Feasibility of High Frequency Acoustic Imaging for Inspection of Containments: Phase II

PDF Version Also Available for Download.

Description

The nuclear power industry is concerned with corrosive thinning of portions of the metallic pressure boundary, particularly in areas that are not directly accessible for inspection. This study investigated the feasibility of detecting these thickness degradations using ultrasonic imaging. A commercial ultrasonic system was used to carry out several full-scale, controlled laboratory experiments. Measurements of 0.5 MHz shear wave levels propagated in 25-mm-thick steel plate embedded in concrete showed 1.4-1.6 dB of signal loss for each centimeter of two-way travel in the steel plate (compared to previous numerical predictions of 3-4 dB), and 1.3 dB of signal loss per centimeter ... continued below

Physical Description

45 p.

Creation Information

Rudzinsky, J.; Bondaryk, J. & Conti, M. July 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The nuclear power industry is concerned with corrosive thinning of portions of the metallic pressure boundary, particularly in areas that are not directly accessible for inspection. This study investigated the feasibility of detecting these thickness degradations using ultrasonic imaging. A commercial ultrasonic system was used to carry out several full-scale, controlled laboratory experiments. Measurements of 0.5 MHz shear wave levels propagated in 25-mm-thick steel plate embedded in concrete showed 1.4-1.6 dB of signal loss for each centimeter of two-way travel in the steel plate (compared to previous numerical predictions of 3-4 dB), and 1.3 dB of signal loss per centimeter of two-way travel in steel plates embedded in concrete prior to setting of the concrete (i.e., plastic). Negligible losses were measured in plates with a decoupling treatment applied between the steel and concrete to simulate the unbonded portions of the pressure boundary. Scattered signals from straight slots of different size and shape were investigated. The return from a 4-mm-deep rectangular slots exhibited levels 23 dB down relative to incidence and 4-6 dB higher than those obtained from both ''v'' shaped and rounded slots of similar depth. The system displayed an input/output dynamic range of 125 dB and measurement variability less than 1-2dB. Based on these results, a 4-mm-deep, rounded degradation embedded 30 cm in concrete has expected returns of -73dB relative to the input and should therefore be detectable. Results of this and a prior study indicate that the technique has merit and should be developed more fully and demonstrated in the field.

Physical Description

45 p.

Notes

INIS; OSTI as DE00009288

Medium: P; Size: 45 pages

Source

  • Other Information: PBD: 1 Jul 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/NRC/LTR-99/11
  • Report No.: ETC RPT:100546(U)
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/9288 | External Link
  • Office of Scientific & Technical Information Report Number: 9288
  • Archival Resource Key: ark:/67531/metadc794165

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 12, 2017, 6:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rudzinsky, J.; Bondaryk, J. & Conti, M. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments: Phase II, report, July 1, 1999; Tennessee. (digital.library.unt.edu/ark:/67531/metadc794165/: accessed January 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.