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ABSTRACT 

Wetting front instability is an important phenomenon affecting fluid flow and 
contaminant transport in unsaturated soils and rocks. It causes the development of fingers 
which travel faster than would a uniform front and thus bypass much of the medium. 
Water saturation and solute concentration in such fingers tend to be higher than in the 
surrounding medium. During infiltration, fingering may cause unexpectedly rapid arrival 
of water and solute at the water-table. This notwithstanding, most models of subsurface 
flow and transport ignore instability and fingering. In this report, we survey the literature 
to assess the extent to which this may or may not be justified. Our overview covers 
experiments, theoretical studies, and computer simulations of instability and fingering 
during immiscible two-phase flow and transport, with emphasis on infiltration into soils 
and fractured rocks. Our description of instability in an ideal fracture (Hele-Shaw cell) 
includes an extension of existing theory to fractures and interfaces having arbitrary 
orientations in space. Our discussion of instability in porous media includes a slight but 
important correction of existing theory for the case of an inclined interface. We conclude 
by outlining some potential directions for future research. Among these, we single out the 
effect of soil and rock heterogeneities on instability and preferential flow as meriting 
special attention in the context of nuclear waste storage in unsaturated media. 
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FOREWORD 

This technical report was prepared by the University of Arizona under their 
research project with the Waste Management Branch in the Office of Nuclear Regulatory 
Research (Job Code L1283). This report presents an overview of instability and fingering 
phenomena during the displacement of one immiscible fluid by another. Its focus is on 
the displacement of air by water during the downward propagation of wetting fronts 
through heterogeneous unsaturated soils and fractured rocks due to infiltration at the 
ground surface. This report summarizes and expands upon findings in the published 
literature which are relevant to the characterization of sites to be considered for disposal of 
nuclear waste in unsaturated geologic media, such as the Yucca Mountain site. It 
identifies gaps in knowledge which are of similar relevance and points to areas that may 
warrant further research. 

This report is not a substitute for NRC regulations, and compliance is not required. 
The approaches and/or methods described in the NUREGKR-6308 are provided for 
information only. Publication of this report does not necessarily constitute NRC approval 
or agreement with the information contained herein. 
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0. EXECUTIVE SUMMARY 

This report presents an overview of published experimental, theoretical and 
numerical work on instability and fingering during immiscible fluid displacement in 
porous and fractured media, particularly wetting front instability in unsaturated soils and 
rocks. Instability and fingering during miscible displacement is outside the scope of our 
report. The published literature suggests that wetting front instability is a commonly 
occurring phenomenon which has an important effect on fluid flow and contaminant 
transport in unsaturated soils and rocks. As such, it is of potential interest in the context of 
nuclear waste disposal in unsaturated geologic media It causes the development of 
fingers which travel faster than would be anticipated on the basis of Darcy's law. This 
may cause water and contaminants to reach the water table faster than would otherwise be 
the case. The phenomenon occurs in both uniform and nonuniform media in response to 
either ponding or sprinkling at the surface. It also takes place during moisture 
redistribution in the wake of an infiltration event. 

Wetting front instability is a special case of interface instability during immiscible 
fluid displacement in porous and fractured media. The phenomenon is triggered by 
unfavorable differences between the viscosities and densities of the two fluids across their 
interface. Viscous forces have a stabilizing influence when a more viscous fluid displaces 
a less viscous fluid, and a destabilizing influence when a less viscous fluid displaces a 
more viscous fluid. Both effects increase with the mean propagation speed of the 
interface. Gravity has a stabilizing influence when the denser fluid is at the bottom, and a 
destabilizing influence otherwise, regardless of mean flow direction or speed. 

When both viscous and gravitational forces act to stabilize the interface, the latter 
is unconditionally stable. When both of these forces act to destabilize the interface, it is 
unconditionally unstable. When viscosity is stabilizing and gravity is destabilizing, the 
interface is stable provided that its mean speed exceeds some critical value. When 
viscosity is destabilizing and gravity is stabilizing, the interface is stable on condition that 
its mean speed is below a critical value. 

During the downward propagation of a wetting front in an unsaturated soil or rock 
environment, viscosity acts as a stabilizing force and gravity as a destabilizing force. 
Hence for instability to occur, the mean speed of front propagation must be less than some 
critical value. For a sharp wetting front with a uniform moisture profile above and below, 
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this critical speed is equal to the ratio between hydraulic conductivity above the front and 
the drop in water content across it. 

Surface tension has a stabilizing effect on the interface between two immiscible 
fluids in all cases. Suppose that the interface is perturbed slightly into a composite wave 
form containing diverse wave lengths (and spatial frequencies) of very small amplitude. If 
the interface is unstable and there is no surface tension, the amplitudes of all these 
perturbations (incipient fingers) can initially grow at rates that increase as their 
wavelengths decrease (frequencies increase). If surface tension is active, only 
perturbations with wavelengths above some critical value (frequencies below some critical 
value) can grow, all others decay. The critical wavelength increases with surface tension 
(for a sharp wetting front with a uniform moisture profile above and below, it decreases as 
the drop in water content across the front increases). The fastest growing perturbation has 
a wavelength that exceeds critical by a constant factor. The corresponding fingers are 
thought to appear first in an experiment and to dominate their neighbors. Smaller fingers 
often coalesce into one or more dominant fingers. 

Under uniform mean flow in homogeneous media, established fingers tend to 
elongate linearly with time. Their rate of elongation increases with mean flow rate and 
viscosity contrast but decreases with surface tension. 

Shielding occurs when larger fingers outgrow their smaller neighbors and spread 
laterally to inhibit their growth. The widening of dominant fingers by shielding reduces 
surface tension which may render them unstable. This, in turn, may cause the fingers to 
split (bifurcate) at their tips into narrower branches which are stable due to increased 
surface tension. Shielding then favors one of these branches which widens, becomes 
unstable, and so on. The cycle of shielding, spreading and splitting may repeat itself 
periodically. It is not commonly observed when wetting fronts propagate downward 
through unsaturated media. 

When capillary action is weak and/or mean flow rate is high, bifurcation may 
continue to yield a contorted, dendritic interface with a randomly fractal geometry. 

Theoretical considerations pubIished earlier by one of us suggest that, in a Hele- 
Shaw cell (or ideal fracture with smooth impermeable walls separated by a constant 
aperture) upon the onset of instability, the interface is generally not perpendicular (and 
fingers are generally not parallel) to the direction of mean flow unless the latter coincides 
with the dip of the cell (or fracture). We have shown theoretically in this report that, in a 
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three-dimensional porous medium upon the onset of instability, the interface is generally 
not perpendicular (and fingers are generally not parallel) to the mean direction of flow 
unless the latter is vertical. This is contrary to Chuoke et aZ. (1959) who allowed mean 
flow to be other than vertical but conjectured that the interface would remain at right angle 
to this flow vector. 

Spatial variations in medium permeability are conducive to the preferential 
development of fingers along paths of least resistance to flow. Instability in such 
heterogeneous media may occur under conditions that would not be favorable for the 
development of fingers in equivalent uniform media. This is true on the pore scale, on the ' 
laboratory scale, and on the field scale where preferential flow of water and solutes is 
commonly observed. A wetting front becomes unstable as it descends from a fine-grained 
into a coarse-grained soil. The same happens as it reaches a critical depth when 
permeability increases systematically downward. In soils that are wetted nonunifomly 
(say by antecedent fingers), new fingers tend to move preferentially through the wetted 
regions because these pose the least resistance to flow. 

A sharp wetting front is more prone to become unstable than a diffuse front; 
conditions which cause instability in a poorly-graded (usually coarse) soil may therefore 
give rise to a stable front in a well graded (usually fine) soil. Other factors which 
contribute to the development of unstable wetting fronts include water repellency of the 
soil and compression of air ahead of the front. 

Issues concerning the onset of instability are often amenable to first-order 
mathematical analysis by linearization. As fingers grow, their behavior becomes so 
strongly nonlinear that numerical analysis is usually required. Numerical methods that 
have proven capable of simulating the development of fingers under select conditions 
include point vortex and vortex-in-cell techniques, random walk models, pore-scale 
percolation models, Eulerian-Lagrangian methods, and the flux corrected scheme. Among 
these, the latter two approaches seem better suited for the simulation of unstable fluid 
interfaces in heterogeneous media than the rest. 

Much is yet to be learned about various aspects of instability and finger 
development during immiscible displacement. We believe that the effect of soil and rock 
heterogeneities on the instability of wetting fronts merits special attention in the context of 
nuclear waste storage in unsaturated geologic environments. In particular, little is 
presently known about the extent to which porous rocks containing fractures, faults and 
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bedding planes (as is the case at Yucca Mountain in Nevada) may facilitate or retard the 
development of unstable fingers and their rapid propagation (vertically or otherwise) to the 
water table. What effects do various parameters which define the spatial variability of rock 
properties (fracture, fault and bedding plane geometries; mean, variance and correlation 
scales of permeabilities in diverse lithologic and structural units) have on the onset of 
instabilities under various antecedent moisture conditions and surface infiltration scenarios 
on relevant field scales? In what directions, and at what rates, might fingers propagate 
after instability has set in? How long, wide and numerous will such fingers be? What will 
be their locations and spacings? Will they occur exclusively in fractures or will they 
invade matrix blocks? How is this related to the mass rate of water and solute propagation 
through the geologic medium? To address the issue of solute transport one may have to 
consider not only immiscible but also miscible displacement processes such as dispersion, 
matrix diffusion and sorption. What effect do these have on the stability of solute fronts 
under unsaturated conditions? How might elevated temperatures in parts of the flow field 
affect such behaviors? Might condensed water vapors form potentially unstable moisture 
fronts? What observations and experiments might feasibly help reveal these and related 
phenomena in the field? Our overview suggests that these questions address realistic 
problems which have a direct bearing on our understanding of unsaturated fluid flow and 
contaminant transport in  complex geologic media. 
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1. INTRODUCTION 

Instability and fingering are of potential interest in the context of nuclear waste 
disposal in geologic media. Instability occurs when small perturbations in the flow pattern 
grow without limit with time. In particular, small perturbations along interfaces between 
immiscible fluids, such as wetting fronts that form during infiltration into unsaturated soils 
and rocks, may give rise to fingers which move faster than would be anticipated on the 
basis of Darcy's law. This may cause water and contaminants to reach the water table 
faster than would otherwise be the case. 

Instability and fingering have been of concern to the petroleum industry. 
Following the primary recovery of oil, where ambient formation pressures provide the 
primary energy to drive oil toward production wells, a large portion of the petroleum 
reserves may remain in the reservoir, untapped. To extract this residual oil, water or other 
fluids are sometimes injected to help drive the oil toward production wells. Experience 
has shown that such secondary recovery, or immiscible flooding, may bypass much of the 
residual oil due to the formation of fingers which result largely from a viscosity difference 
between the injected fluid and oil. These viscous fingers have an adverse effect on the 
efficiency of secondary recovery processes. Tertiary recovery involves the injection of 
C02 gas or other surfactants which reduce surface tension and thus help free residual oil 
from small pores in the rock. Here the injected fluids mix with the resident oil and the 
displacement process is thus miscible. If fingering occurs during miscible displacement, 
the efficiency of tertiary recovery is reduced. Instability associated with miscible 
processes is beyond the scope of this report. 

Wetting front instability and fingering may be important for the prediction of 
subsurface contaminant transport. It has been common to assume that spatial and 
temporal variations in near-surface moisture conditions die out rapidly with depth. This 
implies that wetting fronts and contaminants propagate downward at a relatively slow rate, 
controlled by Darcy's law. It further implies that contaminants come into contact with 
immobile waters and/or soils everywhere along the path of a uniformly advancing wetting 
front, allowing for maximum retention due to diffusion and sorption within the immobile 
soil-water mixture. There is a growing body of evidence to suggest that this is not always 
the case. Of particular relevance here are observations such as those recently reported at 
Yucca Mountain, Nevada (Quade and Ceding, 1990), where chlorine-36 and polymer- 
based drilling waters have provided evidence for unusually rapid transport in the vadose 
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zone. Is such rapid, preferential flow due to instability, fracture and rock matrix 
heterogeneity, or both? This is one major question which motivates our overview, and our 
research, on the subject. 

Early work on the instability of immiscible fluid interfaces was reported by Hill 
(1952). The first rigorous hydrodynamic stability analysis, considering surface tension, 
was performed by SafSman and Taylor (1958) on a horizontal interface in a vertical Hele- 
Shaw cell. A similar analysis was done independently on porous media by Chuoke et al. 
(1959). These analyses showed that viscosity and density differences can have either a 
stabilizing or a destabilizing effect, depending on which fluid displaces which in what 
direction. Surface tension has a stabilizing influence in all cases. The relative importance 
of these three factors is reflected in the magnitude of three dimensionless groups: the 
capillary number Ca = plU/T which measures the importance of viscosity relative to 
surface tension, the viscosity ratio M = pLI/p2 between the displaced and displacing fluids, 
and the Darcy-Rayleigh number DR = (p ,  -p2 )gk / [ (p1  + p J U ]  which measures the 
importance of buoyancy relative to viscosity. Here p, p ,  g ,  k,  U, and T represent dynamic 
viscosity, density, acceleration due to gravity, permeability, displacement speed and 
surface tension, respectively, while the subscripts 1, 2 designate respectively the displaced 
and displacing fluids. These definitions are in part intuitive; some recent authors prefer to 
use the modified capillary number Ca' = plU/(kT) and mobility ratio A = (pl - &)/(pl + 
A) which arise from a mathematical statement of the problem. The literature describes 
extensive experimental and numerical studies which investigate the effect of these 
dimensionless groups on instability and the evolution of fingers under a variety of 
conditions. Some of this work has been summarized by Homsy (1987). 

Unstable wetting fronts during infiltration into soils have been first observed in the 
field by Deecke (1906) and later in the laboratory by Tabuchi (1961) and Miller and 
Gardner (1962). The phenomenon has been investigated systematically by Hill and 
Parlange (1972) who had conducted experiments on fingering at the interface between 
two soil layers with different textures. Their work has been instrumental in alerting soil 
physicists to the possibility that preferential flow may result from wetting front instability. 
Early theoretical explanations for the phenomenon have been proposed by Raats (1973) 
and Philip (1975). Among other findings, these authors have pointed out that wetting 
front instability arises not only due to layering but also due to a gradual increase in  
permeability with depth, enhanced air pressure ahead of the wetting front, redistribution of 
water, and other causes. 
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In this report we offer a thorough overview of the literature on instability and 
fingering during immiscible displacement. Though our overview is broad, its main focus 
is on the infiltration of water into unsaturated soils and fractured rocks. Our overview 
complements, but does not supersede, earlier reviews by Wooding and Morel-Seytoux 
(1976) and Kueper and Frind (1988) on multiphase fluid flow in porous media, Bensimon 
et al. (1986) and Saflman (1986, 1991) on viscous fingering in Hele-Shaw cells, Homsy 
(1987) on viscous fingering in uniform porous media and Hele-Shaw cells, and brief 
reviews of wetting front instability by Hillel (1987, 1993). Our report differs from these 
reviews both in its focus and in its attempt to be self-explanatory. This means that we 
present the subject in a way which might serve as a tutorial for persons who are not 
intimately familiar with the subject. Our purpose is to (a) establish the extent to which the 
subject should form the focus of future regulatory research, (b) provide the necessary 
technical background for such research, and (c) point toward directions that such research 
might fruitfully take in the future. 

The report starts with a survey of experimental observations which will supply the 
reader with an intuitive understanding of instability, fingering, and some of their 
controlling factors. It then proceeds to outline available theories of instability, followed 
by a description of relevant numerical experiments. The report ends with a summary of 
findings to date and suggestions for future research. 
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2. EXPERIMENTAL OBSERVATIONS 

In this chapter we review some of the most important experiments to date 
concerning instability and fingering between two immiscible fluids with different 
viscosities and densities. Section 2.1 describes experiments in Hele-Shaw cells, and 
Section 2.2 in porous media. Wetting front instability and fingering during water 
infiltration into unsaturated media is discussed separately in Section 2.3. 

2.1 Immiscible Displacement in Hele-Shaw Cells 

Hele-Shaw cells were first described by Hele-Shaw in 1898. They are of interest 
because they constitute convenient experimental analogous of two-dimensional flow in 
porous media and rock fractures. A Hele-Shaw cell typically consists of two rectangular 
plates separated by a small gap, or aperture. The plates may be vertical, horizontal, or 
inclined and flow in the ceII may be directed up, down, or sideways. A partial diagram of 
the Hele-Shaw cell used in the classical experiments of SafSman and Taylor (1958) is 
shown in Figure 2.1. 

The analogy between flow in a Hele-Shaw cell and flow in a porous medium is 
well established (e.g., Lamb, 1932). By integrating the steady state Stokes equation for 
slow (small Reynolds number) viscous flow of an incompressible homogeneous 
Newtonian fluid under isothermal conditions between the two plates, subject to no-slip 
conditions at solid-fluid interfaces, one obtains 

(2.1 a) 

where h is total fluid potential or head, u is average velocity vector, p is dynamic 
viscosity and b is aperture. This is equivalent to Darcy’s law with an intrinsic 
permeability equal to b2/12. Mass balance requires that 

V . U = O  or V’/Z=O (2.1 b) 

as in porous media. However, the analogy is not perfect in that the Hele-Shaw cell does 
not mimic the complex topology and geometry of openings in real porous and fractured 
media. Yet such details may be very important when it comes to spatial variability and 
anisotropy of permeability, two-phase flow, instability and fingering, or solute transport. 
Nevertheless, an understanding of instability and fingering in Hele-Shaw cells is very 
useful for the understanding of these phenomena in natural soils and rocks. 
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Figure 2.1. Sketch of Hele-Shaw cell used by Saffman and Taylor (1958). 
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In the classical experiments of Saffman and Taylor (1958) the Hele-Shaw cell was 
either vertical or horizontal. The narrow cell was connected at each end to a vessel 
containing one of the two fluids (Figure 2.1). A potential gradient along the cell was 
produced by applying either pressure or suction to the air above the fluid in one of the end 
vessels while maintaining atmospheric air pressure in the other vessel. Three experiments 
were performed, the first involving air and glycerine in a vertical cell. Initially, a sharp 
horizontal interface separated the two fluids. When air was allowed to displace glycerine 
downward, the interface became unstable once the average displacement velocity reached 
a critical value. When glycerine was placed above the air while flow was directed 
downward, instability developed when the velocity was less than critical. Figure 2.2 
presents a summary of these and related experiments by Chuoke et al. (1959), including 
miscible displacement experiments by Hil! (1952). We see that, regardless of flow 
direction, the interface is unconditionally stable as long as the denser fluid is at the bottom 
and a more viscous fluid displaces a less viscous fluid. If both of these relationships are 
reversed, the interface becomes unconditionally unstable. This suggests that viscous 
resistance has a stabilizing effect when a more viscous fluid displaces a less viscous fluid, 
and a destabilizing effect when a less viscous fluid displaces a more viscous fluid. Since 
viscous resistance is proportional to velocity, both effects increase with velocity. On the 
other hand, gravity has a stabilizing effect when the denser fluid is at the bottom, and a 
destabilizing effect otherwise, regardless of flow direction or velocity. Therefore, when 
both viscous and gravitational forces act to stabilize the interface, the latter is 
unconditionally stable; when both act to destabilize it, the interface becomes 
unconditionally unstable. When gravity is stabilizing and viscosity is destabilizing, the 
interface is stable for U<U, where U, is a critical speed of interface motion; when 
gravity is destabilizing and viscosity is stabilizing, the interface is stable for U > U,. If 
flow is horizontal, gravity plays no role and instability occurs solely when a less viscous 
fluid displaces a more viscous fluid. As will be seen later, this observed behavior is 
predicted by theory. 

An example of finger development in the Saffman-Taylor (1958) experiments is 
shown in Figure 2.3. Figure 2.3a depicts the early stage where glycerine has been 
displaced a few centimeters downward by the overlying air. Incipient instability manifests 
itself through the formation of low-amplitude ondulations of various wavelengths. Figure 
2.3b illustrates a later stage of the displacement in a different experiment where some of 
these waves have grown to form elongated fingers, while others have degenerated. 
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Figure 2.2. Stable and unstable situations in vertical displacement. 
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According to Saffman and Taylor, a characteristic feature of this stage is the tendency of 
advancing fingers, and the fluid columns between them, to be more-or-less of equal width. 
At a later stage (Figure 2.3~) the largest finger outgrows all others and spreads laterally to 
inhibit the growth of its neighbors. Ultimately, this single finger spreads across half the 
cell width and dominates the flow, a phenomenon called shielding (Homsy, 1987). 
According to the latter author, 

"the pressure in the less mobile phase is harmonic and the interface is nearly 
isopotential, leading to a larger flux near the tip of any finger that is ahead of 
neighboring ones." 

This suggests that in unstable wetting fronts shielding will not be pronounced because the 
hydraulic gradient just behind the front is unity at large depth. This is indeed what 
experiments indicate. 

In the above experiments, the viscosity of glycerine exceeded that of air by a factor 
of 50. When an oii mixture of viscosity 2.75 p (pascal) was used to drive glycerine of 
viscosity 8 p through a horizontal Hele-Shaw cell, the length of run required for the 
development of steadily advancing fingers was found by Saffman and Taylor (1958) to be 
much greater. 

Figure 2.4 shows the results of experiments by SafSman and Taylor (1958) in 
which two oils, Diala and Talpa, which differ in viscosity by a factor of 15, are displaced 
horizontally by less viscous water. In the figure, finger width relative to cell width ( r )  is 
plotted versus the capillary number Ca = pU / T where p is the viscosity of the oil (the 
original plot was said by Saffman, 1986, to have been in error). Despite the 15:l ratio 
between the viscosities of the two oils, they yield nearly identical r values. This suggests 
that finger width depends much less (if at all) on the viscosity ratio it4 than on the capillary 
number. Note further that r decreases rapidly toward the asymptotic value of 1/2 as Ca 
increases. This however is somewhat misleading. From the theoretical analyses of 
Sa f ian  and Taylor (1958) and Chuoke et al. (1959), presented in the next chapter, one 
expects the interface to become unstable as T decreases and Ca increases beyond some 
critical values. In fact, Saffman (1959) has shown analytically that the dominant finger 
becomes unstable in the limit as surface tension disappears. More recent laboratory and 
numerical experiments have shown that, at very large Ca, finger instability is manifested 
in chaotic and fractal behaviors; there have been no observations of a compact finger. 
These findings have brought about a reassessment of the corresponding Saffman-Taylor 
experiments. Bensimon et aZ. (1986) stated that Saffman and Taylor had seen the 
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Figure 2.3. Development of instability and fingering as air displaces glycerine 
downward in a Hele-Shaw cell (modified by Feder, 1988 after Saffman and 
Taylor, 1958). 

r 

Ca=pU/T 

Figure 2.4. Measured values of r for water penetrating into two oils: A, Diala 
(measured from photographs); 0, Diala (measured directly); Talpa (measured 
directly) (after Sa f ian  and Taylor, 1958). 
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dominant finger become unstable but had ignored the evidence. 
commented that 

Saffman (1986) 

"I have no recollection of this observation and cannot find any mention in our paper or 
correspondence, but the experiments were carried out entirely by Taylor, my 
contribution being the calculations, and it may be that he saw instabilities and 
communicated this to others." 

Yet SafSman and Taylor (1958, p. 323) did in fact observe that 

"as the speed of flow for any given fluid increases, r rapidly decreases to r = 1/2 and 
remains close to this value over a large range of speeds, till at high speeds of flow the 
tongue or finger of the advancing fluid itself breaks down and divides into smaller 
fingers." 

It thus appears that the decrease in r with Ca observed by Saffman and Taylor (1958) 
holds only when Ca is less than some critical value; when Ca exceeds this critical value, 
the dominant finger becomes unstable and has no unique width. As will become clear 
when we discuss related experiments by Park and Homsy (1985) and Tabeling et al. 
(1987), all values of Ca in Figure 2.4 are less than critical. 

In experiments conducted by Chuoke et al. (1959), the Hele-Shaw cell was tilted 
about 45" from the horizontal. A glycerine-water mixture displaced a more viscous but 
less dense oil upward. As anticipated on the basis of Figure (2.2c), the interface remained 
stable at velocities below a critical value but became unstable at higher velocities. In three 
experiments conducted at supercritical velocities, the number of fingers increased and 
their width decreased with an increase in velocity. Fingers in the less viscous displacing 
water-glycerine solution were wider than the intervening columns of displaced oil; the 
opposite was noted by Saffman and Taylor (1958). Chuoke et al. did not mention the 
shielding effect reported by Saffman and Taylor and their results seem not to show it; 
instead of one dominant finger there are several (Figure 2.5). The widths of these fingers 
are in good agreement with theoretical predictions; they increase with surface tension and 
decrease with viscosity ratio. 

Perkins and Johnston (1969) ran experiments in a larger Hele-Shaw cell (1 8 x 40 x 
0.031 in3) at the very unfavorable viscosity ratio of 146 and a relative high velocity. 
Numerous fingers formed which however tended to coalesce as displacement progressed. 
In some experiments this resulted in a single dominant finger, in others there were several 
such fingers. Figure 2.6 illustrates the phenomenon of finger splitting which was later 
studied more extensively by Park and Homsy (1985), Maxworthy (1987) and others. 
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Figure 2.5. Instability of the interface between a water-glycerine mixture and oil 
in an inclined Hele-Shaw cell (after Chuoke et al., 1959). 

Figure 2.6. Fingering pattern in a Hele-Shaw cell at different stages of 
displacement with M = 146 (after Perkins and Johnston, 1969). 
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Contradictory results concerning the number of dominant fingers have also been 
generated by others. Gupta et al. (1973), Gupta and Greenkorn (1974), and Pitts (1980) 
reported the Occurrence of numerous incipient fingers degenerating into a single finger as 
displacement progressed. White et al. (1976) observed the development of several 
dominant fingers which never merged. It appears that when the viscosity ratio M is close 
to one, there is a tendency for several dominant fingers to develop (Maher, 198.5). The 
same happens when the Darcy-Rayleigh number is relatively large (Maxworthy, 1987). 
The observation that a single dominant finger developed in cells with a relatively large 
ratio of length to width (8 for Saflman and Taylor, 1958, 17 for Gupta et al., 1973) while 
several dominant fingers developed in cells with a smaller ratio (3 for White et al., 1976,3 
for Perkins and Johnston, 1969) suggests that this ratio affects the number of dominant 
fingers. Indeed, White et al. (1976) found the wavelength of fingers in their early stages 
of growth to be in very good agreement with the "most unstable" wavelength predicted 
theoretically by Philip (1975). Pitts (1980) found that the shapes of the dominant fingers 
at finite capillary numbers form a self-similar family. 

Gupta et al. (1973) discovered that the growth rate of a dominant finger is linear 
with time. It is interesting to contrast this with a plume of solute which, in a Fickian 
regime, spreads at a rate proportional to the square root of time. Park et al. (1984) used a 
discrete Fourier transform approach to determine the amplitudes, A,, ( t )  , corresponding to 
wave numbers (frequencies) n of the interface at times t. A semilog plot of A,,(t) versus t 
for several wave numbers is shown in Figure 2.7. The growth rate is seen to be a function 
of wave number and time. At low wave numbers and early time the data tend to fall more- 
or-less on straight lines, suggesting a near-exponential growth with time. The fastest 
growth rate corresponds to n = 3.59 in agreement with the linear instability theory of 
Saffman and Taylor (1958). At later time some of the data corresponding to low wave 
numbers in Figure 2.7a deviate from the initial straight line, indicating a change in growth 
rate. Modes associated with higher wave numbers in Figure 2.7b exhibit periods of 
growth and decay, suggesting that they may be neutrally stable. 

Park and Homsy (1985) showed experimentally that the critical modified capillary 
number, Ca', is about 100 for horizontal displacement in a Hele-Shaw cell. Fingers are 
stable when Cd < 100 but exhibit a periodic growth when Ca' > 100. As shown in 
Figure 2.8, the predominant finger becomes unstabIe and bifurcates when its relative 
width r approaches 0.5. One of the two segments outgrows the other and spreads laterally 
to become the dominant finger. Then it splits again, the process repeating itself 
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Figure 2.8. Sequence of growth stages for fingering with tip splitting. Time are 
90,110,140,171, and 210 seconds (after Park and Homsy, 1985). 
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periodically. The explanation is that as a finger widens to become dominant due to the 
shielding effect, surface tension along its front decreases and the front becomes unstable. 
This results in bifurcation and the development of narrower fingers which are stable due to 
increased surface tension. The shielding effect favors one of these two fingers which 
therefore widens, becomes unstable, and so on. The cycle of shielding, spreading and 
splitting repeats itself periodically. As Cd in the Saffman-Taylor experiment of Figure 
2.4 does not exceed 50, it is subcritical and splitting does not occur. 

In experiments conducted by Maxworthy (1987) where air displaces silicone oil 
upward at the extremely large modified capillary number of Cd = 5 x lo4, the fingers 
were so unstable as to exhibit secondary splitting into branches and thus formed a highly 
contorted interface (Figure 2.9). The author found that this interface had formed a random 
fractal having a dimension of about 1.4 at scales larger than the instability wavelength. 
Nittmann et al. (1985) calculated the fractal dimension of the interface between two non- 
Newtonian fluids having the same value of Ca’ to be 1.36. 

Hundreds of experiments concerning the effect of capillary number on the stability 
of long fingers were conducted by Tabeling et al. (1987) in the broad range of Ca’ from 1 
to more than 7000. For subcritical Ca’ , finger development was similar to that observed 
by SafSman and Taylor (1958), with relative finger width decreasing monotonically 
toward an asymptote as Ca’ increases. The authors further found that the number of 
initial modes had increased more or less as the square root of the velocity. The shapes of 
the finger tips were semicircular at large capillary number (Ca’ > 500) but sharpened as 
Cd decreased. At supercritical Ca’ , the fingers became unstable and split. The critical 
value of Cd was found to depend strongly on how uniform was the gap between the 
plates. In a cell having a maximum relative change in aperture Ab/b equal to 3 x the 
critical value of Ca’ was approximately 3000. In a similar cell with a smaller maximum 
Ab/b of 3 x lo”, the critical value was 7000. Clearly, the spatial variability of apertures 
has a strong influence on the appearance and structure of fingers. It also has an effect on 
their location: whereas in nonuniform cells the splitting occurred at similar locations in 
repeated runs, in uniform cells these locations varied from one run to another. 
Nonhomogeneity may help explain why critical values of Ca’ determined by different 
researchers were not always the same. 

Experiments concerning the effects of Darcy-Rayleigh number and viscosity ratio 
M (or mobility ratio A) on fingering are few. Maher (1985) experimented with A values 
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Figure 2.9. Fingering in a vertical Hele-Shaw cell with Ca' = 5 x lo4 when air 
displaces silicone oil upward (after Maxworthy, 1987). 
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ranging from 0.0039 to 0.93. He found that finger development is strongly affected by 
mobility ratio. As A approaches zero, the viscosities of the two fluids are nearly the same. 
This has a stabilizing effect and causes a delay in the formation of fingers relative to the 
case where A is close to 1. It conforms to an earlier finding by Saffman and Taylor 
(1958). Maher further established that fingers do not affect the growth of their neighbors 
when A+ 0 but do when A +  1. This is consistent with the results of numerical 
simulations by Tryggvason and Aref(1983). It prevents both shielding and finger splitting 
when A+ 0, and may help explain differences between the number of dominant fingers 
observed in various experiments. In Maher's experiments, the longest finger grew as a 
power of time with an average power of 1.6. 

To investigate the effect of gravity, Maxworthy (1987) and Wiggert and 
Maxworthy (1993) constructed a cell that could be rotated about its horizontal axis. Figure 
2.9 has shown the finger pattern that had developed during the upward vertical 
displacement of silicon oil by air. Figure 2.10 shows what happens when the cell is 
almost horizontal. Though shielding, spreading, and splitting occur in both cases, in the 
horizontal cell the initial instability has a much longer wavelength and develops rapidly 
into a single finger. Secondary instabilities are much less pronounced in the horizontal 
than in the vertical cell due to the elimination of a destabilizing gravity force. 

2.2 Immiscible Displacement in Porous Media 

Some key experiments on fingering in porous media are listed in Table 2.1. Most 
of these experiments were conducted on unconsolidated artificial media, two on 
unconsolidated sand, one on a carbonate rock sample, and one on sandstone. All 
unconsolidated media contained a narrow range of grain sizes with a relatively high 
permeability. Most samples were relatively narrow, at times on the order of only a few 
pore sizes. Hence the experimental results may not be representative of conditions 
expected in the field. 

A major reason for the use of artificial porous media is to allow viewing the 
development of fingers. In natural materials which are opaque, one may need to use 
special light penetrating methods (Glass et al., 1 9 8 9 ~ ) ~  x-ray tomography (Hove et al., 
1990), the fluid molding method of Pavone (1992), nuclear magnetic resonance (Pearl et 
al., 1993) or other means to deduce what happens inside. 

As in Hele-Shaw cells, numerous incipient fingers develop at the start of the 
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Figure 2.10. Fingering in a horizontal Hele-Shaw cell with Ca'= 5 x lo4 when 
air displaces silicone oil (after Mmur thy ,  1987). 
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Table 2. I .  Summary of key experiments in porous media. 

~~~~~~~ ~~ ~ ~ 

Authors Year Shape S i x  Materials Porosity Permeability Fluids PI P2 T I/ 

(lxwxt, cm) (Darcies) (MPas) (MPaes) (MN/m) (x10-3m/s) 
van Mcurs 
dc Haan 

Chuoke et al. 
Croissant 

Pcrkins and 
Johnston 

Gupta and 
Greenkorn 
Peters and 

Flocks 
Patcrson et ai 

Maloy 
Tamai et al. 
Hove et al. 

Pavone 

1957 
1959 

1959 
1968 
1969 

1974 

1981 

1984 
1985 
1987 
1990 
1992 

L 18x9~2 
CY1 1=100 

d=6 
L 60x30~5 
L 115x75~1 
L 122x46 

L 122xlOx1.1 

CY 1 1=23 
d=4.8 

L 44x28xO.G 
L 1=0.6,d=40 
L 76~50~0.25 

GB 
Sand 

GB 
GB 
GB 

GB 

Sand 

Plastic 
Sand 
GB 

* 
33 

* 
41 to42 
43-49 

33 

38 

43 
45 
* 

60 
200 

1 1-94 
127 to 270 

39-58 

232 

18 

5000 
* 
* 

Cy1 1=100, d=38 Sandstone 23 0.45 
Cy1 1=30d=10 C 38 0.6 to 2.5 

w+o 
w+o 

w+o 
w+o 
w+o 

o+w 

w+o 

w+o 
A+E 
w+o 
w+o 
E+O 

1 to 80 1 40 
0.9 to 72 0.9 30 to 50 

0.1 to3 9 to200 30 to50 
30 to 48 5.7 to 95 5 to 35 
30 to 48 5.7 to 95 5 to 35 

139 19.5 33 

102 1 24 

68 1 3 
* 0 * 

1 to 20 1 * 
* 1.4 * 

40 to 66 7.5 to 
2000 10.5 

17 
1-300 

1 to 300 
13 to 48 
13 to 48 

4.8 to 33 

0.038 to 17 

2.3 
* 
* 

9.8 
0.093 to 

4.47 

1: length, w: width, t: thickness, d: diameter, U: flow rate, T: surface tcnsion coefficient 
W: water, 0: oil, G: glycerine, A: air, E: epoxy resin 
Cyl: cylindrical, L: parallelpiped, GB: glass beads, C: carbonate rock 
*: unknown 



displacement process. These may coalesce either into one dominant finger (van Meurs, 
1957; Gupta and Greenkorn, 1974; Croissant, 1968) or into several such fingers (Chuoke 
et al., 1959; White et al., 1976; Tarnai et al, 1987). The tips of dominant fingers may split 
(Chuoke et al., 1959; Perkins and Johnston, 1969) to form fractal patterns at high capillary 
numbers (Paterson et al., 1984; Mdlqjy, 1985). Whereas the growth rate of established 
fingers is linear with time, their width grows in proportion to the square root of time 
(Croissant, 1968; Perkins and Johnston, 1969; Gupta and Greenkorn, 1974). A high 
viscosity ratio and/or low bulk interfacial tension favor relatively small fingers (Chuoke et 
al., 1959). Similar behavior has been observed in Hele-Shaw flows. 

Whereas in Hele-Shaw cells the fingers are relatively smooth, in porous media 
they are distinctly irregular (Figure 2.1 1). The critical value of modified capillary number 
for finger splitting in porous media may be much smaller than in Hele-Shaw cells, 
resulting in dramatically different finger structures under comparable conditions. Figure 
2.12 shows patterns observed by Perkins and Johnston (1969) in a cell packed with glass 
beads at a viscosity ratio of M = 10. Finger splitting is much more pronounced here than it 
was in a Hele-Shaw cell at the much larger (less favorable) ratio of M = 146 (Figure 2.6). 
Mdlqjy et al. (1985) observed a fractal structure with dimension D = 1.62 during radial 
fingering in a random porous medium; an experiment in a Hele-Shaw cell at a comparable 
capillary number by Paterson (1981) resulted in fingers that are much smoother and 
wider. These differences result from the pore scale heterogeneity of porous media. The 
effects of macroscopic medium heterogeneity on finger development have been studied in 
connection with miscible displacement by Brock and Orr (1991) and Davies et al. (1991). 
To our knowledge, no similar studies have been conducted on immiscible displacement. 

The wetting properties of the fluids were found to have an important effect on 
fingering. de Haan (1959) found that fingers of water in oil-wet media are on the order of 
magnitude of the pores and form a fractal pattern. In water-wet media the water phase is 
much more continuous. Similar observations have been reported by Stokes et al. (1986). 
Peters and Flock (1981) showed that water fingers are almost eight times wider in a 
water-wet medium than in an oil-wet medium. 

2.3 Infiltration Into Unsaturated Media 

The stability of air-water interfaces such as wetting fronts which may develop 
during vertical infiltration into unsaturated porous or fractured media is of special concern 
in this report. We therefore discuss it separately in this section. During infiltration, the 
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18 cm 

Figure 2.11. Fingering in porous media: (a) M = 9.45, Ca = 2 x lo”; (b) M = 
70.5, Ca = 1.2 x lo4; (c) M = 202, Ca = 3 x lo9 (after Chuoke et al., 1959). 

Figure 2.12. Fingering in a two-dimensional bead-packed cell at M = 10 (after 
Perkins and Johnston, 1969). 
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displacing fluid is water and the displaced fluid is air. This corresponds to case (h) in 
Figure 2.2 where a more viscous and dense fluid displaces a less viscous and dense fluid 
downward. Gravity acts as a destabilizing force and viscosity as a stabilizing force. The 
advance of the wetting front is gravity-driven, and one expects it to be stable at high rates 
of advance, unstable at low rates. As the viscosity of water (p2)  is much greater than that 
of air (pl), the mobility ratio A = (pl -p2 ) / (p l  + p 2 )  is close to -1, and the modified 
capillary number Ca' = p,U/(kT) is close to zero. As pl << p2,  the Darcy-Rayleigh 
number can be approximated by DR = -p2gk/(p2U) = -K/U where U is the velocity of 
the wetting front and K is the hydraulic conductivity behind this front. When U and/or K 
vary with time (as is usually the case during infiltration), so do DR and Ca'. 

Deecke (1906) noticed that saturated fingers had formed in wettable dune sand 
after infiltration of a heavy rain at the Darr peninsula in Germany. This was evidenced by 
thousands of blunt and tapered wet sand cores left over after the dry sand between them 
had been removed by a strong wind the following day. van Dieren (1934) discovered 
preferential flow paths in water repellent dunes on the island of Terschelling in the 
Netherlands. Similar field observations have been made by Bond (1964) and DeBano 
(1969) in water repellent soils and Gripp (1961) and Gees and LyaZl (1969) in water 
wettable soils. Most of the fingers ranged from 5 cm to 25 cm in diameter. Initially, these 
were dismissed as anomalies (Hendrickx and Dekker, 1991). Later, the phenomenon was 
observed experimentally by Tabuchi (1961), Miller and Gardener (1962), Peck (1965), 
Smith (1967) and others. 

Hill and Parlange (1972) were among the first to recognize that the phenomenon 
is related to wetting front instability. They demonstrated experimentally the existence of 
wetting front instability and fingering in a system composed of two layers, a finer soil 
above a coarse one. This has spurred laboratory experiments by numerous workers 
including White et al. (1977) on the effect of enhanced air pressure ahead of a wetting 
front, Diment and Watson (1985) on two-layered soils and redistribution after infiltration 
under various uniform initial moisture contents, Tamai et al. (1987) on redistribution in 
glass beads, Glass and Steenhuis (1984) and GZass et al. (1987,1988) on two-layered soils 
under dry and non-uniform initial moisture contents, GZass et al. (1990, 1991) on three- 
dimensional infiltration into two-layered soils, Baker and HilZel (1990, 1991) on sharp 
and diffusive wetting fronts under dry and moist conditions in two-layered soils, 
Hendrickx and Dekker (1991) on uniform non-layered soils under natural precipitation, 
and NichoZl et al. (1994) on redistribution in fractures. Specially designed field studies 
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were conducted in Connecticut by Starr et al. (1978, 1986); on eastern Long Island, New 
York, by Glass et al. (1988); in the Netherlands by van Ommen et al. (1989), Hendrickx et 
al. (1993) and Ritsema et al. (1993); and by others. 

The above experiments have revealed that a wetting front may become unstable if 
it moves from a fine into a coarse soil layer, if saturated hydraulic conductivity increases 
with depth, if air ahead of the front is compressed, and if moisture redistribution occurs 
following infiltration. Among these conditions, layering has been studied most 
extensively (Hillel, 1987). Among the several thousand soil series in the United States, 
about 350 belong to family groupings with fine or coarse loamy layers covering sandy or 
sandy-skeletal textures (Hill and Parlange, 1972). We discuss below under separate 
subheadings laboratory infiltration in to layered media, similar infiltration in to nonlayered 
media, and field experiments. 

2.3.1 Laboratory Infiltration Into Layered Media 

In the laboratory experiments of Hill and Parlange (1972), a layer of finer sand 
was placed above a layer of coarser sand in a plexiglass chamber. Vents were placed at 
the base of the chamber to permit air to escape during infiltration. The sands were initially 
air-dried and sieved. The saturated hydraulic conductivity of the coarse sand was 20 times 
larger than that of the fine sand. The experiment was started by ponding water quickly 
and evenly across the top of the fine layer with a pump. The depth of ponding was 
maintained constant throughout the experiment. The plexiglass chamber permitted visual 
observation and photographing of the advancing wetting front. At early time, a stable 
uniform front moved through the top sand layer. When it reached the interface, the 
wetting front invaded the bottom layer in the form of fingers. From this time on, the total 
infiltration rate remained virtually constant. The authors noticed that fingers moved 
downward at a speed close to the ratio between the saturated hydraulic conductivity of the 
coarse sublayer and its initial water content; finger widths were nearly uniform and 
independent of flow rate while the number of fingers was directly proportional to flow 
rate. We will see that this differs from behavior observed later by Glass et al. (1989b). 
For a reverse sequence of a coarse texture over a fine texture, Hill and Parlange (1972) 
found the front to move uniformly through the coarse top layer and to remain stable in the 
fine bottom layer. In related experiments by Samani et al. (1989), the authors established 
the critical hydraulic conductivity ratio between layers to be 20. Though the effect of 
initial moisture content on this critical ratio has not been studied, we expect the latter to 
increase with the former due to its stabilizing influence, as will soon become evident. 
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To visualize the process more clearly, Glass et a2. (1989~) developed a technique 
based on the fact that light transmission through sand increases with an increase in 
moisture content. Their experiments were conducted by placing a 10 cm layer of fine sand 
on top of an 80 cm layer of coarse sand between closely spaced glass walls. The sands 
were initially washed, sieved, and air-dried. A diffuse source of high-output fluorescent 
light was placed on one side of the sand-filled chamber. Water was then applied 
uniformly at the top surface of the fine sand and allowed to pond 1.5 cm above it while air 
was allowed to escape through the bottom. The wetting process was visible to the eye 
from the other side of the chamber and was recorded on videotape. Some of the 
experimental results are illustrated in Figure 2.13 where red corresponds to relatively high 
moisture content and black to lower moisture content. Frames 3 - 10 show moisture 
patterns in the coarse sand, due to ponded infiltration through the overlying fine sand, at 
various times during the first experimental cycle. Frames 12 - 16 show a subsequent cycle 
initiated after 24 hours of moisture redistribution due to gravity drainage. Flow in the top 
layer is characterized by a flat wetting front and vertical streamlines. Immediately behind 
the interface between the sands, the front breaks into more-or-less regularly spaced fingers 
about 2-3 cm wide. Some of these incipient fingers merge into lager fingers which tend to 
advance at a faster pace. The fingers persist and form core areas that conduct most of the 
flow through the bottom sand layer. During this initial stage in the evolution of unstable 
flow, the fingers have near uniform widths and look like hanging ropes. Their shapes are 
distinctly different ffom those encountered in experiments described earlier. The next 
stage involves slow.latera1 movement of moisture from the fingers into the dry sand 
between them, as seen in frames 9 - 10. Finger widths seem to be only marginally 
affected by this lateral moisture redistribution, which appears to cease once the entire 
volume between the fingers has been wetted. The lateral moisture pattern and vertical 
flow rate stabilize; the latter is controlled by the more restrictive top layer and takes place 
primarily through thefingers. 

As seen in frame 12 of Figure 2.13, water contents at the start of Cycle 2 are 
slightly higher along the antecedent fingers than elsewhere. In frames 13 - 16, these 
residual fingers are seen to evolve into new ones. They propagate at a somewhat more 
uniform but slower rate than during Cycle 1. However, lateral moisture movement is now 
faster and the profile stabilizes more rapidly. 

An interesting feature revealed by Figure 2.13 is that maximum saturation occurs 
just above the tip of each finger. This was explained theoretically by Selker et al. 
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(1992a,b) based on Richards' equation under the assumption of constant tip velocity, 
which is supported by experiments as illustrated schematically in Figure 2.14. 

In another similar experiment, Glass et al. (1989b) visualized the infiltration 
process by adding a nonsorbing dye (USDA Red no. 3) to the water (without using a light 
source). Here too they found that infiltration at the surface is controlled by the finer top 
layer and attains a constant rate once the wetting front crosses the interface between the 
sand layers. This is consistent with earlier observations by Hill and Parlange (1972). On 
the other hand, the former authors found that finger widths and growth rates increase with 
infiltration rate in the manner illustrated in Figure 2.15; this is not consistent with what the 
latter authors had observed. Glass et al. attributed the discrepancy to soil heterogeneity in 
the experiments of Hill and Parlange, as evidenced by uneven finger sides. 

Glass et al. (1990) conducted three-dimensional experiments in a cylindrical 
chamber 30 cm in diameter. The cylinder consisted of twelve rings, 5 cm long, separated 
by gaps to allow the escape of air. Four two-layered experiments were conducted with 
different top layers. Water with a low concentration of USDA Red no. 3 was allowed to 
pond on top of the fine top layer to a depth of 1.5 cm. The underlying coarse sand column 
was split after each experiment to expose finger cross-sections at selected depths (Figure 
2.16). The fingers are seen to be distributed more or less uniformly at all depths. Jointly, 
the four experiments suggest that an increase in flow rate causes an increase in finger 
diameter and growth rate, but has little effect on the numbers of fingers. 

Finger splitting has been noted during infiltration but is much less pronounced than 
we saw earlier in Figure 2.9. Since capillary number increases with propagation rate, so 
does finger splitting become more pronounced. Recently, Chang et al. (1994) found two 
unstable wetting fronts to form fractals with dimensions 1.21 and 1.31, respectively. 

An intuitive explanation of wetting front instability in two-layered media was 
offered by Hill and Parlange (1972). They saw the phenomenon as being somewhat 
analogous to that of flow through a slab of fine saturated porous material suspended in air. 
Prior to exiting at the bottom, the water accumulates in the form of discrete droplets which 
eventually acquire sufficient weight to overcome surface tension, detach themselves from 
the slab, and fall freely though the air. When the air is replaced by a coarse porous 
material, water still accumulates at discrete points along the interface but its downward 
movement is now retarded by much greater viscous resistance and capillary effects. This 
results in the development of viscous fingers. 
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Figure 2.14. Sketch of observed finger translation (after Selker et al. 1992b). 

1111111111 
Figure 2.15. Effect of infiltration rate on finger width and propagation rate: (a) 
low rate; (b) intermediate rate; (c) high rate (after Glass et al., 1989b). 
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Figure 2.16. Cross-sections showing fingers in three dimensional experiments. 
Depth from textural interface is (a) 10 cm, (b) 20 cm, (c) 30 cm, and (d) 40 cm 
(after GZass et aZ., 1990). 
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A more satisfying explanation for the same phenomenon was suggested by Hillel 
and Baker (1988). They pointed out that, under a uniform vertical hydraulic gradient (of 
unit magnitude in pure gravity flow), mass continuity requires that the area available for 
flow be smaller in the more permeable layer. The system adjusts to this requirement by 
concentrating the flow along discrete channels or fingers. We will discuss their theory in 
more detail later. 

Since natural geological media are seldom dry, it is important to understand the 
effect of initial moisture content on wetting front instability. Smith (1967) noted that 
fingers moving down through a dry sand had widened upon reaching a wetter region. A 
similar observation was made by Liu et al. (1991), as illustrated in Figure 2.17. Diment 
and Watson (1985) found that even slightly elevated initial water contents in the coarser 
bottom layer of a two-layer system may have an important stabilizing effect on the wetting 
front. On the other hand, field experiments by Starr (1978, 1986) have revealed fingers in 
soils that had a high initial water content. Glass et al. (1988) attributed the apparent lack 
of evidence for fingering in laboratory soils at uniformly high initial water content to 
lateral flow which causes fingers to widen and merge. We saw earlier that in soils wetted 
nonuniformly by antecedent fingers, new ones may form at the same locations. If the 
uniform layer of coarser sand at the bottom is dried between wetting events by blowing 
hot air through it, new fingers form at random locations (Baker and Hillel, 1991). 

The sharper is a wetting front, the less stable it tends to be. White et al. (1976) 
found experimentally that conditions which cause instability in a coarse sand may give 
rise to a stable front in fine sand. The authors attributed this to the diffuse nature of the 
front in fine sand. Similar experimental results, supported by theory, were reported by 
Diment et al. (1982) and Diment and Watson (1983, 1985). Baker and Hillel (1991) 
varied grain size and moisture content in the bottom coarse layer to demonstrate that 
hydraulic diffusivity and initial saturation have a mutually reinforcing effect. Acting 
together, these factors cause fingers to be wider and less distinct than would be the case if 
only one factor was present. 

We mentioned earlier that Glass et al. (1989b) had attributed differences between 
their experimental results and those of Hill and Parlange (1972) to soil heterogeneity. 
Figure 2.18 shows fingers advancing into a coarse sand during a preliminary two-layer 
experiment by Glass et al. (1989b). The irregular fingers were attributed by the authors to 
nonuniform placement of the sand by means of a funnel. In an experiment by Schwille 
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Figure 2.17. Finger movement through a dry sand into a wetted sand (after Liu et 
al., 1991). 

Figure 2.18. Preliminary experiment demonstrating the effects of slight 
heterogeneities on finger meandering and merger in a two-layer soil (after GZass et 
aZ., 1989b). 
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(1988), a 200 cm thick profile of alluvial sediments from a gravel pit was removed layer 
by layer and reconstructed in a glass column 200 cm high and 40 cm in diameter. The 
profile comprised primarily intermediate to coarse sands with some fine gravels. The 
depth interval between 90 cm and 100 cm contained a large portion of fine sand. Each 
day, a 10 mm layer of water with fluorescent dye was applied at the top of the column. 
The movement of the dyed front was studied with an ultraviolet lamp. Its positions at 
successive times are depicted in Figure 2.19 and are seen to be quite irregular, forming 
first one and then two broad fingers. The irregularity of the fingers suggests that 
heterogeneity might have played an important role in their formation. 

2.3.2 Laboratory Infiltration Into Nonlayered Media 

There have been few laboratory studies on wetting front instability in  nonlayered 
soils. Peck (1965) observed the phenomenon to occur during infiltration into a dry, 
uniformly compacted sand column. Water at a constant pressure was applied at the top 
and the air phase was confined so that its pressure increased as the wetting front advanced 
downward. The author observed a "water tongue" of length 37 cm as the mean wetting 
front reached a depth of 45 cm but did not pay particular attention to it. The phenomenon 
was later verified in specially designed Hele-Shaw experiments by White et al. (1977). 
When the air ahead of the wetting front was permitted to escape, the front appeared stable. 
When air escape was blocked, distinct fingers were observed to grow with time. 

White et al. (1977) also studied wetting front instability during infiltration into a 
Hele-Shaw cell whose aperture varied linearly with depth, remaining constant in the 
horizontal direction. This is analogous to a quadratic variation in permeability with depth. 
Water level at the top was maintained constant in each experiment but varied from one 
experiment to another. The wetting front was always stable when the permeability 
decreased with depth, but unstable when the permeability increased with depth. 

Diment and Watson (1985) and Tamai et al. (1987) found instability to occur in 
uniform soils as soon as all ponded water entered the medium and redistribution 
commenced. Figure 2.20 is an example of what may happen after very brief periods of 
uniform infiltration into an initially dry uniform sand. Nicholl et al. (1994) observed a 
similar phenomenon in a natural fracture from the Bandelier tuff near Los Alamos, New 
Mexico. Before infiltration, a clamping fixture was used to hold the fracture surfaces in 
close contact and vertical. The upper boundary of the fracture was covered with silicon 
putty to form a narrow reservoir. Approximately 0.4 cm3/cm water with dye was applied 
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Figure 2.19. Development of dyed infiltration front in a heterogeneous medium 
(after Schwille, 1988) 
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rapidly to the reservoir. At the conclusion of the experiment, the fracture was 
disassembled to allow examination of its wetted surfaces. As shown in Figure 2.21, the 
infiltration front appears to have wetted uniformly the upper 20 cm of the fracture, 
implying a stable flow regime at this shallow depth. Below this depth the front seems to 
have broken into near-vertical fingers. Nicholl et al. also conducted experiments in an 
artificial, transparent roughed-walled fracture. The experiments were done at various 
angles 6 between the dip of the fracture and the vertical (a vector pointing in a direction 
opposite to that of gravity), under various depths of ponding, L,. Figure 2.22 illustrates 
the case where 6 = 139" and L, = 9.43 cm. During infiltration the front was relatively 
stable (Figure 2.22a). Instability set in after the cessation of ponded infiltration (Figure 
2.22b). Thereafter, fingers developed rapidly. The largest and fastest fingers carried most 
of the available fluid at their tips; shorter fingers eventually stopped growing (Figure 
2 .22~  and d). Figure 2.23 shows that the larger was the depth of applied water, La, the 
fewer and wider were the fingers and the faster they propagated. Figure 2.24 demonstrates 
that an increase in 6 causes an increase in propagation rate due to gravity, but little 
change in the number of fingers or their widths. 

Hendrickx and Dekker (199 1) observed finger development during rain infiltration 
into both wettable and water-repellent soil columns packed in two concrete lysimeters, 
respectively. Following a total precipitation of 40.3 cm over a period of 120 days, the soil 
was excavated to visualize flow patterns. The results were inconclusive as to the potential 
impact of hydrofobicity on fingering. More will be said about this in connection with 
field experiments below. 

Selker et al. (1992a) found the wetting front in a uniform sand to become unstable 
when water was applied uniformly at a constant rate equal to about 10% of the saturated 
hydraulic conductivity. Nicholl et al. (1994) found that, more generally, such an 
instability occurs in porous media and fractures whenever the rate of infiltration is less 
than the saturated hydraulic conductivity. The pattern of fingers under these conditions is 
closely reminiscent of that under other conditions. 

2.3.3 Field Experiments 

A number of field experiments have revealed the formation of fingers during water 
infiltration into unsaturated soils. Some of these are listed in Table 2.2 and discussed 
below. 
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Figure 2.20. Fingering during redistribution in dry sand following infiltration 
time of (a) 10 seconds, (b) 20 seconds (after Diment and Watson, 1985). 

Figure 2.21. Wetting front instability during redistribution in a natural fracture 
(after Nichoil et al., 1994). 
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Figure 2.22. Finger development during redistribution in an initially dry artificial 
fracture at 6 = 139O, La = 9.43 cm: (a) t = 4 s, (b) t = 7 s, (c) t = 13 s, (d) t = 39 s 
(after Nicholl et al., 1994). 
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Figure 2.23. Effect of ponding depth (La) on finger development in an artificial 
fracture during redistribution at 6 = 139’: (a) La = 9.43 cm, t = 31 s, (b) La = 18.68 
cm, t = 23 s, (c) La = 28.17 cm, t = 23 s, (d) La = 33.47 cm, t = 23 s (after Nicholl et 
al., 1994). 
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Figure 2.24. Effect of 6 on finger development in an artificial fracture during 
redistribution: (a) 6 = 105O, La = 9.05 cm, t = 1518 s, (b) 6 = 120°, La = 9.85 cm, 
t = 1045 s, (c) 6 = 139O, La = 9.43 cm, t = 31 s, (d) 6 = 180°, La = 8.99 cm, t = 

23 s (after Nicholl et al., 1994). 
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Srarr et al. (1978) conducted two field experiments at Windsor, Connecticut. The 
soil profile at the experimental site consists of sandy loam with a relatively fine layer over 
a coarser sublayer. The textural discontinuity between these two layers is at depths 
ranging from 60 cm to 90 cm. The saturated hydraulic conductivity of the sublayer is 
about 20 times larger than that of the top layer. The water table was at a depth of 1.8 m. 
In the first experiment, a steel cylinder 1.8 m in diameter was driven into the soil to a 
depth of 3.6 m. Then 45 cm of water containing a green vegetable dye was applied 
abruptly at the soil surface. After it had infiltrated, successive layers of soil were removed 
from the cylinder and the dye pattern of each newly exposed surface was photographed. 
No distinct fingers were observed in the top soil. At a depth of 100 cm, twelve green- 
colored fingers were revealed within the bottom soil, as shown in Figure 2.25. The fingers 
ranged from 5 cm to 20 cm in diameter and occupied only about 5% of the total cross- 
sectional area. Upon further soil removal, each finger was noted to extend down to the 
water table. The capillary fringe above the water table appeared dark green beneath areas 
where fingers were most numerous and clear where fingers were absent. 

In an adjacent second experiment, two neutron access tubes were installed in each 
of four 4.6 x 6.1 m2 plots. The plots were additionally instrumented with two suction 
probes and one tensiometer at each of the seven depths 20,40,60, 120, 180,240, and 300 
cm. The plots were covered with 5 cm of water until water contents and pressures 
stabilized throughout each profile. The remaining ponded water was then allowed to 
infiltrate and a 5 cm layer of 0.3 N CaC12 solution was applied at the soil surface. After 
this solution had infiltrated, the plots were again flooded to a depth of 5 cm with unlabeled 
water and kept at this level. Water was then sampled every 2 - 4 hours and analyzed for 
chloride by titration with silver nitrate. The results suggested that chloride within the 20 
cm to 60 cm depth range moved on the average at about half the mean pore-water velocity 
(flux divided by volumetric water content) in the shallower surface layer. The authors 
attributed this to air entrapment under the wetting front. In contrast to this relatively low 
average rate of chloride movement, several pulses have been recorded at depths of 120 
and 180 cm soon after they had reached the 60 cm depth. This rapid movement of isolated 
solute pulses through the coarse layer is reminiscent of the first experiment where fingers 
formed below the 60 cm depth. The fact that nearly all probes recorded these pulses 
while, in the first experiment, fingers had occupied only 5% of the cross-sectional area 
may be due to the strong suction applied to the probes. 

Glass et al. (1988) conducted field experiments in Haven loam at Long Island, 
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Table 2.2. Summary of key field experiments. 

Authors Year Site Tracers/ Depth to Ex/Sa Plots Fluid Amount Brief Description 
Solutes Water Depth Numbcr/Size Application of Fluid 

Starr et al. 1978 Windsor, 
Conn. 

Green 1.8 
Vegetable 
Dye/CaCI2 

USDA 
Grecn 2 

Rhodamine WT 
Iodide 

1.8 d= 1.8 P 45 
4 /4.6x6.1 

Fine ovcr coarsc 
layer 

Glass et al. 1988 Long Island, 
New York 

3/ d=l * 1.9 P 43 Fine ovcr coarse 
layer 

van Ommen 1989 Drain, The 
et a1 Nether lands 

Ghodrati and 1990 Etiwanda, 
Jury CA 
Kung 1990 Hancock, 

Wisconsin 
van Dam et al. 1990 Ouddorp, 

The 
Netherlands 

lIendrickx et al. 1993 Same 

Ritsema et al. 1993 Same 

* 1 .o 10/1x1 

1 8/1.5x1.5 

6.6 213.0~3 .o 

1 616x2 

s 1 Fine ovcr coarse 
layer 

Fine over coarse 
layer 

Intcrbedcd profile 

Acid-Rcd 1 * P 
S 
P 

0.4 tracc 
10 water 
4 litre Red Rhodamine 7.4 

Bromide 0.4 to .4 R 22.6 Water-rcpellent and 
water-wettable 

top layer 
Same Iodide 0.4 to 1.4 

Bromide 
Bromide 0.5 to 1.2 

6/1x1 
6/6x2 
3 1x4 

S 
R 
R 

10 
22.6 
55.5 Wa ter-rcpel len t 

top layer 
Various profiles Flury et al. 1994 Switzerland Brilliant Blue * 

DPC 

1.2 38/1.4x1.4 P 4 

d: diameter, P: ponding, S: sprinkling, R: rainfall, *: unknown 
Ex: excavation, Sa: sampling 



Figure 2.25. Isolated zones of dyed water at 100 cm depth after infiltration into a 
soil column at Windsor, Connecticut. The column is 1.8 m in diameter (after Starr 
et al., 1978). 
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New York. At the site, a layer 30 cm thick with saturated hydraulic conductivity of 3.17 x 
104 cm/s is found above a layer of much higher hydraulic conductivity in the range of 5.3 
x 10-3 - 1.06 x 10-2 cm/s. Horizontal variability of hydraulic conductivities is small in 
comparison to this vertical contrast. An infiltration ring 1 m in diameter was forced into 
the top soil to a depth of 30 cm. Infiltration was then initiated by applying 5 cm of water 
with 1% Rhodamine WT at the surface. A solution of 0.025% USDA Green 2 was added 
through a constant head device so as to maintain the ponding depth at 5 cm until a total of 
43 cm had infiltrated. Whereas USDA Green 2 was found to move almost at the same rate 
as the wetting front in a laboratory test, Rhodamine WT is known to be strongly sorbing. 
Immediately after the cessation of ponding, the soil was carefully excavated to reveal 
residual flow patterns at various depths as shown in Figure 2.26. Finger-like structures are 
clearly evident, and the fraction of wetted area is seen to decrease with depth. Dark 
regions corresponding to the highly sorbing red dye appear to delineate core areas where 
most of the flow was taking place. Lightly shaded regions corresponding to the weakly 
sorbing green dye appear to delineate fringe areas where less flow took place. Water was 
found to penetrate deeper than either dye due to the ability of both dyes to sorb. 

Van Ommen et al. (1989) conducted experiments at Drain in the Netherlands 
where a fine soil overlies a coarse one. Ten successive bursts of 1 cm iodide solution were 
applied to five plots 1 m2in area by means of a high pressure sprinkling apparatus. 
Ponding was not observed during any application. Following this phase, the plots were 
covered to prevent any additional moisture flux at the surface. Two days later, the plots 
were excavated layer by layer. At each depth, the soil was covered with a thin layer of dry 
starch powder. After the powder became wet by soaking up soil water, it was sprayed 
with a chlorine containing solution. Wherever the soil water contained iodide, the latter 
oxidized to reveal a blue color. The percentage of blue area varied with depth in each plot 
as shown in Figure 2.27. Whereas the flow appeared to be uniform in the top layer, 
fingering was evident in the coarser underlying layer, as is also implied by the figure. 

Ghodrati and Jury (1990) investigated the effect of irrigation method on fingering 
at a field site in Etiwanda, California. The soil at the site is layered with only slight 
textural variations horizontally. The first and third layers consist of loamy sand with 
saturated hydraulic conductivities between 1.4 x 10-3 cm/s and 2.5 x 10-3 cm/s. The 
second layer, at a depth of about 100 cm - 120 cm consists of gravel and coarse sand with 
a saturated hydraulic conductivity of 1.6 x 10-2 cm/s. Based on visual observations, the 
profile was found to be devoid of any cracks, fissures, distinct root channels or earthworm 
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Figure 2.26. Horizontal dye patterns at depths of (a) 50 cm, (b) 70 cm, (c) 90 cm, 
(d) 11 5 cm, and (e) 140 cm. Circle represents shallow infiltration ring, gray areas 
regions dyed green, dark areas regions dyed red (after Glass et ai., 1988). 
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Figure 2.27. Percent blue area versus soil depth in five plots (after van Ommen er 
ai., 1989) 
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burrows. Eight soil plots of area 1.5 x 1.5 m* were prepared in two groups of four, one 
group receiving sprinkler irrigation and the other flood irrigation. Using a trencher, the 
upper part of two plots in each group were thoroughly disturbed to a depth of 30 cm - 40 
cm. After trenching, the disturbed plots were leveled and compacted slightly. A 0.4 cm 
pulse of Acid-Red 1 solution at a concentration of 80 gr/kg was applied uniformly to the 
surfaces of each plot. The plots were then irrigated with 10 cm of water, one group by 
sprinkling 2 cm of water each day for 5 days at a rate of 1.4 x cm/s, the other by 
flooding. Six days after application, all plots were excavated to a depth of 1 m. The 
observed horizontal and vertical distribution of dye clearly indicated that fingering took 
place in each case. Finger widths ranged from 5 cm to 20 cm. Fingering was less 
pronounced under sprinkling than under flooding in undisturbed plots. It was most 
pronounced where flood irrigation occurred over disturbed surfaces. 

Kung (1990) conducted field experiment down to a depth of 6.6 m at the Hancock 
Agriculture Research Station in Wisconsin. Two 3.0 x 3.6 m2 plots, each consisting of 
four potato rows, were studied. The soil profiles down to 1.1 m showed no distinct 
layering. Below this depth down to water table at 7.4 m, there were discrete deposits of 
glacial-outwash under both plots with horizontal dimensions ranging from 1 m to 3 m. 
Coarser deposits were often embedded as lenses among several interbeded fine andfor 
medium grained deposits. Infiltration was initiated by pouring 2.7 liters of water 
containing 3% Rhodamine WT into furrows between the rows of potato. The application 
was repeated four times at ten-day intervals. Eighty days after the first dye application 
and one week after potato harvesting, the plots were excavated layer by layer. The red dye 
solution was found to have moved in vertical plumes down to 1 .O m with very little lateral 
spreading. Between 1.1 m and 1.4 m, some of the red plumes spread out and merged with 
each other. Water and solute occupied less than 50% of the soil volume between 1.5 m 
and 2.0 m, less than 10% between 3.0 and 3.5 m, and less than 1% between 5.6 m and 6.6 
m. Both hydrodynamic instability and soil heterogeneity appeared to have played a role in 
controlling the flow. 

Field studies on fingering in water-repellent soils have been carried out extensively 
at Ouddorp in The Netherlands (e.g., van Dam et al., 1990; Hendrickx et al., 1993; 
Ritsema et al., 1993; and Ritsema and Dekker, 1994). The local sandy soils are of marine 
origin and often contain water-repellent top layers. Studies were conducted on two 
adjacent parcels covered with grass, one with and one without a water-repellent top layer. 
The degree of water repellency was characterized by placing a drop of water at the surface 
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of a soil sample and measuring the time required for it to move into the sample. Water 
repellency was found to decrease with depth and to disappear below 30 cm. Depth to 
water table at the site fluctuated between 40 cm and 140 cm during the experiments. 

Van Dam et ai. (1990) and Hendrickx et al. (1993) applied 15 liters of a KBr 
solution with a concentration of 11 gr/l to each of three 6 x 2 m2 plots in each parcel at the 
above site by sprinkling without any ponding. Just before sprinkling and after 8, 13, 35 
and 57 days, water and bromide contents were sampled at various locations and depths by 
mechanically driving hollow cylindrical samplers of length 100 cm and diameter 10 cm 
into the soil, Bromide was found to have reached the water table earlier below the water- 
repellent soil than below the wettable soil. Following 62 mm of rain two weeks after 
application, the bromide has moved down to a depth of 60 cm below the wettable soil. 
Below the water-repellent soil, a mean concentration of 20 mg/l was measured in the 
groundwater at a depth of 80 cm. At the same time, some of the bromide remained close 
to the surface of the water-repellent soil. After five weeks and a total precipitation of 120 
mm, there was six to thirteen times more bromide in the groundwater under water- 
repellent soils than under wettable soils. In a similar study at the same site, Ritsema et al. 
(1993) compared the ratios of total bromide in each vertical soil core under the water- 
repellent soil to that sprayed on the core surface. On day 11, the ratio in twenty cores 
ranged from 0.4 to 1.7. Ten of these cores contained more bromide than applied to them, 
indicating that bromide applied uniformly at the soil surface has spread in a nonuniform 
fashion through the unsaturated zone. Ritsema and Dekker (1994) showed that fingers 
develop preferentially where water repellency in the shallow top layer is reduced. 

Hendrickx et ai. (1993) applied 10 cm of an iodide solution to each of three 1 m2 
plots on each parcel for two days at a low enough rate to avoid ponding. The plots were 
then excavated layer by layer to a depth of 90 cm and the cleared surfaces treated by the 
same iodide coloring technique described earlier. Whereas the wettable top layers were 
completely blue down to 30 cm, in the water-repellent top layers the blue areas covered 
only 35% of the total area at a depth of 5 cm and about 65% at a depth of 30 cm. 
Measured volumetric water contents in the water-repellent layer were significantly higher 
within than outside the blue areas. Below 30 cm, the percentage of blue area decreased 
with depth in both the wettable and the water-repellent parcels. 

Flury et ai. (1994) conducted experiments in agricultural soils at fourteen field 
sites throughout Switzerland. The soils ranged from structureless to well structured and 
from fine granular to very coarse angular and blocky. Each site consisted of two 1.4 x 1.4 
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m2 plots, one covered with a plastic roof for two months prior to the experiment so as to 
obtain different initial water contents in each. Forty millimeters of water containing 
Brilliant Blue FCF were applied within 8 hours onto the plots with a sprinkling apparatus. 
At five of the fourteen field sites, two additional circular plots with a diameter of 1 m were 
flooded to a depth of 4 cm. One day after irrigation, all plots were excavated and the soil 
examined along vertical 1 x 1 m2 profiles. In most soils, dyed water moved along 
preferential paths. In some soils, the dye remained within the top 50 cm, in others it 
moved below 1 m. Structured soils were observed to be more prone to fingering and deep 
penetration than nonstructured soils. There was no clear effect of initial soil water content 
on flow pattern. In soils that contained cracks and earthworm channels, ponding resulted 
in less regular flow patterns and deeper penetration depths than sprinkling. In 
structureless soils, differences between flow patterns generated by ponding and sprinkling 
were less pronounced. 

The above field experiments demonstrate that fingering during infiltration is the 
rule rather than the exception. The phenomenon occurs under sprinkling as well ponding 
in seemingly uniform as well as heterogeneous soils which may or may not contain 
discernible cracks or channels, and may be either wettable or water repellent. It appears 
that, in the field, fingering results from the combined actions of hydrodynamic instability 
and medium heterogeneity. 
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3. THEORETICAL ANALYSES 

We start this chapter with a brief description of the early stability analysis by Hill 
(1952). This will serve as a relatively simple introduction to the more general analyses 
presented later in this chapter. 

Consider a fluid of viscosity p 2  and density p2 displacing another fluid of 
viscosity pL1 and density pl upward. The immiscible fluids are separated by a sharp 
horizontal interface moving vertically along the z axis with velocity U (Figure 3.1). Let 
G j  be the velocity potential in the j-th fluid so that fluid velocity is given by v; = - d@;/dz .  
Mass continuity requires that 4; satisfy the Laplace equation 

d2@; - = O .  
dz2 

Hence 4; is linear in z, 

@; = - U z ;  j =  1,2. 

Darcy's law implies that @; is given by 

k; 
P;  

4; = - (P;  + p jgz )  

(3.1) 

(3.2) 

(3.3) 

where k; is permeability, pi is pressure, and g is acceleration due to gravity. Substituting 

(3.2) into (3.3) yields the following pressure difference across the interface, 

(3.4) 

Suppose that a small discrete perturbation 6z develops along the interface. The 
corresponding pressure difference is 

I P 2 ,  P2 I 

Figure 3.1. Sketch of disturbed interface. 
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Ap= -11-k U(z+6z)+(pl  -p2 )g ( z+6z ) .  
( 4  J (3.5) 

The perturbation dies out if Ap < Apo but grows if Ap > Apo. In other words, the 
interface becomes unstable if 

Ap - Apo = [(h - ”). + (pl - p2)g]6z  > 0 
4 4  

or 

(3.6) 

We see that if k, = k2 and U is positive (directed upward), viscosity has a destabilizing 
effect when a less viscous fluid displaces a more viscous fluid and a stabilizing effect 
otherwise. The same is true when U is negative. Gravity has a destabilizing effect when 
the denser fluid is at top, and a stabilizing effect in the opposite case, regardless of U. The 
critical velocity U,, above which the interface becomes unstable, is 

(Pl - P 2 h  u, = - 
Pl f kl - P2 lk2 

(3.8) 

This explains the experimental observations in Figure 2.2. 

In the special case where liquid displaces air downward, U, = -K2 where K2 is the 
hydraulic conductivity of the liquid. Hence the interface is stable when the magnitude of 
the velocity is larger than K2, unstable when it is smaller. 

3.1 Instability in an Ideal Fracture 

The analysis of Hill (1952) does not account for surface tension. A rigorous 
hydrodynamic analysis which accounts for surface tension across a horizontal interface in 
a vertical Hele-Shaw cell was performed by SafSman and Taylor (1958). Neuman (1982) 
extended their analysis to cells and interfaces having arbitrary orientations. His analysis, 
which also applies to ideal fractures, proceeds as follows. 

Consider a fracture of infinite extent and constant aperture b. Two immiscible 
fluids, 1 and 2, completely fill the gap between the fracture walls. The fluids are separated 
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by a sharp interface coinciding with the x* axis (Figure 3.2) where x* and y* form a 
Cartesian system of coordinates in the fracture plane. The fluids move at a uniform 
velocity U parallel to the x axis which forms an angle cp with x*; x and y form another 
Cartesian system in the fracture plane whose origin coincides with that of x* and y*. The 
relationship between the two coordinate systems is x * 

x = x * coscp + y * sin cp 
y = -x * sin q + y * cosy> 

(3.9) 

The angle between x and y and the vertical (a vector pointing in a direction opposite to that 
of gravity) are a and p,  respectively. 

Assume that at time t = 0 the interface is perturbed slightly into a wave form 
(Figure 3.3). A single harmonic of this wave can be described by y* = q(x*, t)  where 

inr*+ot q(x*, t )  = &e (3.10) 

Here i = &i, n is wave number or period at a given t (equal to 2x/A where A is 
wavelength), E is a small positive constant, and o i s  amplification or growth factor. The 
wave grows in magnitude if o i s  positive and diminishes if o i s  negative. 

Suppose that within each fluid, j = 1 and 2, there exists a velocity potential, Q j .  

The velocity potential satisfies the Laplace equation 

V2@. = O  ; j =  1,2. J 
(3.11) 

The kinematic condition at the interface, D(y* - q)/Dt = 0 at y* = q where D denotes 
hydrodynamic differential, can be expressed to a first order of approximation as 

(3.12) 

The solutions of (3.11) and (3.12) which satisfy the additional requirement that the 
disturbance vanishes far from the interface at y* = +oo are 

0s im*-ny*+ot =-U(x*coscp+y*sinq)+-e n 

o E  im*+ny*+ot 
Q2 = - U(x*cosq + y*sinq) --e n 

(3.13) 

(3.14) 
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U 

Figure 3.2. Interface between fluids 1 and 2. 

t y* fluid 1 

fluid 2 

X* 

Figure 3.3. Wave like disturbance. 
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At the interface where y* = q, (3.13 ) can be approximated to first order by 

0 =-U(x*cosq+qsinq)+-q 
n 

0 $2=-U(x*cosq+qs inq ) - -~ .  
n 

(3.15) 

(3.16) 

The dynamic condition at the interface, in the presence of surface tension, is 
usually given by Laplace's formula. For sufficiently small wave amplitudes, this formula 
is written as (c$, McCormack and Crane, 1973; Safman and Taylor, 1958) 

d 2 q  2Tcos8' 
k 

b PI - P2 =Tax*2 (3.17) 

where T is surface tension coefficient, 8' is contact angle between fracture wall and 
wetting fluid, and the sign is positive or negative depending on whether 2 or 1 is the 
wetting fluid. Whereas the first term on the right represents surface tension due to the 
lateral curvature of the interface, the second term represents surface tension due to 
transverse curvature. We assume that the contact angle, 8' , is constant. Park and Homsy 
(1984) claim that (3.17) is valid only at equilibrium in the absence of flow. For flow at 
small capillary numbers they suggest replacing T by (7c/4)T in (3.17). As this contradicts 
(3.17) in the limit as velocity approaches zero, we retain the original form. 

When Darcy's law holds, the velocity potential takes the form 

ki 
PLi 

$ j  =-{pj + p j g [ ( x  *cosq + y * sin q)cosa + (-x * sin q + y *cosq)cosp] + f j ( t ) }  (3.18) 

where fj(t) is an arbitrary function of time and the term in square brackets represents 
elevation above the origin of the coordinates. Substituting (3.15) and (3.16) into (3.18), 
solving for p i ,  substituting the result into (3.17), and rearranging yields 

A q - - -  a2q - B + C x *  
ax *2 

(3.19) 

where 
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c='[ ( q u c o s q + ( , ,  -p2)g(cosq 
T 4 k ,  

3 : - sinq cosp) . 1 
The solution of (3.19) is 

fix* B+Cx*  
q = cl e + c2 .-fix* + 

A 
(3.20) 

For this to have the same form as (3.10), we must set A = - n2, B = 0 and C = 0. These 
give the two desired stability criteria, 

(3.21) 

(3.22) 

(3.23) 

The first of these criteria, (3.21), shows that for 0 to be positive so as to cause the wave to 
grow, one must have 

EL - EL Usin q + (pl - p2)g(sin q cosa + cosq cosp) > 0.  
( 4  4 )  

(3.24) 

A sufficient condition for the wave to grow is that the wave number not exceed a certain 
critical value, 

(3.25) n 2 2  <nc 

where 

Equations (3.24) and (3.25) show that when nc2 < 0, all the harmonics will decay, and the 
interface will remain smooth. When n: > 0, only harmonics having a sufficiently large 
wave number (or a sufficiently short wavelength) will decay, whereas the others will 
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grow. Surface tension is seen to have a stabilizing effect on the interface because the 
larger is T, the smaller is nc2, and thus the wider is the range of stable harmonics. 

By taking the derivative of CT with respect to n in (3.21) and setting it equal to zero, 
one finds that the fastest growing harmonic is that with wave number 

(3.27) 

In the absence of surface tension, there is no fastest growing wavelength. The shorter is 
the wavelength, the faster its amplitude grows. According to Chuoke et al. (1959), the 
fastest growing wave number will initially dominate and will be the first to show up in an 
experiment. The corresponding wavelength 

(3.28) 

is often used to characterize finger size. 

Regardless of whether the disturbance grows or decays, the orientation of the 
interface relative to that of the velocity must be such as to satisfy (3.22). If cp at t = 0 is 
such that this criterion is violated, the interface will rotate until a dynamic equilibrium is 
achieved and (3.22) is satisfied. This rotational aspect of stability is not evident in the 
analysis of Saflman and Taylor (1958) because the angle between the velocity vector and 
the interface is prescribed a priori. In the particular case where the fracture is vertical 
(a = 0; p = n/2) then cosa = sinp. If also coscp f 0, and (pl -p2)gcosp f 0, then 
(3.22) can be written as 

(3.29) 

which is analogous to equation (20) of Jacquard and Skguier (1962) who derived it via a 
completely different method based on considerations of static equilibrium. If U is 
horizontal, the interface is inclined, its slope being given by 

(3.30) 

Equation (3.22) shows that for the interface to be orthogonal to the velocity vector (Le., 
for cp to be n/2), cosp must be equal to zero. This means that the y axis must coincide 
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with the smke of the fracture, and the x axis with its dip. In other words, the interface is 
perpendicular to the velocity if and only if the latter is directed parallel to the fracture dip. 
In all other cases, the fingers will grow in a direction which is not coincident with that of 
the velocity vector, unless forced to do otherwise by lateral boundaries. 

In the particular case where the fracture is vertical and the velocity is directed 
upward (a = 0; p = n/2), (3.22) implies that cp is n/2, indicating that the interface is 
horizontal. Equation (3.21) reduces to the criterion derived by SafJian and Taylor 
(1958), 

[: + t) 4 = (: - 2)U + (pl - p 2 ) g  - Tn2.  

In order for CT to be positive so as to cause the wave to grow, one must have 

[? - 2 ) u  + (p ,  - p 2 ) g  > 0 .  

(3.3 1) 

(3.32) 

This is the same as (3.7) derived earlier by Hill (1952) and, like it, explains the 
experimental observations in Figure 2.2. The most unstable wavelength is given by 

(3.33) 

Clearly, finger wavelength increases with T,  and increases or decreases with U depending 
on the sign of (pl / k ,  -p2 / k ) .  The phenomenon has been observed in many 
experiments (e.g., Chuoke et al., 1959, Glass et al., 1989b). If we further set k, = k2 = k, 
then (3.31) simplifies to 

CT -= 
U 

Upon defining a characteristic length L and a characteristic time 
written in dimensionless form as 

(3.34) 

IU, the above can be 

(3.35) 
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where d = oL/U and n' = nL. 
DR = (pl  -p , )gk/[(p,  + p, )U]  and Cu' = plU/(kT)  have been defined in the 
introduction. 

The dimensionless groups A = Ul -&)/(& +&), 

In the particular case where water displaces air downward (a = n, p = q = d 2 ,  
p1 = 0, p1 = 0) ,  (3.21) takes the form 

(3.36) 

Therefore the modified capillary number in this case shalI be defined as p,U / (kT) rather 
than plU / (kT).  The most unstable wavelength for this special case is 

(3.37) 

Here, finger wavelength increases with U. 

3.2 Instability in a Porous Medium 

An analysis of instability under immiscible displacement in a porous medium was 
conducted by Chuoke et aZ. (1959). The authors allowed flow to be other than vertical but 
assumed that the interface remains perpendicular to the direction of flow. We present 
below a more general analysis which shows that the interface is not generally at right 
angle to the velocity. 

Consider an infinite porous volume occupied by two immiscible fluids separated 
by a sharp planar macroscopic interface. The interface is perpendicular to the y* axis of a 
Cartesian system (x*, y*, z*). It coincides with the x* and z* axes where z* is horizontal. 
The axes x* and y* form angles a and p with the vertical (a vector pointing in a direction 
opposite to that of gravity). The fluids move at a uniform velocity U parallel to the x axis 
of another Cartesian system (x, y ,  z) whose origin coincides with that of (x*, y*, 2"). The 
x axis is directed from fluid 2 to fluid 1. The coordinates y and z lie in the plane normal to 
the flow direction and z is horizontal. If ql,  q2, q3 are the angles between x and x*, y*, 
z*, then 

x = X*COSqll  + y*cosq12 + z*cosql>,. (3.38) 
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Figure 3.4. Interface between fluids 1 and 2 in 3-D domain 

Assume that, at f = 0, the interface is perturbed into a wave form. A single 
harmonic of this wave is described by 

i(nr*+mz*)+ot y* = q(x*,z*,t) = E e  (3.39) 

where n and rn are wave numbers corresponding to x and y, E is a small amplitude, and cr 
is a growth (or decay) factor. The kinematic condition at the interface, D@* - q)/Dt = 0 at 
y* = where D denotes hydrodynamic differential, can be expressed to a first order of 
approximation as 

(3.40) 

where AOi is the increase in volumetric fluid content 9, following displacement. Fluid 2 
ahead of the interface, and fluid 1 behind the interface, are assumed to be immobile until 
the remaining pore space has been invaded by the same fluid, at which time they become 
mobile. 

The solutions of (3.40) together with the Laplace equations V24j  = 0 , subject to 

the requirement of zero disturbance fax from the interface at y* = +_ -, are 
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]AB' i(nx*+rnz*)-My*+a = [- ~x + %e 

i(nx*+mz*)+My*+a 

(3.41) 

(3.42) 

where M 2  = n 2  +m2. 
approximated to first order by 

At the interface, where y* = q ,  (3.41) and (3.42) can be 

q12 = (- ux - -+e2. CT 

M 

(3.43) 

(3.44) 

To obtain a dynamic condition at the interface, Chuoke et al. (1959) assumed that 
the pressure jump across the interface in a porous medium can be expressed in terms of a 
macroscopic Laplace formula 

* [ -+- a2q ;y2)+ P,(t> 
ax *2 

P1 - P2 = T (3.45) 

where T* is an effective (macroscopic) surface tension coefficient and p,(t) is related to 
capillary pressure drops across microscopic interfaces but does not depend on the 
curvature of the macroscopic interface, only on time. The concept of T* is crucial to the 
analysis and we present a separate discussion of it at the end of this section. 

When Darcy's law holds, the velocity potential takes the form 

ki 
p j  

$ j  =-[pi + pjg(x*cosa + y*cosP) + f j ( f ) ]  (3.46) 

where fj(t) is an arbitrary function of time. Substituting (3.43) and (3.44) into (3.46), 
and solving for pj(t), yields 

Pl =- p1A8'(-ux+--q " 1  -plg(x*cosa+ qcosp) -fl(t) 
4 

p2 = 2 - ux - -q -p2g(x *cosa + qcosp) - f 2 ( t ) .  
k2 M " 1  

(3.47) 

(3.48) 
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Substituting (3.38), (3.39), (3.47) and (3.48) into (3.45) leads to 

- f1 ( t )  = P,(Q 

and the relationships 

a - ~ ) ( i c o s  ql + (pl - p2)gcosa = 0 
( 4  4 

(3.49) 

(3.50) 

(3.5 1) 

(3.52) 

From (3.52) one finds that, as long as AEIlpl/,k, # AEI&,/k,, cos q3 must be zero. Hence x 
and z* are perpendicular to each other and z coincides with z*. This means that (x, y) and 
(x*, y*) share a vertical plane and the problem becomes two-dimensional. Then the angle 
between x and y* ,  q2 = n/2- ql,  is determined by (3.51). For the interface to be 
orthogonal to the velocity (cos q1 = 0), cos a must generally be equal to zero and the flow 
must be vertical. In all other cases, the interface is inclined to the direction of flow at an 
angle other than 90'. This is contrary to the premise of Chuoke et al. (1959). 

From (3.50), the conditions for unstable flow to develop in three-dimensional 
porous media are 

- ~ ) U c o s q 2  + (pl -p2)gc0sP > 0 
( 4  k, 

and 

M 2 < M ~ = I [ [ ~ - ~ ) U c o s q 2 + ( ~ l  -p2)gc0sP . 
T *  1 

(3.53) 

(3.54) 

The corresponding instability criteria by Chuoke et al. (1959) do not contain cosq2 and 
therefore hold only for vertical flow. This is so despite the fact that their derivation is cast 
in terms of a volumetric flux U which is said to have an arbitrary orientation. 

By taking the derivative of CT with respect to A4 in equation (3.50) and setting it 
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equal to zero, one finds that the fastest growing harmonic is that with wave number 

M m = M c / & .  (3.55) 

If we define a wavelength il as 2dM, then l/A2 = l/A.? + l/A: where Ax = 2nln and %= 
2nYm are wavelengths in the x and y directions. From (3.54) and (3.55) it follows that 

where Am and 2, are wavelengths corresponding to the fastest and critical harmonics, 
respectively. In the three-dimensional case, neither A, nor Ay can generally be specified. 
If one assumes that A, = Ay then 2, = Ay= a A 3  and the most unstable wavelengths are 
given by 

In the special case where water is displacing air downward, the latter reduces to 

(3.58) 

For two-dimensional porous media, the stability criteria are similar to those for 
Hele-Shaw cells upon replacing T by P, pl/k, by /k,,  and p 2 / &  by A8+2/k2. For 
example, the most unstable wavelength for water displacing. air downward in 2-D is, in 
analogy to (3.37), 

(3.59) 

This differs from (3.58) by a factor of a, suggesting that fingers in 3-D are wider along 
at least one transverse direction than are their counterparts in 2-D. 

Chuoke ef al. (1959) based their concept of effective surface tension T* on 
heuristic energy arguments. Hornsy (1987) questioned the validity of these arguments 
without explanation. By matching wavelengths predicted by their theory to measured 
wavelengths during the displacement of oil by water in a medium of glass beads, Chuoke 
ef al. (1959) determined that T* = C*T where C* = 7.6. Similar laboratory experiments on 
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displacement of oil by water led Peters and Flock (1981) to C* values ranging from 5.45 
in oil-wet porous media to 306.25 in water-wet porous media. White et al. (1976) 
proposed the relationship 

T* = T 1 (6, - ei) (3.60) 

for infiltration of water into unsaturated soils where 6, is volumetric water content behind 
the wetting front and Oi is initial water content ahead of the wetting front. They 
conjectured that projections of microscopic menisci on the macroscopic interface occupy a 
fraction (0, - Oi) of this interface. In other words, the actual perturbed interface has 
curvatures which, on the average, exceed by (0, - @)-I those of the macroscopic wetting 
front. 

Recently, Chang et al. (1994) proposed to view the interface as fractal. In their 
view, the surface tension force F acting along an interface in a porous medium may be 
written as 

F = TB* = T*B (3.61) 

where B and B* are the lengths of the macroscopic and microscopic interfaces, 
respectively. From considerations of fractal geometry (Mandelbrot, 1982) it follows that 

(3.62) 

where a is a constant, d is an experimental length scale, and D is fractal dimension. The 
parameters a and D are obtained from a log-log plot of B* measured on the laboratory 
scale and the resolution d of the measuring device (the length of a rigid ruler used to 
measure B*). Equation (3.62) is then assumed to hold at the unobserved microscopic 
scale. Combining (3.61) and (3.62) gives the scaling relation 

T .  ad'-D T*=- 
B 

(3.63) 

To computer T* the authors set B equal to the width of the experimental chamber and d to 
the mean pore size. Upon introducing the result into (3.59), the authors found the 
computed dominant unstable wavelengths to agree well with experimental results at early 
time but not at later time. The lack of agreement at late time might have stemmed from 
the linear nature of the stability analysis that had led to (3.59). 
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3.3 Wetting Front Instability 

In this report, we are interested mostly in the stability of wetting fronts during 
water infiltration into unsaturated media. We therefore present below selected analyses of 
this problem. 

3.3.1 Analysis of Raats (1973) 

Over twenty years ago, Raats (1973) presented an analysis of wetting front 
instability based on the Green and Ampt (1911) model. He conjectured that small 
perturbations in  an initially planar wetting front will tend to grow if the front velocity 
increases with depth, and will tend to disappear if it decreases with depth. The Green and 
Ampt model treats the front as a sharp boundary between two regions of uniform water 
content, one above and one below. It provides a reasonably good approximation for 
wetting fronts that are not too diffuse. 

Consider a sharp wetting front at z = -  L where L is depth and z is a vertical 
coordinate with origin at the soil surface, positive upward. The hydraulic conductivity and 
volumetric moisture content in the wetter region above the front are K, ( z )  and O,(z), and 
in the dryer region below the front are K i ( z )  and Oi(z) .  The volumetric flux above the 
front is 

ah 
dZ 

4 = - K s ( z ) -  ; z 2 - L  (3.64) 

where h is total hydraulic head. In stable flows q varies with time but not with elevation. 
Head at the soil surface and at the front is given by 

h=vo at z = O ;  h=va+vf-L at z = - L  (3.65) 

where yo is pressure head in the water at the soil surface (taking atmospheric pressure to 
be zero), vu is pressure head due to increased air pressure at z = - L relative to that at the 
surface, and yf is capillary pressure head in the water at the interface. Integrating (3.64) 
between the limits (3.65) gives 

(3.66) 

Defining a new (depth) variable 5 = - z allows rewriting this as 
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Y, + Yf - Yo - L  
4= r . 1  

mdt 
If flow below the front is negligible then the velocity of the front, U, is 

(3.67) 

(3.68) 

where AB = 0, - 6,. Since U is negative, Raats’ conjecture implies that the wetting front 
is unstable whenever dU/dL < 0. We consider below some special forms of this instability 
criterion. 

In uniform media yf (e.g., Neuman, 1976), A0 , and K, are independent of L and 

(3.68) simplifies to 

- 1). 
U=-( A@ L 

K, Y a +  Y/ -Yo (3.69) 

Assuming that yo and y, are independent of L,  differentiating (3.69) with respect to L 
gives 

Ks (Y, + Yf - Yo). 
dU 
dL L2A6 
-=-- (3.70) 

The factor K,/L2A6 is inherently positive. It thus follows that the front is unstable 

whenever 

Y,+Yf-Yo’0~ (3.71) 

This happens whenever pressure head at the surface ( y o )  is smaller than that at the 
wetting front ( y, + yf), a situation that can arise only if air pressure below the wetting 
front exceeds atmospheric. This is so because yf is always smaller (more negative) than 
yo (ibid). However, in water repellent soils yf may be positive, allowing the wetting 
front to be unstable even if air pressure below the wetting front does not exceed 
atmospheric. 

If K, is a function of depth while yf, yo, y,, and AB are constant, 

differentiating (3.68) with respect to L and setting dU/dL < 0 yields 
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(3.72) 

If K, increases with depth, so does the left hand side of (3.72), and the front becomes 
unstable when it reaches a critical depth (obtained upon replacing > by = in the above 
equation). If K, decreases with depth, so does the left hand side of (3.72), rendering the 
front stable. Raats (1973) used similar arguments to conclude that a decrease in Y, 
and/or an increase in initial water content with depth have destabilizing effects on the 
wetting front. 

Consider two uniform layers, the top of thickness L, and hydraulic conductivity 
K,. Then, for L > L,, (3.68) yields 

(3.73) 

where K, is the hydraulic conductivity of the bottom layer. Here again yff and A0 are 
independent of L. If the same is true for ty, and yo then the flow becomes unstable 
whenever 

(3.74) 

The right hand side of (3.74) is the flux just as the wetting front enters the bottom layer. 
Since (3.74) is independent of L,  the wetting front becomes unstable immediately upon 
crossing the interface between the layers. 

3.3.2 Analysis of Philip (1975) 

Raats' (1973) conjecture that a wetting front becomes unstable if its velocity 
increases with depth was based on intuition. His analysis was extended to incorporate 
surface tension, and placed on a more rigorous footing, by PhiZip (1975). The problem is 
defined as in the previous analysis by Raats. It can then be shown (Appendix A) that the 
gradient G of pressure head immediately above the wetting front is 
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where K, is a function of 5 = - z .  Next, let the horizontal wetting front z = - L(t)  at 
time to be perturbed slightly into a three dimensional wave form, and write a single 
harmonic of this wave as 

z = - L + 0 = - L + E(t)sin(nx+ z)sin(my+ 6). (3.76) 

Here 0 is the perturbation, E is a small positive amplitude, n and m are wave numbers 
corresponding to x and y ,  respectively, and z and 6 are corresponding phase shifts. 
Clearly, the perturbation 0 grows with time (the front is unstable) if dcldt > 0, and 
decays with time (the front is stable) if dE/dt < 0. It is shown in Appendix A that 

E ( t )  = E, exp( f 10 6 dt) (3.77) 

where, including a modification proposed by White et al. (1976), 

(3.78) 

Here M 2  = n2 + m2, A 0  = 0, - e,., E, is a positive constant, and = - dQ/dz at z = - L 
where L2 satisfies 

subject to 
z = o ,  Q = O ;  z = - L ,  Q=1. 

(3.79) 

(3.80) 

As explained in Appendix A, c is positive for K, > 0. 

Since d&/dt = 6(t) E ( t ) ,  it is clear that the front is unstable when 6 > 0 and stable 
otherwise. As K,, A@, M 2 ,  T and c are inherently positive, a necessary criterion for 
instability is 

G e0 (3.81) 

or (3.82) 

In other words, instability can develop only if the pressure gradient immediately above the 
front is negative, i.e., the pressure head increases downward. When the pressure head is 
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uniform immediately above the wetting front or increases upward, the front remains 
stable. Criterion (3.82) is identical to (3.72) due to Raats (1973). When K, is constant, it 
reduces to (3.71) and, for a two-layered profile, to (3.74) as proposed by Raats. 

A sufficient condition for instability is 

M<M,=(- ABpgG ) ' I 2  . (3.83) 

This means that, for a given negative G, only disturbances with M less than the critical 
value M, can produce instability. To determine the most unstable disturbance, M,, Philip 
used the approximation 

(3.84) 

which he had shown holds when M i s  large compared with the reciprocal of L. M, 
corresponds to maximum 6 at d6ldM = 0, or 

. M,=- MC 
6- 

For a wavelength A = 2n /M this yields 

and 

(3.85) 

(3.86) 

(3.87) 

where A, and A, are wavelengths corresponding to the critical and fastest harmonics, 
respectively. As discussed in Section 3.2, wave numbers n and m corresponding to critical 
and most unstable harmonics cannot be generally determined. Under the assumption that 
n = m, we have n = rn = M / a .  The wavelengths Az(2n/ n) and A,(2n/ m) in x and y 
directions, respectively, are then both equal to aA. The most unstable wavelengths in 
the x or y directions are 

(3.88) 
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Philip noted that for redistribution to occur following the cessation of infiltration, 
the Green and Ampt model requires that air invade the advancing water column from 
above (at the soil surface) and/or below (across the wetting front). Air entry across the 
wetting front would require that part of the front retreat upward. Due to capillary 
hysteresis, air entry (upward) would require an unlikely reduction in pressure head at the 
wetting front. It is therefore much more likely that redistribution would occur as a result 
of air entry at the soil surface. This would entail a reduction in pressure head at the 
surface from yo to some negative air entry value yen@. When y,= 0, (3.82) then implies 
that, in a uniform medium, the front becomes unstable whenever 

i.e., whenever the air-entry pressure head is more negative than the pressure head at the 
wetting front. 

For a uniform soil, the analysis of Philip (1975) is in complete agreement with that 
of Chuoke et al. (1959). Under vertical infiltration of water into an initially unsaturated 
soil ( p  = n, (p2 = 0, p2 >> p,, and p 2  >> pl), criteria (3.53) and (3.54) due to Chuoke et 
al. reduce to 

- k u A e 2  + p2g  > 0 (3.90) 
k2 

1 M 2 < M , 2 = -  - - u A e 2 + p 2 g  
T *  7 P 2  k2 

(3.91) 

where the numerical subscript 2 is retained for consistency with (3.53) and (3.54). Here 
the vertical coordinate is positive downward, so Darcy's law is written as 

k2 U A e 2  =-P2g(G + 1). 
P2 

(3.92) 

Substituting this into (3.90) and (3.91) yields 

G<O (3.93) 

(3.94) 

Setting T* = T / A e  renders (3.93) and (3.94) identical with (3.81) and (3.83) due to Philip 
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(1975). The most unstable wavelength during immiscible displacement according to 
(3.56) and (3.92) is 

(3.95) 

the same as (3.87) according to Philip. As the latter was obtained by assuming that 
M, we may conclude that this assumption was reasonable, at least for uniform media. 

= 

3.3.3 Analyses of Parlange and Hill (1976) and Glass et al. (1989a, 1991) 

The concept of effective surface tension is not based on a rigorous analysis and T* 
cannot generally be determined by measurement. Parlange and Hill (1976) suggested that 
in porous media where macroscopic fluid-fluid interfaces are generally not sharp, i t  is 
more appropriate to write a mass balance equation which incorporates diffusion induced 
by capillary forces. Instead of a pressure jump across the interface, they introduced a 
formuIation in which the movement of a convex front is slowed down in proportion to its 
curvature. The authors assumed that if U is the velocity of a flat front, and v the velocity 
of a curved front, then the two are related via 

(3.96) 

where r is a coefficient and rC1 and r;’ are principal curvatures of the interface, taken to 
be positive when the center of curvature is in the water behind the front. In a manner 
analogous to the work of Markstein (1951) on flame instability, Parlange and Hill found 
that along two- and three-dimensional fronts is given by (Appendix B) 

S 2  
2(Ae)2 

r =  

where Ai3 = eS - Oi, S is sorptivity and can be approximated by (Appendix B) 

and D is soil-water diffusivity. 

(3.97) 

(3.98) 

The following two-dimensional analysis due to Parlange and Hill (1 976) is similar 
to that of Saflman and Taylor (1958) but uses (3.96) instead of (3.17). The front at time t 
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= 0 is perturbed slightly into a wave form. A single harmonic of this wave can be 
described by 

(3.99) inx+o-t z = q(x,  t )  = &e 

where z is a vertical coordinate taken positive downward with origin at the unperturbed 
front, x is the horizontal axis, i = G, n is wave number or period, E is a small positive 
constant, and cr is amplification or growth factor. The authors write hydraulic head h 
behind the wetting front as 

h=-- P Z  
Pi? 

(3.100) 

and take them to satisfy the Laplace equation, 

V2h = 0. (3.101) 

The kinematic condition at the interface, D(z- q ) D t  = 0 at z = q where D denotes 
hydrodynamic differential, can be expressed to a first order of approximation as 

(3.1 02a) 

where the term on the left represents front velocity, the first term on the right represents 
the mean velocity of the front, and the second term on the right represents the rate dq/& 
at which perturbations z = q in (3.99) grow or decay with time. The authors write 

im+a K dh 
A e  dz 

- ~ - = v + + & e  

instead of (3.102a) and deduce that 

inx+ 0-1 v = u + m 2 r e  

(3.102b) 

(3.103) 

We shall return to (3.102b) and (3.103) later. Solutions of (3.101) subject to (3.102b), 
(3.103) and the stipulation that perturbations decay far behind the front, at infinity, z = - 
-, take the form 

At the interface where z = q,  (3.104) can be approximated to first order by 
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(3.105) 

Next, Parlange and Hill (1976) take pressure to be continuous across the interface 
and set it equal to atmospheric, or zero. With this and (3.100), (3.105) can be rearranged 
to yield 

(3.106) 

This implies that, for instability to occur, it is necessary that 

(3.107) -- Ks U > O  or q=ABU<K,. 
A8 

In other words, a front is unstable only if its flux 4 is smaller than the hydraulic 
conductivity behind it. Note that, according to Darcy's law, 

q = K,(G + 1). (3.108) 

Hence (3.107) is the same as the instability criterion (3.81) due to Philip (1975), G < 0. 
The critical wave number and wavelength are 

u) a.,=2n rA6 nc=r de- K, - UA8 ' 
(3.109) 

The most unstable wave number and wavelength are those corresponding to doldn = 0, or 

m e  a, = 2~~ = 4n 
K, - UA8 ' 

(3.1 10) 

The finding here that the most unstable wavelength is twice the critical wavelength differs 
from the findings of Saffman and Taylor (1958; and Neuman, 1982), Chuoke et al. (1959), 
and Philip (1975) that A, is & times the critical wavelength. 

We were unable to verify (3.102b) and (3.103). We don't understand the rationale 
for writing (3.102b) instead of (3.102a). Likewise, as z is vertical and positive downward, 
and is positive when the center of curvature is in the water, one finds from (3.99) and 
the definition of curvature that 
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(3.11 1) 

(r;' is zero in the 2-D case). Substituting (3.1 11) into (3.96) one obtains 

(3.112) h + O t  v = u - En2re 

which differs from (3.103) by a sign. To recover consistency with the instability criterion 
(3.81) due to Philip (1975) and hence with (3.107), it would appear necessary to replace 
the minus sign in (3.96) by a plus sign. This, however, would invalidate Appendix B as 
well as (3.97) according to which r is positive. 

Glass et al. (1991) extended the analysis of Parlange and Hill (1976) to three 
dimensions. They found the most unstable wavelength to be 

(3.1 13) 

The ratio 1.53 between the three-dimensional factor 19.2 and the two-dimensional factor 
4n is somewhat larger than the ratio = 1.42 in works we cited previously. 

It is often stated (e.g., Chuoke et al., 1959; Glass et al., 1989a) on the basis of first- 
order stability analyses that finger width, or diameter, are half the most unstable 
wavelength. In general, there is no guarantee that the initial disturbance will develop into 
a dominant finger and persist in that role. Based on a dimensional analysis, Glass et al. 
(1989a) proposed 

(3.1 14) 

where d=A,/2 is finger width and f(-) is some function. A comparison between 
(3.1 14) and (3.1 10) reveals that, in two dimensions, f ( q  / K,) = 2n / (1 - q / K,). This has 
been verified experimentally by Glass et al. (1989b). 

Equations (3.114) suggests that finger width is proportional to TA9 and inversely 
proportional to K, - 4 .  One should therefore expect fingers to widen as q increases for 
given r, A 6 ,  and K,; this has indeed been observed by Glass et al. (1989b). In contrast, 
the experiments of Hill and Parlange (1972) showed that changing the flow rate merely 
changes the number of fingers, but not their widths. As mentioned earlier, Glass et al. 
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(1989b) attributed this difference to soil heterogeneity in the experiments of Hill and 
Parlange. 

3.2.4 Analysis of Diment et al. (1982) 

In all previous analyses, the front was considered either to be sharp or to propagate 
at the same rate as a sharp boundary. Diment et al. (1982) attempted to analyze the 
stability of fronts controlled by the two-dimensional Richards equation of unsaturated 
flow, 

my) ay +- K ( l y )  - d y + l  -=-[ dt ax ,I :[ (a, 13 (3.115) 

where w is pressure head, 8 is volumetric water content, x is horizontal coordinate, and z 
is vertical coordinate with positive upward. They wrote 

where y, is pressure head in the unperturbed field (assumed to vary only vertically), E is 
a small positive constant, and I$ is a perturbation in pressure head. They then set 

I$ (x,z,t> = e inria f ( z )  (3.1 17) 

where f(z) is some function of z. In their analysis, changes in ly were allowed to cause 
changes in K and 8 according to 

where again m designates unperturbed states and the prime defines perturbations. To 
simplify the analysis the authors assumed that 

(3.1 19) 

Both perturbed (ly, K ,  8)  and unperturbed (ly,, K,, 8,) quantities satisfy (3.1 15). A 
corresponding equation for the perturbations ( y i  ,K' , 8' ) can be obtained by subtracting 
the unperturbed equation from the perturbed equation. Upon transforming the resulting 
perturbation equation so that the vertical coordinate moves with the average velocity of 
the front, 7 ,  and neglecting the cross-derivative a28,/dlydt, Diment et al. obtained 
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d 2 f  -+C,,,f=of df 
A m 2  + Bm dz 

where A,,, = K,,, / e,,, 

(3.120) 

(3.121) 

(3.122) 

There is no known analytical solution for (3.120) - (3.123). The authors solved it 
by finite differences subject to the requirement that there be no perturbation at the upper 
and lower boundaries. This led to a system of coupled nonlinear algebraic equations 

(R - d ) f  = 0 (3.124) 

where R is a tridiagonal matrix, I is the identity matrix, and f is a vector off values at the 
nodes. For nontrivial f ( z ) ,  det(R - 01) = 0. Hence the problem reduces to that of 
finding the eigenvalues of the matrix R. If all eigenvalues are nonpositive, the flow is 
unconditionally stable. If any eigenvalue is positive, it may cause instability under the 
assumed conditions. 

Numerical results were given by Diment and Watson (1983) for several cases 
including redistribution following infiltration, infiltration into a heterogeneous medium in 
which hydraulic conductivity increases with depth, and infiltration into a fine-over-coarse 
two-layered system. In no case was the actual flow problem solved; only the eigenvalues 
of R were determined. All cases assumed a uniform initial water content of 0.05 and 
ignored hysteresis. Although one expects instability to develop in several of these cases, 
in none has it been predicted by the above method. The authors concluded that minor 
amounts of antecedent moisture may help eliminate instabilities that could, in soils which 
are initially dry, develop into fingers. Though their numerical scheme was inadequate to 
test this conclusion, they were able to corroborate it experimentally (Diment and Watson, 
1985). 

3.2.5 Analysis of Hillel and Baker (1988) 

As mentioned briefly in Chapter 2, Hillel and Baker (1988) had advanced an 
etiologic hypothesis to explain the development of fingers during infiltration into layered 
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soils. They criticized previously published theories of wetting front instability as being 
formalistic rather physically based, and regarded their theory as direct, mechanistic, and 
applicable to both sharp and diffuse wetting fronts. 

The fundamental hypothesis of Hillel and Baker (1988) is similar to that of Raats 
(1973), namely, that the cross-sectional area available for flow diminishes as a front 
accelerates downward. Their explanation considers infiltration into an initially dry layer 
of soil which is less conductive than the underlying layer. During early ponded infiItration 
a stable horizontal wetting front develops in the top-layer. When the bottom edge of this 
diffuse front hits the interface between the layers, suction within it is too high to allow 
entry into the coarser sublayer. The front therefore pauses temporarily until water content 
behind it builds up, and suction diminishes, to a sufficient extent that breakthrough 
becomes possible. Early breakthrough takes place into the smallest pores in the sublayer 
which are distributed randomly over the area of the interface. These pores admit only a 
portion of the water accumulated above the soil interface, allowing suction there to 
continue falling. As it does so, larger and larger pores near the random breakthrough 
locations take part in the breakthrough. The random breakthrough areas widen until they 
become capable of conducting all the water that the top layer can supply. The 
corresponding suction, we, is referred to as effective water entry suction by the authors. If 
the conductivity of the sublayer, K,, at its effective water entry suction exceeds the 
constant flux through the toplayer, Q,, 

(3.125) 

then only a fraction of the sublayer conducts the water delivered to it from above. This 
results in the formation of fingers. The fraction, F ,  of the sublayer occupied by fingers is 
simply 

(3.126) 

One expects the effective water entry suction to depend on conditions in the top 
layer. However, experiments by Baker and Hillel (1990, 1991) show that it depends 
mainly on the properties of the sublayer, at least for the case of two uniform layers with 
narrow pore size distributions that are initially dry. The authors found that, for such 
layers, the effective water entry suction is near or at the inflection point in the w-8 curve 
and not near saturation. No general conclusions were drawn about w e  under other 
conditions. 
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4. NUMERICAL SIMULATIONS 

Virtually all the analytical developments in Chapter 3 represented first-order 
studies concerning the onset of instability. As fingers grow, their behavior becomes 
strongly nonlinear and, as a rule, requires numerical analysis. In this chapter, we discuss 
briefly some numerical methods which have been used in the literature to study the 
phenomenon. 

4.1 Vortex Methods 

During immiscible displacement of two incompressible fluids in a Hele-Shaw cell, 
the bulk of the flow field is irrotational and vortices are restricted to the interface 
(Meiburg and Homsy, 1988a). Since the interface is very thin compared to its length, the 
region of non-zero vorticity can be described as a vortex sheet. As will be seen later, 
knowing the vorticity field allows determining the velocity and pressure fields. One can 
simulate the entire two-dimensional flow by computing the distribution of vortices along 
the one-dimensional fluid-fluid interface. Hence vortex methods reduce the 
dimensionality of the problem by one. 

The equations which underlie the vortex sheet method can be derived in the 
manner of Tryggvason and Aref (1983) and Meiburg and Homsy (1988a). One starts with 
the momentum and volume balance expressions (2.la,b). The two immiscible fluids, 
labeled 1 and 2 in Figure 4.1, are separated by a curved interface with unit tangent s. The 
normal component of the fluid velocity is continuous across the interface and is equal to 
that of the interface. The tangential component is discontinuous across the interface, as 
shown in the figure. This causes the appearance of a vortex sheet. The strength y of this 
sheet is defined as 

y =  (u2 - U J S  (4.1) 

where u,, u, are the two fluid velocities at the interface. Multiplying the momentum 
equation (2.1 b) for each fluid by p g  , subtracting that corresponding to fluid 2 from that of 
fluid 1, and taking dot product with s gives 

W p ,  - Vp2>.s + Mp, - p2>j-s = oL,u2 - CL,U,).S 

where k = b2/12 and j = Vz. This can be coupled with (4.1) to yield 

(4.2) 
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Figure 4.1. Sketch defining notation for vortex equations (after Tryggvason and 
Aref, 1983). 
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where Ap = pl -p27 A p  = pl -p2, p = p1 - p 2 ,  pm = (pl -I- p 2 ) / 2 ,  and U = (u, + u2)/2. 
The term Ap is related to the Laplacian of q ,  the perturbed coordinate of the front, by 
means of Laplace's formula (3.17). The velocity U can be decomposed into the sum of 
Uvor, the velocity induced by the vortex sheet, and Upot, the irrotational uniform velocity 
far from the front. Uvor is related to yvia Birkhofs (1954) integral formula 

where z is a unit vector normal to the plane of the Hele-Shaw cell, and s is the distance of 
any point x(s,t) along the interface from some arbitrary point x(s,, t )  on the curve. 

Numerical simulations typically involve representation of the vortex sheet by a 
row of marker points, leading to the so-called point vortex method. Knowing the position 
and velocity of each marker point at the beginning of a time step, At, each point is 
advanced to a new position a distance UAt downstream. Together the new marker 
positions define a new interface at the end of At. The velocity and vorticity of each point 
at the new position are determined iteratively in the following manner. Based on the 
curvature of the interface, Ap at each marker point is computed according to (3.17). Next, 
y is estimated according to (4.3) using velocities from the previous time step. A new 
velocity for the current time step is then computed by means of (4.4). This velocity is 
used to recompute y again, which in turn yields a new velocity, and so on. The iterative 
process continues until adjustments are no longer deemed necessary for both velocity and 
vorticity. The calculation then proceeds to the next time step. 

At each iteration, (4.4) requires N terms to be computed for each of N marker 
points defining the front. To maintain accuracy for a highly distorted interface, N may 
have to become very large and the computational burden may become excessive. It may 
be reduced by means of vortex-in-cell (VIC) methods which couple the Lagrangian 
interface with an Eulerian grid. The VIC idea has been introduced by Christiansen 
(1973). Instead of (4.4), the vorticity and velocity fields are related via the Poisson 
equation 

v20 = --o (4.5) 
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where w=duy/dx-dux/dy is vorticity and CD is stream function defined such that 
VQj, = (-uy, u , ) ~ ,  u, and uy being the velocity components along the x and y coordinates, 
respectively. The vorticity o is related to ythrough 

(4.6) 

where si and xi correspond to the i-th elemental vortex, Asi is the corresponding arc 
length, and 6 is the Dirac delta function. In general, it is most convenient to solve the 
Poisson equation on a fixed (Eulerian) grid. Since spatial resolution is usually not much 
higher than the grid spacing, it does not help to have more than about one vortex per grid 
cell. A better way to maintain accuracy is to rely on local grid refinement when and where 
the interface is distorted. 

As the vortex sheet distorts due to fingering, some vortices move far apart and 
some tend to cluster. Where the vortices are far apart, interpolation renders the interface 
smoother and hence more stable than it might be otherwise (Birkhoff, 1954). It is 
therefore advisable to redistribute the vortices evenly along the interface, and add new 
ones, periodically during the computation. 

Figure 4.2 illustrates some typical finger patterns simulated by Tryggvason and 
Aref (1983) using VIC with various mobility ratios on a grid of 256 x 256 cells. The 
initial condition at the interface was the same for each run and consisted of an arbitrary 
collection of waves having small amplitudes and diverse wavelengths. The figure shows 
that there is little visible difference between early finger patterns corresponding to 
different mobility ratios, A .  However, the mobility ratio clearly affects finger patterns at 
later time. When the two fluids have identical viscosities (A  = 0), all incipient fingers 
grow without any discernible shielding of some by others. With time, the longest fingers 
develop into narrow necks with heads at their tips (breakage of these necks is disallowed 
in the numerical code). As the viscosity contrast between the fluids increases, shielding 
becomes more and more pronounced. The heads of dominant fingers elongate and widen 
as A grows toward 1. The fingers elongate linearly with time except at very early time. It 
increases with mobility ratio and mean displacement velocity but remains independent of 
modified capillary number. 

In a subsequent paper, Tryggvason and Aref (1985) simulated finger development 
from a single initial sine wave of small amplitude, and from a superposition of this and 
another wave having twice the wavelength and one fifth the amplitude. Some results are 
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(c> 
Figure 4.2. Stages of interface evolution using vortex-in-cell method with 
(a) A = 0, (b) 0.5, (c)l (after Tryggvason and Are5 1983). 
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illustrated in Figure 4.3. Their main finding was that whereas a single wave results in a 
more-or-less uniform array of like fingers which show little dependence on A ,  
superimposed waves result in finger patterns similar to those obtained from random 
perturbations. 

Meiburg and Homsy (1988b) used the point vortex method to simulate finger 
development at modified capillary numbers Ca' = 530 and 833 with A = 1 from a single 
initial sine wave of small amplitude. At Ca' = 11 11 and 2500, small random perturbations 
were superimposed on the velocities of the marker points at each time step. The results, 
illustrated in Figure 4.4, suggest that fingers evolving from a single sine wave at lower 
Cd values are smooth and grow asymptotically at a linear rate. Fingers evolving from 
random perturbations at higher Ca' values also grow asymptotically at a near linear rate. 
However, they exhibit spreading, shielding and splitting of their tips in the process. 

4.2 Random Walk Models 

Random walk models are based on the fact that the probability, P(x, t), that a 
random walk originating far from a point x will lead to this point at time f obeys the 
Laplace equation. It was used by Witten and Sender (1981, 1983) to model diffusion- 
limited aggregation (DLA) of small particles. In their model, a steady stream of particles 
is released far from a cluster of similar particles, each performing a random walk toward 
the cluster. When a particle strikes the cluster, it sticks to it and thereby contributes to its 
chaotic growth. This results in typical dendritic patterns of the kind illustrated in Figure 
4.5. The model is described mathematically by (Witten and Sender, 1983) 

V2P(X, t) = 0 (4.7a) 

subject to a uniform release rate at infinity, 

(4.7b) 

where x is diffusion coefficient. As particles have zero probability of penetrating a 
cluster or remaining on its surface (due to eventual coverage by later arrivals), P must 
satisfy 

P = O  (4.7b) 

on the boundary of the aggregate. The aggregate then grows, its boundary expanding at a 
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;(II 
Figure 4.3. VIC prediction of finger development from (a) a single sine wave and 
(b) two superimposed sine waves. In each case A = 0 at left, A = 0.5 at center, 
A = 1.0 at right (after Tryggvason and Aref, 1985). 

I 1 1 ' 1  I 

Figure 4.4. Point vortex results with A = 1 and (a) Ca' =530; (b) Ca' =833; 
(c) Ca' = 11 11; (d)Ca'=2500 (after Meiburg and Homsy, 1988b). 
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Figure 4.5. Fractal structures produced by DLA: (a) With a particle seed (after 
Meakin, 1991) and (b) with a line seed (after Lenormand et al., 1988). 
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rate (Bensimon et al., 1986) 

v, = x w > ,  (4.7d) 

where the subscript n implies normal direction. If particles are reflected from the side 
walls of the container, the normal probability flux there is zero, 

(VP), = 0. (4.7e) 

Paterson (1984) and Tang (1985) have pointed out an analogy between the above 
DLA model and the motion of a fluid-fluid interface in a Hell-Shaw cell or a porous 
medium when gravity, interfacial tension and the viscosity of one fluid are zero. In the 
inviscid fluid, the pressure p is constant and may be set to zero. In the viscous fluid, the 
pressure satisfies the Laplace equation 

v 2 p  = 0 

subject to a uniform flux at infinity, 

k 
P 

u = - - vpl_ 

At the interface p = 0 and along impermeable walls 

The interface moves at the Darcian rate 

k 
P 

v, = - - (Vp),. 

(4.8a) 

(4.8b) 

(4.8~) 

(4.8d) 

The analogy with (4.7) allows simulating the interface by means of a random walk model. 
One result of such a simulation has been shown in Figure 4.5b. It illustrates that, due to 
the inviscid nature of one fluid and the absence of surface tension, the interface is so 
unstable as to produce a fractal structure. 

Kadanoff (1985) and Liang (1986) modified the DLA method to include surface 
tension. The phenomenon was mimicked by allowing particles to be emitted from the 
interface with probability proportional to its curvature and ended at possibly another point 
on the interface. As particles change their positions on the interface, its curvature 
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changes. Liang (1986) tested this idea by simulating the evolution of an oddly shaped 
two-dimensional air bubble in water. In this simulation, particles were allowed to move 
only from interface to interface through water, not from outside to the interface. The 
bubble evolved toward its theoretical equilibrium state, a circle. 

Random walk simulations are usually done on a square lattice. The domain is 
subdivided into a grid of occupied and unoccupied cells representing displacing and 
displaced fluids (e.g., air and water) as shown in Figure 4.6. To simulate a uniform fluid 
velocity far from the interface, particles are released at a uniform rate from a distant line 
or area source and walk randomly through the unoccupied region. Their walk terminates 
at the interface where they form a growing cluster. Random particle movement from 
interface to interface simulates surface tension. When surface tension is pronounced, this 
may become computationally demanding. When it is weak, random walk models tend to 
produce highly irregular interfaces. Tang (1985) and Liang (1986) considered such 
irregularities to be inconsistent with the deterministic nature of the phenomenon. To 
obtain smoother surfaces, they proposed avoiding any modifications to the interface until a 
sufficiently large number of particles have reached i tor moved along it. The optimum 
number of such particles has remained unspecified. 

Some results of simulations by Liang (1986) are illustrated in Figure 4.7. In the 
figure, Ca' increases and surface tension decreases from left to right. Correspondingly, 
we observe a smooth finger on the left, finger splitting at the center, and a ramified pattern 
on the right. A similar trend has been observed experimentally by Maxworthy (1987) and 
Tabeling et al. (1987). 

Random walk models are useful for highly unstable flows which are difficult to 
treat by other methods. However, as pointed out by KadanofS (1985), they are not well 
suited for nonuniform media. To date, neither gravity nor finite viscosity ratios have been 
incorporated in random walk models. 

4.3 Pore-Scale Percolation Models 

The details of fluid movement in porous media are difficult to analyze due to the 
complex geometry and topology of the pore space. One recent trend has been to view the 
porous medium as a network of spherical pores connected by narrower cylindrical throats 
(Lin and Cohen, 1982; Dullien, 1992). The picture is often idealized further by 
considering a regular lattice (Figure 4.8) in which the nodes represent pores and the grid 
lines represent throats. In percolation theory, the nodes are called sites and the grid lines 
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Figure 4.6. Square 

-Y 

lattice for random walk simulation. Dark region 
light renion water (after Liang, 1986) 

represents air, 

Figure 4.7. Random walk simulations with (a) Ca' = 555 and N = 20, at the onset 
of instability; (b) Cd = 2.5 x lo3 and N = 15, at the beginning of tip splitting; (c) 
Cd = 2 x lo5 and N = 3, finger evolves into a ramified structure (after Liang, 
1986). 
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are termed bonds. Lattice patterns, the radii of sites and bonds, and bond lengths may be 
made to mimic pore space geometry by selecting some of them at random from 
probability distributions inferred on the basis of observed pore structures (Ferrand et al., 
1990). Each bond and site are typically assigned a threshold capillary pressure 

T 
(4.9) pc = R  

where R is radius and T is surface tension. A non wetting fluid cannot enter a bond or a 
site until the capillary pressure builds up to equal or exceed the threshold pressure. 
Clearly, bonds and sites having larger radii tend to be invaded by a nonwetting fluid 
before those having smaller radii. The converse is true for invasion by a wetting fluid. 
Since throats (bonds) are generally narrower than pores (sites), the former tend to control 
drainage and the latter imbibition in media containing air and water. These idealized pore- 
scale models are sometimes termed percolation models even though they do not always 
conform to standard percolation theory. An excellent recent reference on pore-scale 
models and percolation theory as applied to single-phase flow and transport is the book by 
Adler (1992). 

Lenormand ef al. (1988) simulated horizontal displacement of a wetting fluid of 
viscosity pul and density p, by a non-wetting fluid of viscosity p2 and density p2 in a 
network of capillary pores and throats. They assumed that pressure drops occur only in 
the throats. A system of algebraic mass and momentum equations was written for fluid 
pressures at the sites, subject to prescribed initial as well as boundary conditions. The flux 
in each bond was made proportional to the difference between pressures at its two ends 
(sites) according to the Poiseuille equation. Each bond was associated with a threshold 
pressure, rendering the flow equations nonlinear and requiring that they be solved 
iteratively. The interface between the two fluids was advanced based on the calculated 
flow rates. Time steps were chosen so as to completely fill one pore. This means that the 
interface was moved in all the pores until it reached one of the throats. Some of their 
results for various viscosity ratios M = p, / p2 and capillary numbers Ca' , defined here as 
Up, / AT where A is cross sectional area, are shown in Figure 4.9. Figure 4.9a shows 
how percolation patterns vary with capillary number at the high (unfavorable) ratio of 
M = 2 x 10'. The pattern corresponding to the highest Ca' value exhibits a ramified 
structure reminiscent of the DLA pattern. The authors attributed it predominantly to 
viscous forces and considered it to be characteristic of viscous fingering. Patterns 
corresponding to smaller Cd values were attributed by them primarily to capillary forces. 
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Contrary to the viscous pattern, the capillary patterns include branches which grow 
sideways, backward, and may completely loop around the invaded fluid. Figure 4.9b 
shows percolation patterns at the low (favorable) viscosity ratio of 1/79. A continuous 
transition is evident between stable displacement at high Cat values and unstable 
displacement at low Cat values. Note the similarity between the unstable patterns 
corresponding to minimum Ca' values in Figure 4.9a and 4.9b. Figure 4 . 9 ~  shows how 
changes in M affect the percolation pattern when logCa' = 0. The percolation is seen to 
be stable when M is favorable ( M  < 1) and unstable when it is unfavorable (M > 1). 

According to the stability analysis in  Chapter 2, displacement of a less viscous 
fluid by a more viscous fluid in a uniform medium, in the absence of gravity, should yield 
an unconditionally stable interface as both viscous and capillary forces act to stabilize it. 
Hence the unstable percolation patterns in Figure 4.9b appear to result from medium 
heterogeneity, or preferential flow, on the pore scale. The reference to capillary fingering 
by Lenormand et al. (1988) might thus be a misnomer. 

Under very slow flow, viscous forces are vanishingly small and percolation 
depends solely on gravity and local capillary forces at the interface. This case is amenable 
to analysis by a technique known as invasion percolation which is computationally much 
more efficient than the standard approach though it has traditionally disregarded gravity 
(Lenormand and Bories, 1980; Chandler et al, 1982; Wilkinson and Willemsen, 1983; 
Wilkinson, 1986). In this method, each site and bond at the interface is ranked according 
to its level of participation in movement: During invasion of a nonwetting fluid, the 
highest rank is associated with the highest threshold pressure and, during invasion of a 
wetting fluid, with the lowest threshold pressure. This is so because the former occurs 
first where the threshold pressure is highest, and the latter occurs first where this pressure 
is lowest. During any time step, only the highest ranking bonds and sites participate in 
motion. A new ranking is made and the interface is allowed to advance again. The 
method is computationally efficient because there is no need to solve a system of coupled 
nonlinear equations. It is however unsuitable for faster motions where viscosity becomes 
important. A percolation pattern computed by this technique is shown in Figure 4.10. It 
closely resembles the pattern corresponding to logCa' = -10.7 in Figure 4.9a. 

Glass (1993) modified the invasion percolation technique to include gravity and 
macroscopic interfacial curvature during water infiltration through a rough-walled 
fracture. In his model, the fracture is represented by a square grid of cells, each having a 
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Figure 4.10. Invasion percolation pattern. Heavy line shows continuous path 
between entrance and exit (after Lenormand et al., 1988). 
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randomly assigned uniform aperture. The author ranked all cells connected to the 
interface in terms of their total aperture filling potentials, defined as 

T 1  
Pg r1 

h - - - -(-+;) + zcos6 (4.10) 

where z is a coordinate coinciding with the dip of the fracture, 6 is the angle between z 
and the vertical (a vector pointing in a direction opposite to that of gravity), r, is principal 
radius of interface curvature normal to the plane of the fracture (given by half the local 
aperture), and rz is macroscopic principal radius of interface curvature parallel to the same 
plane. The first term on the right represents capillary pressure potential and the second 
gravity potential. During any time step, only one cell with the most negative filling 
potential is allowed to be invaded. This modifies the set of cells in contact with the 
interface and the in-plane curvature of the interface. The filling potentials are updated to 
reflect this and a new invasion step is initiated. Figure 4.11 illustrates the invasion of 
water into an air-dry rough fracture at 6 = 180" (vertical infiltration), 138", 120°, 104O, 
90" (horizontal infiltration), and 0" (capillary rise). When in-plane curvature is not 
considered (Figure 4.1 la), fingers are controlled by microscopic variations in  aperture. 
When in-plane curvature is considered (Figure 4.1 1 b), macroscopic fingers develop which 
more closely resemble experimental observations. As the effect of gravity decreases when 
6 diminishes from 180" to 90°, the percolation pattern in Figure 4.11a becomes more 
intricate and the invaded area increases. Under horizontal invasion at 6 = 90°, branching 
takes place in all directions as was seen earlier in Figures 4.9 and 4.10. During capillary 
rise at 6 = O", the flow is stable on the average due to gravity. 

4.4 Conventional Numerical Methods 

Conventional numerical methods can be used to simulate fingering by solving the 
standard macroscopic equations of immiscible two-phase flow in porous media on a grid. 
Very fine grids may be required to resolve narrow fingers and to avoid numerical 
smearing (dispersion) and instabilities. Some standard finite difference and finite element 
numerical schemes are prone to artificial smearing and/or instability unless special 
precautions are taken to prevent them. Various nonstandard approaches have been 
proposed to help eliminate, or minimize, these numerical artifacts. Among them, 
Eulerian-Lagrangian techniques appear to be quite promising. Originally, these 
techniques have been developed for miscible advective-dispersive transport (e.g., Neuman, 
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Figure 4.1 1. Invasion percolation of water into an air-dry rough-walled fracture: 
(a) in-plane curvature not considered, (b) in-plane curvature considered. Gray 
regions denote water and light regions air. From left to right 6 = 180°, 138O, 120°, 
1 0 4 O ,  90°, and 0' (after Glass, 1993). 



1981; 1984; Douglas and Russell, 1982; Neuman and Sorek, 1982; Ewing et al., 1984; 
Baptista, 1987; Celia et al., 1990; and Herrera et al., 1993) but should also be applicable 
to immiscible displacement (Douglas and Yirang, 1988; Ewing, 1991). The idea is to 
formally split the problem into an advective and a dispersive part, then solve the advection 
problem in a Lagrangian framework (typically by a method of characteristics) and the 
dispersion problem by an Eulerian finite difference or finite element scheme. A closely 
related alternative is the flux-corrected approach developed by Borie and Book (1973, 
1976) and Zalesak (1978) for transport which has recently been used by Christie (1989) 
and Hill et al. (1994) to simulate immiscible displacement. This technique also relies on 
operator splitting but it solves the advective problem in an Eulerian framework by means 
of a low-order approximation and a higher-order correction. The low-order approximation 
produces excessive numerical diffusion to avoid artificial ripples. The higher-order 
correction counteracts this numerical diffusion. We will see later that the approach 
appears capable of simulating fingers during water infiltration into a soil. 

To initiate fingers in a uniform medium, it may be necessary to perturb the flow 
field artificially. King et al. (1985) used a standard finite difference scheme to simulate 
two-phase immiscible displacement of oil by water in the absence of gravity (details on 
simulation domain and gridblock size were not given). To initiate instability, he perturbed 
the initial water saturation contours by means of a single parabolic kink. The amplitude of 
this kink was zero at full saturation and increased gradually with saturation to a small 
maximum value. Figure 4.12 shows the evolution of the kink with time. Each amplitude 
grew at a near constant rate without splitting or deforming the contours. The rate of 
growth increased with viscosity ratio and initial amplitude but decreased with capillary 
pressure. 

Hughes and Murphy (1988) simulated immiscible displacement in a uniform 
medium by combining conventional and Monte Carlo approaches. Spatial and temporal 
variations in  the saturation of the displacing fluid were computed by finite-differences. 
Local changes in saturation during a time step, normalized by the sum of changes over the 
entire grid, were interpreted to represent a point probability density function (pdf) as 
illustrated in  Figure 4.13a. By selecting a random number between zero and one, a 
gridblock was identified from the corresponding cumulative distribution function (cdf) as 
shown in Figure 4.13b. The sum of the changes in saturation over the entire grid that had 
been calculated from finite differences was allocated to this gridblock. A time step was 
selected so as to insure that the assigned change in saturation is either equal to, or is some 
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Figure 4.12. Contours of water saturation during displacement of oil at four 
equally spaced time steps. Capillary pressure is 0.02 am and viscosity ratio is 10 
(after King et al., 1985). 
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Figure 4.13. Interpretations of (a) change in saturation as a probability densit: 
function and (b) random selection of gridblock (after Hughes and Murphy, 1988). 
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reciprocal integer fraction of, the maximum possible saturation change in the gridblock. A 
new change in saturation across the grid over a time step was then computed by finite 
differences, and so on. Figure 4.14 shows simulated water saturations at breakthrough 
during displacement of oil at M = 8 and M = 99 in the absence of gravity and capillarity. 
The grid contains 100 x 50 square cells of unspecified size. At A4 = 8 , the fraction of 
pore volume injected till breakthrough was 0.351, and the invading water had fingered 
into 71.1% of the gridblocks. At the higher M value of 99, the fraction injected decreased 
to 0.107 and so did the invaded area down to 63.2%. These results proved to be 
insensitive to the seed of the random number generator used by the authors, but details of 
the saturation profiles did vary from seed to seed. 

Christie (1989) employed two approaches to trigger instabilities during the 
simulation of immiscible displacement by the flux-corrected method. In the first 
approach, a low-amplitude perturbation was superimposed on the interface at time t = 0. 
In the second, permeability was made to vary randomly across the field with a log-normal 
distribution, small variance and no autocorrelation. Both approaches gave qualitatively 
similar results. Figure 4.15 shows results corresponding to horizontal oil displacement by 
water at M = 10 and either moderate or tenfold lower capillary pressure on a grid of 205 x 
205 cells (of unspecified size). An increase in capillarity is seen to have a stabilizing 
effect by lowering the amplitude and frequency of fingers. 

BZunt et al. (1994) used a 200 x 100 finite difference grid of unspecified cell size to 
simulate immiscible displacement of oil by gas at a viscosity ratio of 89 by disregarding 
gravity and capillarity. Fingers were triggered by a normally distributed random 
permeability field with a 5% variance and no autocorrelation. Figure 4.16a depicts gas 
saturation contours after displacement of 0.1 pore volumes, and Figure 4.16b shows how 
average gas saturation normal to the flow varies with normalized fractional distance. By 
comparing the average profiles at different times, the authors found that fingers had grown 
linearly with time. They also noticed that the average saturation profiles and finger 
growth rates were quite similar for two different realizations of the permeability field. 

In randomly heterogeneous media there is no need for artificial perturbations to 
trigger instability. Khataniar and Peters (1992) simulated displacement of oil by water in 
heterogeneous media using a standard finite-element method. They considered a medium 
with a log normal permeability distribution characterized by two measures of variability, 
the Dykstra-Parson (DP)  coefficient and a dimensionless spatial correlation length. The 
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WATER SATURATION 

100.00% 
66.6?% 
33.33% 
0.00% 

FRACTION OF A PORE VOLUME INJECTED AT BREAKTHROUGH = 0.351 

PERCENTAGE OF GRID BLOCKS CONTAINING WATER AT BREAKTHROUGH =71.1'% 

(b) 

WATER SATURATION 

t--l 0% 

FRACTION OF A PORE VOLUME INJECTED AT BREAKTHROUGH = 0.107 

PERCENTAGE OF GRID BLOCKS CONTAINING WATER AT BREAKTHROUGH =63.2% 

Figure 4.14. Water saturations at breakthrough during displacement of oil by 
combined finite difference and Monte Carlo simulations: (a) M = 8, (b) M = 99 
(after Hughes  and Murphy ,  1988). 
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Figure 4.15. Flux-corrected simulation of oil displacement by water at M = 10 
and (a) moderate capillary pressure, (b) tenfold lower capillary pressure (after 
Christie, 1989). 
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Figure 4.16. Immiscible displa ement of oil by gas: (a) gas saturation contours 
after displacement of 0.1 pore volumes and (b) average gas saturation (after Blunt 
et al., 1994). 
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former is defined as (Dykstra and Parson, 1950) 

41 6 DP=1-- 
q50  

(4.1 1) 

where qI6 and qs0 are the 16th and 50th percentiles of the permeability distribution 
function, respectively. It is related to the standard deviation, SV, via 

SV = -ln(l - DP) .  (4.12) 

Khataniar and Peters generated a single random permeability field of twelve combinations 
of the following parameters: D P  = 0.01, 0.55, 0.89, Ax = 0.0, 0.2, 0.7, 2.0 where A, is 
longitudinal spatial correlation length normalized by the length of the flow field, and A, = 
0.2 where A,, is the normalized transverse spatial correlation length. Figure 4.17 shows 
water saturation profiles in all twelve media after injection of one pore volume. The 
simulations were done in a domain of length 120 m and width 60 m at a viscosity ratio of 
100 in the absence of gravity and capillarity. The domain was overlain by a grid of 40 
elements in the longitudinal direction and 60 elements in the transverse direction. When 
DP = 0.01, longitudinal correlation has no significant effect on the front which remains 
stable at all A,. When DP = 0.55, fingering occurs. In the absence of spatial correlation 
(A ,  = O.O), numerous low-amplitude fingers develop. As 1, increases, there is a tendency 
for a few fingers to grow considerably at the expense of others. At high A,, the dominant 
fingers occupy distinct zones of high permeability. When DP = 0.89, these same fingers 
become narrower and longer. It is thus clear that both the variance and the longitudinal 
autocorrelation of random log permeability variations contribute to the development of 
fingers along preferential flow paths, thereby reinforcing the effect of hydrodynamic 
instability. 

Figure 4.18 shows plots of fractional recovery ratio between fluid breakthrough 
and inflow versus pore volume of injected fluid for various DP and A x .  When DP = 
0.01 (Figure 4.18a), fractional recovery is independent of A,. When DP increases to 0.89 
(Figure 4.18b), fractional recovery declines as A, increases. The effects of DP at a given 
A, are shown in Figure 4 .18~ and d. In the absence of correlation (Figure 4 . 1 8 ~ ) ~  DP has 
only a minor effect on fractional recovery. When 1, = 2.0 (Figure 4.18d), fractional 
recovery declines as DP goes up. 

The effect of medium heterogeneity on fingering has also been investigated in the 
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Figure 4.17. Effect of DP and spatial correlation of log permeability on water 
saturation profiles after injection of one pore volume into a randomly 
heterogeneous medium filled with oil at a viscosity ratio of 100 (after Khataniar 
and Peters, 1992). 
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context of miscible displacement (e.g., Moissis 1988; Kelkar and Gupta, 1991; Tan and 
Homsy, 1991; Waggoner et al., 1992; Araktingi and Orr, 1993; Moissis et al, 1993; 
Tchelepi and Orr, 1993). As the present report focuses on immiscible displacement, these 
studies fall outside its scope and are not discussed. We mention only the very recent 
numerical experiments by Hill et al. (1994) on combined water infiltration and solute 
transport in an unsaturated, heterogeneous soil of the kind found at the Las Cruces Trench 
site in New Mexico. The two-dimensional experiments covered a vertical section 6 m 
deep and 24 m wide. Measured saturated hydraulic conductivities and initial water 
contents were interpolated across the section. Water with a nonrective tracer at unit 
concentration was sprinkled at a uniform rate of 1.16 x 10-5 cm/s on the soil surface. Zero 
flux conditions were assigned along the sides and bottom of the section. Richards' 
equation was solved by finite differences to yield advective velocities for the domain. The 
problem of advective-dispersive tracer transport was then solved by means of the flux- 
corrected method on a grid with cells of size 10 x 10 cm2. 

Figure 4.19 depicts computed changes in volumetric water content after fifty days 
of infiltration. It also shows profiles of tracer without and with dispersion (molecular 
diffusion of 1.16 x 10-5 cm2/s, isotropic dispersivity of 3 cm). The sharp contours of the 
front in the absence of physical dispersion suggest that numerical dispersion is under 
control. These contours show fingers which reflect instability of the sprinkled water front. 
In the model, antecedent water was allowed to move downward ahead of this front. Hence 
the average depth of the combined (sprinkled and antecedent) moisture front is greater (4 
- 5 m) than that of the sprinkled front (about 3 m). Dispersion is seen to have a stabilizing 
effect on the solute front, but it of course does not affect the wetting front in this model. 
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5. SUMMARY AND RECOMMENDATIONS 

We present below a summary of key findings based on our overview of published 
experimental, theoretical and numerical work on instability and fingering during 
immiscible fluid displacement in porous and fractured media, particularly wetting front 
instability in unsaturated soils and rocks. We also point to some important gaps in 
existing knowledge which could be potentially narrowed through future research. 

5.1 Summary of Key Findings 

1. Wetting front instability is a commonly occurring phenomenon which has an 
important effect on fluid flow and contaminant transport in unsaturated soils and rocks. It 
causes the development of fingers which travel faster than would be anticipated on the 
basis of Darcy's law. This may cause water and contaminants to reach the water table 
faster than would otherwise be the case. The phenomenon occurs in both uniform and 
nonuniform media in response to either ponding or sprinkling at the surface. It also takes 
place during moisture redistribution in the wake of an infiltration event. 

2. Wetting front instability is a special case of interface instability during 
immiscible fluid displacement in porous and fractured media. The phenomenon is 
triggered by unfavorable differences between the viscosities and densities of the two fluids 
across their interface. Viscous forces have a stabilizing influence when a more viscous 
fluid displaces a less viscous fluid, and a destabilizing influence when a less viscous fluid 
displaces a more viscous fluid. Both effects increase with the mean propagation speed of 
the interface. Gravity has a stabilizing influence when the denser fluid is at the bottom, 
and a destabilizing influence otherwise, regardless of mean flow direction or speed. 

When both viscous and gravitational forces act to stabilize the interface, the latter 
is unconditionally stable. When both of these forces act to destabilize the interface, it is 
unconditionally unstable. When viscosity is stabilizing and gravity is destabilizing, the 
interface is stable provided that its mean speed exceeds some critical value. When 
viscosity is destabilizing and gravity is stabilizing, the interface is stable on condition that 
its mean speed is below a critical value. 

During the downward propagation of a wetting front in an unsaturated soil or rock 
environment, viscosity acts as a stabilizing force and gravity as a destabilizing force. 
Hence for instability to occur, the mean speed of front propagation must be less than some 

103 



critical value. For a sharp wetting front with a uniform moisture profile above and below, 
this critical speed is equal to the ratio between hydraulic conductivity above the front and 
the drop in water content across it. 

3. Surface tension has a stabilizing effect on the interface between two immiscible 
fluids. Suppose that the interface is perturbed slightly into a composite wave form 
containing diverse wave lengths (and spatial frequencies) of very small amplitude. If the 
interface is unstable and there is no surface tension, the amplitudes of all these 
perturbations (incipient fingers) can initially grow at rates that increase as their 
wavelengths decrease (frequencies increase). If surface tension is active, only 
perturbations with wavelengths above some critical value (frequencies below some critical 
value) can grow, all others decay. The critical wavelength increases with surface tension 
(for a sharp wetting front with a uniform moisture profile above and below, it decreases as 
the drop in water content across the front increases). The fastest growing perturbation has 
a wavelength that exceeds critical by a constant factor. The corresponding fingers are 
thought to appear first in an experiment and to dominate their neighbors. Smaller fingers 
often coalesce into one or more dominant fingers. 

4. Under uniform mean flow in homogeneous media, established fingers tend to 
elongate linearly with time. Their rate of elongation increases with mean flow rate and 
viscosity contrast but decreases with surface tension. 

5. Shielding occurs when larger fingers outgrow their smaller neighbors and 
spread laterally to inhibit their growth. The widening of dominant fingers by shielding 
reduces surface tension which may render them unstable. This, in turn, may cause the 
fingers to split (bifurcate) at their tips into narrower branches which are stable due to 
increased surface tension. Shielding then favors one of these branches which widens, 
becomes unstable, and so on. The cycle of shielding, spreading and splitting may repeat 
itself periodically. It is not commonly observed when wetting fronts propagate downward 
through unsaturated media. 

When capillary action is weak and/or mean flow rate is high, bifurcation may 
continue to yield a contorted, dendritic interface with a randomly fractal geometry. 

6. Theoretical considerations published earlier by one of us suggest that, in a 
Hele-Shaw cell (or ideal fracture with smooth impermeable walls separated by a constant 
aperture) upon the onset of instability, the interface is generally not perpendicular (and 
fingers are generally not parallel) to the direction of mean flow unless the latter coincides 
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with the dip of the cell (or fracture). We have shown theoretically in this report that, in a 
three-dimensional porous medium upon the onset of instability, the interface is generally 
not perpendicular (and fingers are generally not parallel) to the mean direction of flow 
unless the latter is vertical. This is contrary to Chuoke et al. (1959) who allowed mean 
flow to be other than vertical but conjectured that the interface would remain at right angle 
to this flow vector. 

7. Spatial variations in medium permeability are conducive to the preferential 
development of fingers along paths of least resistance to flow. Instability in such 
heterogeneous media may occur under conditions that would not be favorable for the 
development of fingers in equivalent uniform media. This is true on the pore scale, on the 
laboratory scale, and on the field scale where preferential flow of water and solutes is 
commonly observed. A wetting front becomes unstable as it descends from a fine-grained 
into a coarse-grained soil. The same happens as it reaches a critical depth when 
permeability increases systematically downward. In soils that are wetted nonuniformly 
(say by antecedent fingers), new fingers tend to move preferentially through the wetted 
regions because these pose the least resistance to flow. 

8. A sharp wetting front is more prone to become unstable than a diffuse front; 
conditions which cause instability in a poorly-graded (usually coarse) soil may therefore 
give rise to a stable front in a well graded (usually fine) soil. Other factors which 
contribute to the development of unstable wetting fronts include water repellency of the 
soil and compression of air ahead of the front. 

9. Issues concerning the onset of instability are often amenable to first-order 
mathematical analysis by linearization. As fingers grow, their behavior becomes so 
strongly nonlinear that numerical analysis is usually required. Numerical methods that 
have proven capable of simulating the development of fingers under select conditions 
include point vortex and vortex-in-cell techniques, random walk models, pore-scale 
percolation models, Eulerian-Lagrangian methods, and the flux corrected scheme. Among 
these, the latter two approaches seem better suited for the simulation of unstable fluid 
interfaces in heterogeneous media than the rest. 

5.2 Some Gaps in Existing Knowledge 

Much is yet to be learned about various aspects of instability and finger 
development during immiscible displacement. We believe that the effect of soil and rock 
heterogeneities on the instability of wetting fronts merits special attention in the context of 
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nuclear waste storage in unsaturated geologic environments. In particular, little is 
presently known about the extent to which porous rocks containing fractures, faults and 
bedding planes (as is the case at Yucca Mountain in Nevada) may facilitate or retard the 
development of unstable fingers and their rapid propagation (vertically or otherwise) to the 
water table. What effects do various parameters which define the spatial variability of rock 
properties (fracture, fault and bedding plane geometries; mean, variance and correlation 
scales of permeabilities in diverse lithologic and structural units) have on the onset of 
instabilities under various antecedent moisture conditions and surface infiltration scenarios 
on relevant field scales? In what directions, and at what rates, might fingers propagate 
after instability has set in? How long, wide and numerous will such fingers be? What will 
be their locations and spacings? Will they occur exclusively in fractures or will they 
invade matrix blocks? How is this related to the mass rate of water and solute propagation 
through the geologic medium? To address the issue of solute transport one may have to 
consider not only immiscible but also miscible displacement processes such as dispersion, 
matrix diffusion and sorption. What effect do these have on the stability of solute fronts 
under unsaturated conditions? How might elevated temperatures in parts of the flow field 
affect such behaviors? Might condensed water vapors form potentially unstable moisture 
fronts? What observations and experiments might feasibly help reveal these and related 
phenomena in the field? Our overview suggests that these questions address realistic 
problems which have a direct bearing on our understanding of unsaturated fluid flow and 
contaminant transport in complex geologic media. 
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Appendix A (Analysis of Philip, 1975) 

Integration of (3.64) between the limits in (3.65) yields 

for the potential h above a Green and Ampt (191 1) wetting front. Let ty be the pressure 
head defined via h = w + z. Then the pressure gradient immediately above the wetting 
front is 

In term of the depth variable 5 = - z ,  this can be rewritten as 

where now K, is a function of 5 .  

Let I# be the pressure head above the wetting front in the perturbed field and 
designate the perturbation in pressure head by Y ,  Y = I# -w. According to Philip, each 
harmonic of the perturbed field satisfies 

subject to the boundary conditions 

and, to first order, 

Esin(nx + z) sin(my + 6) z = - L ,  Y = - ( G + -  M2T 'I 
where T is surface tension at the interface, M2 = n2 +m2, and A 0  = 0, - e,.. The first 
boundary condition is the requirement that the disturbance vanishes at the soil surface. 
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The second boundary condition has two components. The first component comes from 
the fact that y i  = w(-L) at the disturbed wetting front, not at z = - L. To first order in€, 
this component is 

= - G.ssin(nx + r)sin(my + 6) 

where 0 is defined in (3.76). The second component results from the fact that the 
perturbation superposes a curvature on the original planar wetting front and produces a 
perturbation in capillary pressure, A y r .  To first order in E ,  Philip (1975) wrote 

Y, = A y f  = -(-+T) T d 2 0  d 2 0  
PS ax2 

Esin(nx + z)sin(my + 6) - M2T - -- 
Pi? 

As discussed in Section 2.2, White et al. (1976) proposed replacing the surface tension 
coefficient T by an effective surface tension coefficient T* = T / A 8  for infiltration in 
porous media. We adopt this replacement in the following. 

The solution of (A.4) subject to (AS) and (A.6) is 

where Q(z) satisfies 

subject to 

z=o ,  Q = Q  z = - L ,  Q = l .  

The velocity of the front, v, due entirely to the perturbed pressure field is 

(A.lO) 

(A. 1 I )  

(A. 12) 
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where K, is a function of z. It follows from this and (A.9) that 

(A.13) 

where is -dQ/dz evaluated at z = -L. From (A.lO) it follows that, when K, > 0, 
Q(z) can have neither a positive maximum nor a negative minimum. This together with 
(A. 11) implies that Q(z) must be monotonically decreasing and so 5 > 0. The velocity of 
the front due to the perturbation can also be derived from (3.76) as 

dE 
dt 

v = -sin(m + z) sin(my + 6) .  

Combining (A. 13) and (A. 14) yields 

(A. 14) 

(A. 13) 

This equation is subject to the condition &(to) = E,, hence the solution for t > to is 

e(t> = E, exp( I:..> (A. 14) 

where 

(A. 17) 
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Appendix B (Analysis of Parlange and Hill, 1976) 

To obtain an expression for r in (3.96), Parlange and Hill (1976) considered a 
cylindrical wetting front moving radially from a cylindrical cavity of radius r, under 
constant flux Q per radian and unit length of cylinder. In the absence of diffusion, the 
front is discontinuous and moves at speed to where r, is distance from the axis and the 
dot designates time derivative. Since the flux at r, is Q / r, , it follows that 

roto = Q I A 8  

where A 8  = 8, - e,, 8, being water content behind the front, 8, ahead of the front. For a 
diffusing front, the movement of water is governed by 

subject to the boundary conditions 

(rD$)l =-e; t > O  
r=rs 

8 =  Oi at t = O ;  8 = Oi at r +- 

(B.3a) 

(B.3b) 

where D is soil diffusivity. The solution to (B.2) and (B.3) is given approximately by 
(Parlange, 1973; Sawhney and Parlange, 1976) 

1 ln(ri / r,) = -Jos Dd8 
Q ' 8  

(B.4) 

where ri and r, are the values of r corresponding to 8 = 8, and 8 = e,, respectively. The 
approximation is valid provided one can ignore terms of order 

compared to other terms. The magnitude of E is of order 0.1 for many soils. Assuming 
that front width is small compared to the wave length, ri -r ,  << r,, one can replace 
ln(r, / r,) by (ri - r,) / r, and interchange r,, r,, and r, everywhere except in differences. 
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where 

Differentiating (B.4) with respect to time and considering (B. 1) yields 

" D d e  ri -rs  =-J . .  
riAO ei 

ii and is represent the velocities of ri and rs, respectively. Hence the velocity of 
the saturated front boundary, fs ,  is less than what it would have been in the absence of 

diffusion, f,., by r,-'(A0)-'Js'Dde. Equation (B.6) is comparable to (3.96) where v 
represents the velocity with diffusion and U the velocity without diffusion. The 
comparison implies that, since rl = ri, and r;' = 0 in the present case, then 

ei 

When terms of order E are small, the sorptivity is given approximately by (Sawhney and 
Parlange, 1976) 

and r can be rewritten as 
S 2  

2(A0)2 
r =  (B.9) 
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