Advanced combustor design concepts to control NO{sub x} and air toxics. Quarterly report

PDF Version Also Available for Download.

Description

The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics; existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. To ensure effective and timely transfer ... continued below

Physical Description

20 p.

Creation Information

Pershing, D.W.; Lighty, J.; Veranth, J.; Sarofim, A. & Goel, S. April 28, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics; existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. To ensure effective and timely transfer of This technology, a major manufacturer (ABB) and a combustion model supplier (REI) have been included as part of the team from the early conception of the proposal. ABB/Combustion Engineering is providing needed fundamental data on the extent of volatile evolution from commercial coals as well as background information on current design needs in industrial practice. MIT is responsible for the development of an improved char nitrogen oxidation model which will ultimately be incorporated into an enhanced NO{sup x} submodel. Reaction Engineering International is providing the lead engineering staff for the experimental studies and an overall industrial focus for the work based on their use of the combustion simulation tools for a wide variety of industries. The University of Utah is conducting bench scale experimentation to (1) investigate alternative methods for enhancing flame stability to reduce NO{sub x} emissions and (2) characterize air toxic emissions under ultralow NO{sub x} conditions. Accomplishments for this quarter are presented to the solid sampling system and char nitrogen modeling.

Physical Description

20 p.

Notes

OSTI as DE95015956

Source

  • Other Information: PBD: 28 Apr 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95015956
  • Report No.: DOE/PC/94223--T2
  • Grant Number: FG22-94PC94223
  • DOI: 10.2172/94018 | External Link
  • Office of Scientific & Technical Information Report Number: 94018
  • Archival Resource Key: ark:/67531/metadc793894

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 28, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Jan. 4, 2016, 11:30 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pershing, D.W.; Lighty, J.; Veranth, J.; Sarofim, A. & Goel, S. Advanced combustor design concepts to control NO{sub x} and air toxics. Quarterly report, report, April 28, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc793894/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.