
F Fermi National Accelerator Laboratory

FERMILAB-Conf-95/118

Fermilab DART Run Control

G. Oleynik, J. Engelfried, L. Mengel, C. Moore, V. Odell, R. Pordes

A. Semenchenko, D. Slimmer, L. Udumula and M. Votava

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

F. Prelz

INFN and Dipartimento di Fisica dell’ Universit’a and INFN
Milano, I-20133 Milan, Italy

E. Van Drunen and G. Zioulas

University of California at Irvine
Irvine, California 92717

May 1995

Presented at the Real Time 95 Conference, East Lansing, Michigan, May 22-26, 1995

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

* This work is sponsored by DOE contract No. DE-AC02-76CH03000

Fermilab DART Run Control*

G. Oleynik, J. Engelfried, L. Mengel, C. Moore, V. O’dell, R. Pordes,

A. Semenchenko, D. Slimmer, L. Udumula, M. Votava

Fermi National Accelerator Laboratory, PO Box 500, Batavia, Il 60510, Tel: 708-840-2430

F. Prelz

INFN and Dipartimento di Fisica dell’Universit`a and INFN - Milano, I-20133 Milan, Italy

E. Van Drunen, G. Zioulas

University of California at Irvine, California 92717, U.S.A.

Abstract

DART is the high speed, Unix based data acquisition system
being developed by Fermilab in collaboration with seven High
Energy Physics Experiments [1 - 6]. This paper describes
DART run control, which has been developed over the past
year and is a flexible, distributed, extensible system for the
control and monitoring of the data acquisition systems. We dis-
cuss the unique and interesting concepts of the run control and
some of our experiences in developing it. We also give a brief
update and status of the whole DART system.

I. INTRODUCTION

DART run control is a fully distributed system designed to be
easily tailored and extended by individual experiments for
their data acquisition (DA) needs [7, 8]. Though we provide for
a high degree of customization, we also provide “turn-key”
components suited to the needs of most experiments.

DART run control software provides the following function-
ality:

• Starting up DA applications in a distributed environment

• Support for storing and invoking multiple DA system con-
figurations, e.g. normal running, photon calibration run-
ning

• Cleanly shutting down and restarting the DA

• Dynamically providing configuration parameters to the DA
applications

• Controlling the DA applications via a single program with
a command-line or Graphical User Interface (GUI)

• Graphical monitoring of the various DA attributes

• Logging a permanent history of relevant DA parameters

• Verifying that prerequisite applications are running & func-
tioning

Control and configuration interfaces are required to be uni-
form and must operate on components in a distributed environ-
ment. Since DART experiments have groups of replicated in-
telligent components (e.g. filter processors, readout control-
lers), the operational portion of run control needs to deal with
them efficiently and in a network transparent manner. This
means one should be able to program without referring to node
names. We also require run control to be highly portable so that
tomorrow’s favored computer can be easily incorporated.

DART run control must support many experiments with dif-
fering architectures, and experimenters must be able to easily
integrate their specific applications with it. At the same time, it
must provide turn-key functionality wherever possible. For
these reasons, run control must be highly tailorable and exten-
sible. In addition, in order for experiments to commission their
detector components and integrate and commission their DA
early on, we provide incrementally increasing levels of func-
tionality in our software over time.

These requirements lead to trade-offs between providing a
turn-key system versus a highly tailorable one, and providing a
highly integrated system versus a “bottom-up” toolkit. We be-
lieve we have been successful in keeping a good balance be-
tween these competing requirements.

II. DATA ACQUISITION CONTROL

For run control command communication, we developed a
group multicasting server using concepts from the ISIS Distrib-
uted Toolkit [9]. In this “group” communication paradigm, ap-
plications register as a member of one or more arbitrary groups.

Other applications send messages to any of these groups. The
messages get “multicast” to all members that have joined the
group, while the sender waits for replies from all group mem-
bers before continuing.

We felt that the group multicasting technique mapped very
well onto data acquisition control and has a number of advan-
tages over conventional rpc-like techniques. First, it allows par-
allel executions of commands where appropriate, while at the
same time allowing for staged execution of commands where
needed by sequentially multicasting a command to appropriate
groups. This is important for the proper draining of buffers in a
DA system; Figure 1 illustrates how this is done for the da_stop
command. The paradigm also provides network transparency;
applications deal with functionally mnemonic group names
rather than IP addresses or process IDs. Finally, because com-
munication proceeds through an intermediary server, applica-
tions can dynamically join or depart from groups, and are more
loosely coupled to the system, which makes it more robust.

The commands that are multicast are formatted as TCL [10]
verbs, which are basically text strings. We use the TCL inter-
preter to dispatch them in the receiving applications, which in-
voke a state change or execute a maintenance function. While
communication is ultimately based on BSD socket connections
to the server, we have an option to distribute commands locally
on a node with our buffer manager software [11]. This allows
applications to simultaneously wait for run control commands
and data buffers.

Because commands are sent to applications in the proper se-
quence by multicasting them to groups in the appropriate chro-
nological order, complicated techniques such as assigning a per
application priority to a particular state transition are not neces-
sary. DART uses a global state-diagram, though the paradigm
only requires a state changes be consistent across a group.

We have based our operator control program (ocp) [12] on the
TCL interpreter for command line processing, and TK [10] for
graphical control. We chose TCL because of its extensible in-
terpretive procedures. For graphics, we chose TK because it is
well integrated with TCL, is extensible, and our experience has
been that interfaces can be built more quickly with TK than
from X and its toolkit or Motif. We provide TCL interpreter
bindings for all of our run control communication and informa-
tion functions. All run control commands are implemented as
TCL procedures which invoke these bindings to multicast com-
mands or fetch parameters. Since they are procedure based, they
can be easily modified to add in a multicast to a new group or
add a new command. The operator control program itself is
merely an engine which reads in a file defining the TCL proce-
dures, then loops executing them on user input.

We make the interface highly configurable and extensible in
a number of other ways:

1. providing higher level procedures to bind DA com-
mands to TK buttons and place them in the window

2. providing procedures to display parameters for modifi-
cation

3. providing a tailorable start-up script that defines all of
these procedures, plus standard command aliases and
option flags.

It is very easy to add a new command procedure and bind it
to a button, or extend an existing procedure without any com-
pilation. These features make the operator control very flexi-
ble but suitable for most experiments as-is.

Theocp GUI can be customized in appearance and layout,
as well as in run control functionality. We sat down with a
couple of experiments to customize the layout of the graphi-
cal interface for them. This took on the order of 1/2-1 hour
with resultant happy experimenters! We feel this is a big suc-
cess of the TCL/TK approach.

The figure below, which is a code fragment of the da_stop
TCL procedure taken from theocp start-up file, illustrates
how well the group multicasting concept maps onto DA con-
trol, as well as illustrating how simple it is to tailor or add a
command. The da_stop procedure loops, multicasting the
stop command sequentially to the groups listed in the
da_stopList in the order of their listing, assuring that proper
draining of buffers occurs. If a send to any group in the list
fails, an abort is sent to all groups preceding it in the list. As
is quite apparent, different groups can be added to the list, or
existing ones removed.

set da_startList {logger filter gateway
front-end trigger-manager}

set da_stopList { trigger-manager front-
end gateway filter logger }

foreach daGroup $da_stopList {
lappend da_abortList $daGroup
drc_cmd_send $daGroup “da_stop”

sendStatus
if { [MUR_MSG_FAIL $sendStatus]

} {
ocp_error_Handler $sendStatus
mur_sIet_status $sendStatus
 reset_abortlist
 return

}
}

Figure 1: Code fragment of OCP da_stop TCL procedure

III. DATA ACQUISITION INFORMATION SERVICES

A. Introduction -dis and murmur

We developed a distributed information services system,
calleddis [13], to provide the distributed framework needed

in three data acquisition areas: dynamically providing parame-
ters to the various DA applications, recording a run by run his-
tory, and providing a repository for DA rates and statistics used
by monitoring display programs (Figure 2). Information is
stored and served by key-names, and the keyed “database” can
be located on disk or in-memory. The latter is used for storage
of transitory monitoring parameters.

Figure 2: Distributed information services,dis

Parameters and their keys can be loaded/unloaded from/to flat
ASCII files. Wildcarded (regular expression) loads or unloads
are also possible. A variety of parameter types are supported,
and atomic operations, such as addition, can be performed on
them. In addition, the key name-space can be split up into node-
specific or global name-spaces, and the server supports auto-
matic searches across these spaces.These features, combined
with an hierarchical name-space similar to the Unix directory
structure, provide a powerful information organization tool.

Each of the three DA application areas - configuration param-
eters, run history, and monitoring - use a separatedis server that
manages a separate database. For discussion purposes, they are
given names to distinguish them:disc, dish, anddamp, and
each will be discussed in turn below. All use thedis interface to
access their servers.

Another tool which is used for monitoring the DA is the dis-
tributed error messaging and display system,murmur [14, 15].
All applications, including run control, signal their error mes-
sages tomurmur . murmur keeps a time-ordered log of such
information, displays the messages on X windows, and can op-
tionally run scripts based on the message type or content.

B. Configuration Parameters Services -disc

We call thedis server and database that serves parameters to
DA applications “disc”. Each DA software product maintains a
templatedisc file that contains the default values for parameters
which it uses. This file is customized by the user and loaded into
their disc database. The associated application connects to the
disc server and fetches parameters when appropriate; we follow

dis
database
server

unload

trans-
actions dis

client

dis
client

flat
files

(w/ keyword
value pairs)

load

keyed
dictionary

utility
client

tcl

disk or in-memory

network boundary

the convention that parameters can be read when an applica-
tion first starts, and are usually reread only upon receiving the
da_initialize run control command.

C. Run History Services -dish

We call thedis server and database that records permanent
run-by-run information from the various DA applications
“dish”. Parameters stored indish are per run counters such as
number of events read out, number accepted, number logged,
calibration files used, etc. The current run number is also
stored in thedish database.

D. Monitoring Services and Display -damp

We call thedis server and database that records monitoring
rates and statistics from the various DA applications “damp”.
Information such as the current event rate, logging rate, ac-
ceptance ratio, etc., are stored indamp.

Figure 3:damp DA monitoring system

damp is different fromdisc anddish in two ways. First, the
recorded information does not require permanent storage, so
it is kept in an “in-memory” database. This provides for
quicker access with no disk operations. Secondly,disc and
dish are usually accessed only when data is not being ac-
quired, while applications usingdamp need to write statistics
periodically while data is being taken. If the applications
were directly connected to thedamp server, they would be
susceptible to hangs from server crashes. For this reason, ap-
plications usingdamp are decoupled from the server using
shared memory (see above). They dump their statistics into
shared memory, and a special forwarder application, that runs
on each node, periodically wakes up and sends the memory
segment to thedamp server. Applications dynamically de-
fine parameter names for their statistics, allocate space for
them, then allocate a segment of shared memory to store
them. Applications also can have directdis socket connec-
tions to thedamp server.

damp
Server

forwarder

 reporters

clients

 disk

shared memorysegments

displays
monitoring

database

ram based
database

reporting node

mainte-
nance
program

monitoring node

remote node(s)

“canned”
damp
monitor

network boundary

The statistics in thedamp server are accessed by display pro-
grams through normaldis fetches. Wildcardeddis fetches are
important for this application as they attain a much higher level
of throughput to display programs. We supply a template dis-
play program that displays statistics from the tape logger and
event gathering applications. The display uses TK and consists
of strip-chart widgets built out ofblt [16] to display running his-
tories, andblt bar chart and label widgets to display instanta-
neous values.

IV. DATA ACQUISITION START-UP AND

ORGANIZATION

We provide an rlogin session multiplexor, calleddbs [17],
which is used to start up applications on the DA network from
a single program while capturing any terminal output they pro-
duce into a logfile or Xterm display. This program can be driven
from a single script containing the information required to start
up all DA applications. It has such features as sending shell
commands to wildcarded sessions so they are simultaneously
sent to matching sessions (not to be confused with the run con-
trol command multicasting). Commands can be sent to any ses-
sion without “attaching” to them. Optionally, the client can “at-
tach” to a remote rlogin session as if there were nodbs, interac-
tively issue commands, receive the session output, then detach
again by typing an escape character. Buffered output from all
sessions, along with a session identifying stamp, is dumped to a
file or Xterm periodically. Also provided is a mechanism to reg-
ister DA processes with a session, and killing all processes start-
ed in a given session (or all sessions) so that the DA can be
cleanly restarted.

Figure 4: DART bootstrap service (dbs)

We provide an automated way to start up all DA applications
called fresh_start. Fresh_start is a script that usesdbs and files
located in standard directories in the DA account (Figure 5).
Fresh_start starts up the servers on the host node, then reads a
file of target nodes to start up, creates sessions on all of these
nodes, then executesdbs scripts locally, and shell scripts re-

rlogin rlogin rlogin

buffers

Bootstrap
daemon

Bootstrap
Client

remote
session

remote
session

remote
session

Attached current session
Detached potential sessions

Network

motely on the nodes. These scripts are fully user defined and
are placed in standard directories. The directory structure per-
mits definition of multiple DA “system” configurations, each
of which can have their own target node list, host and target
scripts,disc database, and application start-up scripts (e.g.
dbs andocp). Using fresh_start in this manner completely
hidesdbs details and focuses the experimenter on the config-
uration issues he is concerned with.

Figure 5: DA account directory layout

V. TOOLS USED AND EXPERIENCES

All of our servers are written in C++. We use the tools.h++
[18] class library extensively. It has hash-dictionary classes
we use for name look-ups, file management classes we use
for managingdis databases on disk, and, built into these
classes, regular expression matching we use fordbs session
wildcarding anddis wildcarded parameter fetching. Use of
the tools.h++ class library significantly reduced the produc-
tion time of our server software.

TCL/TK freeware proved to be a powerful combination for
providing a highly extensible and configurable run control in-
terface, enabling easy modifications and customizations with
absolutely no code re-compilation required. A student was
able to code the basicocpAPI in less than a summer. We also
found the freewareblt TK widget package a good basis to
build upon for providingdamp monitoring displays.

We did not use ISIS since we wished to develop in-house
expertise and required more control of the interface, and ISIS
was not available under the VxWorks [19] operating system.
However, we found its multicasting communications para-
digm to map very well to the requirements of run control, and
the network transparency a great improvement over rpc-like
implementations.

We developed our own toolkit, dart_tools, to present a more
integrated interface to the user. Tools are provided which
simplify programming, such as a single routine which initial-
izes run control communications, information services, and
buffer management for a process.

vxworks init log config db

dish murmurconfigA configB configC

disc

discdb

host

host scripts

targets

target list
target scripts

~/dart

VI. STATUS, PLANS AND CONCLUSIONS

Efforts over the last six months have been on “shrink wrap-
ping” the DART system into a “template” suitable for most ex-
periments with little tailoring, providingdamp and fresh_start,
and freezing all user interfaces. The target date for completion
of this effort is June. Major remaining DART work to be done
includes extensions to our logger to support tape switching, pro-
viding a mechanism to verify all required DA applications are
up and active, extending fresh_start to start up subsets of the
DA, and simplifying the distribution and installation of the en-
tire system. The target for this additional functionality is Octo-
ber 1995, about six months before first beam is scheduled to be
delivered to the experiments.

Two experiments have already taken data with portions of the
DART software. Other experiments that are not running yet are
using DART to acquire commissioning data, have integrated
run control into their applications, and are just starting to read
out multiple data streams (DART is a multi-stream hardware
readout architecture).

We believe we have achieved a highly flexible and extendible
run control system that meets the requirements we specified and
which experiments can easily integrate into their data acquisi-
tion systems. All components that we could identify as turn-key
have been made so, but with a careful eye to making them easily
extensible to meet specific requirements of individual experi-
ments. Based on our observation of unexpectedly long lifetimes
of previous DA systems which we have built, we designed the
system for a long lifetime, using portable and ubiquitous para-
digms and tools that we expect to live long. We believe this sys-
tem will serve Fermilab experiments well into the future. The
collaborative effort between computer professionals and exper-
imenters was a key ingredient for this success.

VII. REFERENCES

[1] R. Pordes V. White, DART Project Definition, Fermilab
Computing Division publication (CD) PN-467

[2] G. Oleynik R. Pordes, DART System Requirements, Fer-
milab CD PN-468

[3] G. Oleynik R. Pordes, DART System Architecture, Ferm-
ilab CD PN-469

[4] G. Oleynik et al, DART - Data acquisition for the next
Generation Fermilab Fixed Target Experiments, IEEE
Transactions on Nuclear Science, Vol 41, No 1.

[5] R. Pordes et al, Fermilab’s DART DA System, Proceed-
ings of CHEP94

[6] DART documents are available at url http://www-
dart.fnal.gov:8000.

[7] G. Oleynik, L. Udumula, M. Votava, DART Run Control
Requirements, Fermilab CD PN-471

[8] G. Oleynik. L. Udumula, M. Votava, DART Run Con-
trol Design, Fermilab CD PN-474

[9] ISIS, Isis Distributed Systems Inc., 111 S. Cayuga
Street, Ithaca, NY 14850, info@isis.com. Also see
URL http://www.cs.cornell.edu/Info/Projects/ISIS/
ISIS.html

[10] Tcl and the Tk Toolkit, J. Ousterhout, Addison Wesley
Computing Series.

[11] D. Berg et al, Data Flow Manager for DART, Proceed-
ings of CHEP94

[12] C. Moore et al, Operator Control Program (ocp) User’s
Guide, Fermilab CD PN-497

[13] dis - L. Appleton (now Mengel) et al, DART Informa-
tion Services Design, Fermilab CD DS-233

[14] G. Oleynik et al, Murmur - A Message Generator and
Reporter for Unix, VMS, and VxWorks, IEEE Trans-
actions on Nuclear Science, Vol 41, No 1.

[15] murmur is available through Fermitools, url: http://
www-fermitools.fnal.gov.

[16] blt TK widget toolkit freeware

[17] L. Udumula et al, DART Bootstrap Services (dbs), Fer-
milab CD PN-483

[18] tools.h++ class library, Rogue Wave Software, Inc.,
260 SW Madison, Corvallis, Oregon, 97333 USA

[19]] VxWorks is a registered trademark of Wind River Sys-
tems, Inc., 1010 Atlantic Avenue, Alameda, CA
94501-1147

