Breakdown During High-Field Bias-Temperature Stress

PDF Version Also Available for Download.

Description

Measurements of dielectric breakdown during high-field electrical stress are typically performed at or near room temperature via constant voltage or current stress methods. In this summary they explore whether useful information might also be obtained by performing current measurements during a temperature ramp at high electric field.

Physical Description

2 p.

Creation Information

Fleetwood, D.M.; Krisch, K.S. & Sexton, F.W. August 5, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Measurements of dielectric breakdown during high-field electrical stress are typically performed at or near room temperature via constant voltage or current stress methods. In this summary they explore whether useful information might also be obtained by performing current measurements during a temperature ramp at high electric field.

Physical Description

2 p.

Notes

OSTI as DE00009695

Medium: P; Size: 2 pages

Source

  • 1999 IEEE Semiconductor Interface Specialists Conference, Charleston, SC (US), 12/02/1999--12/04/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-2047C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 9695
  • Archival Resource Key: ark:/67531/metadc793775

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 5, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 10, 2017, 2:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fleetwood, D.M.; Krisch, K.S. & Sexton, F.W. Breakdown During High-Field Bias-Temperature Stress, article, August 5, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc793775/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.