 2. Very high thermal neutron fluxes are achieved in the D$_2$O reflector in the vicinity of the beam tubes and in the irradiation facilities.

COMPUTATIONAL METHODS

Both reactors were modeled using the three-dimensional (XYZ-geometry) DIF3D diffusion theory code1 with cross section generated using the WIMS-D4M code2, and using the MCNP Monte Carlo code3. Fuel cycle calculations were performed using the REBUS code4.

FUEL CONVERSION STUDY RESULTS

The conversion of the BMRR appears to be feasible using an LEU core consisting initially of 17 fuel assemblies with a loading of 162g 235U. The HEU and LEU assemblies both have 18 fueled plates, but the cladding thickness of the LEU plates is 0.38 mm.
instead of 0.51 mm. The uranium density in the U$_3$Si$_2$ - Al fuel meat is 2.5 g/cm3 and this fuel is fully-qualified for routine use in the BMRR. Both cores use approximately the same number of fuel assemblies per year, and the neutron fluxes and the neutron spectra in the two irradiation facilities are nearly the same.

Initial studies indicate that it may not be possible to convert the HFBR to LEU fuel with its current core configuration. The HFBR core is under-moderated and has a hard neutron spectrum. Direct substitution of LEU fuel meat for HEU fuel meat further hardens the neutron spectrum and decreases excess reactivity available to achieve a reasonable fuel cycle length. A core configuration with better neutron thermalization appears to be necessary in order to utilize LEU fuel.

Alternative core configurations with better neutron thermalization are being investigated. For example, removing 10 of the 28 fuel assemblies from around the central five core locations, adds enough excess reactivity such that reasonable LEU fuel densities are possible. At a power level of 40 MW, an LEU assembly with 20 fuel plates would provide fuel cycle lengths of 16 days and 22 days with 235U loadings of 450 g 235U (4.5 gU/cm3) and 600 g 235U (6.0 gU/cm3) per assembly. Fast and thermal neutron fluxes in the central irradiation positions and thermal fluxes in the beam tube positions are nearly the same in these LEU alternative configurations as in the HEU standard configuration. While the LEU alternative core configurations are neutronically possible, the thermal hydraulics, safety and operation of these HFBR configurations have not yet been investigated.

REFERENCES

Figure 1. BMRR Model

Figure 2. HFBR Model