Synthetic Multivariate Models to Accommodate Unmodeled Interfering Components During Quantitative Spectral Analyses

PDF Version Also Available for Download.

Description

The analysis precision of any multivariate calibration method will be severely degraded if unmodeled sources of spectral variation are present in the unknown sample spectra. This paper describes a synthetic method for correcting for the errors generated by the presence of unmodeled components or other sources of unmodeled spectral variation. If the spectral shape of the unmodeled component can be obtained and mathematically added to the original calibration spectra, then a new synthetic multivariate calibration model can be generated to accommodate the presence of the unmodeled source of spectral variation. This new method is demonstrated for the presence of unmodeled ... continued below

Physical Description

29 p.

Creation Information

Haaland, David M. July 14, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The analysis precision of any multivariate calibration method will be severely degraded if unmodeled sources of spectral variation are present in the unknown sample spectra. This paper describes a synthetic method for correcting for the errors generated by the presence of unmodeled components or other sources of unmodeled spectral variation. If the spectral shape of the unmodeled component can be obtained and mathematically added to the original calibration spectra, then a new synthetic multivariate calibration model can be generated to accommodate the presence of the unmodeled source of spectral variation. This new method is demonstrated for the presence of unmodeled temperature variations in the unknown sample spectra of dilute aqueous solutions of urea, creatinine, and NaCl. When constant-temperature PLS models are applied to spectra of samples of variable temperature, the standard errors of prediction (SEP) are approximately an order of magnitude higher than that of the original cross-validated SEPs of the constant-temperature partial least squares models. Synthetic models using the classical least squares estimates of temperature from pure water or variable-temperature mixture sample spectra reduce the errors significantly for the variable temperature samples. Spectrometer drift adds additional error to the analyte determinations, but a method is demonstrated that can minimize the effect of drift on prediction errors through the measurement of the spectra of a small subset of samples during both calibration and prediction. In addition, sample temperature can be predicted with high precision with this new synthetic model without the need to recalibrate using actual variable-temperature sample data. The synthetic methods eliminate the need for expensive generation of new calibration samples and collection of their spectra. The methods are quite general and can be applied using any known source of spectral variation and can be used with any multivariate calibration method.

Physical Description

29 p.

Notes

OSTI as DE00009025

Medium: P; Size: 29 pages

Source

  • Journal Name: Applied Spectroscopy; Other Information: Submitted to Applied Spectroscopy

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-1786J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 9025
  • Archival Resource Key: ark:/67531/metadc794276

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 14, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 10, 2017, 7:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Haaland, David M. Synthetic Multivariate Models to Accommodate Unmodeled Interfering Components During Quantitative Spectral Analyses, article, July 14, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc794276/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.