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Abstract

A computational procedure for extracting substructure-by-substructure flexibility properdes from glo-

bal modal parameters is presented. The present procedure consists of two key features: an element-based

direct flexibility method which uniquely determines the global flexibility without resorting to case-depen-

dent redundancy selections; and, the projection of cinematically inadmissible modes that are contained in

the iterated substructural matrices. The direct flexibility method is used as the basis of an inverseproblem,

whose goal is to determine substructural ffexibilities given the global flexibility, geometrically-detemnined

substructural rigid-body modes, and the local-to-global assembly operators. The resulting procedure, giv-

en accurate global flexibility, extracts the exact element-by-element substructural flexibilities for determin-

ate structures. For indeterminate structures, the accuracy depends on the iteration tolerance limits. The

procedure is illustrated using both simple and complex numerical examples, and appears to be effective

for structural applications such x damage locaIiza[ion and finite element model reconciliation.
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1. Introduction

Inverse probiems in linear structural dynamics, and in particular inverse structural modeIing, has been

the subject of intense research interest during the past ten years. Inverse structural modeling encompasses

- 5-11.Advances made instructural identification’2, finite element modeIupdating3*4,and damage detecfion

these three categories have greatly benefited computational model validation, active structural vibration

control strategies, design improvement of mechanical systems subject [o dynamic operating conditions,

and damage assessment for aging structural systems such as aircraft and surface ships, offshore platforms,

bridges, and high-rise buildings.

The identified structural model parameters used in such endeavors consist of structural vibration mode

shapes, frequencies, and damping rates. These modal quantities are global properties by nature. Model

changes, however, occur most often because of charges in the local elemental or substructural conditions,

as is often the case when a substructure siegificantly loses stiffness due to damage. Therefore, studies have

been focused on how to accentuate the sensitivity of the global properties so as to capture the changes in

locaI structural properties. SeveraI applications of these techniques have demonstrated that damage can be

detected provided the local changes bring about a noticeable change in the global vibration characteristics.

There are several important situations wherein a sharper estimate of Iocalized changes in stiffness and/

or damping is demanded. These include structural integrity of joints in high-rise buildings subjected to

strong wind and earthquakes, offshore oiIplatforms where catastrophic failure can emanate from localized

damage, loss of redundancies of truss-like structures, and aircraftiengine crack propagation. The objective

of the present paper is to offer a method for extracting localized flexibility from estimates of the global

flexibility, obtained ei[her indirectly from the summation of modal and residual flexibilities (which are

themselves obtained by extracting the frequencies, mass-normalized mode shapes and residuals from

modd data) or direcdy by processing measured vibration signals.
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The present procedure is related to two recent trends in inverse structural modeling: flexibility-based

methods and disassembly of structural matrices. Flexibility-based methods involve the use of flexibility

mam”cesas a basis for parameter estimation and test-analysis model reconciliation. A key motivation for

using flexibility methods has been to effectively condense the frequency and mode shape information from

a large number of modes into a reduced set of stntcturd model parameters which have a clear mechanical

interpretation. This condensation is usefhl both for identification of reduced structural matices and for

reconciliation of complex modeIs, where attempts to reconciIe large numbers of modes often leads to am-

biguous or contradictory parameter estimates. Robinson, et. al.*2,used flexibilities derived from modal

test parameters to perform Iocahzation of hidden damage in aircraft structures, while Denoyer and

Peterson*3-*4have developed finite element model updating procedures based upon flexibility matrices.

The other recent trend in inverse structural modeling, analytical disassembly, refers to algorithms

which attempt to identify substructural matrices which, when “assembled” through assumed compatibility

and equilibrium conditions, yield a known or identified global matrix. Peterson, et. al.15and Doebling16

developed disassembly procedures for both stiffness and flexibility matrices which involve the decompo-

sition of the eIementai matrices into eIementaI eigenvectors, which are dependent only on known quanti-

ties (geometry and assumed shape functions), and elemental eigenvalues, which are directly a function of

the parameters being identified. Hemez17used a similar disassembly decomposition [o efficiently compute

sensitivities for frequency response function (FRF)-basedmodeIupdating. Finally, Gordisi8examined the

stiffness disassembly problem and concluded that disassembly \vas on]>’possible for determinate beam-

like structures. This conclusion is incorrect, howe~er,because it fails to account for constraints governing

the disassembly, such as consemation of ekmental rigid-body modes and the required block-diagonal

chanc[er of the rcwitant motrix containing the element-by-element stiffness matrices.

From a mathematical viewpoint, the present procedure involves ttvo related tasks: assembly of the .glo-
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bal flexibility from substructural or elemental flexibilities, and disassembly of the globaJflexibility matrix

into substructural flexibility matrices. For the assembly of the global flexibility mati, classical force

methods exist (see Refs. [19] and [20], in particular). In recent years, Lagrange multiplier methods21‘2223

have been proposed for the solution of Ixge-scale structures on paralleI computers. The present algorithm

‘z which not only partitions the global flexibility mairix intois based upon a direct flexibility method

substructural flexibility matrices, but also effectively assembles global flexibility from substructural flex-

ibility. This flexibility assembly provides the basis of an inverse problem. The inverse probIem is a form

of disassembly which uses the global flexibdity matrix to arrive at estimates of localized, substructural or

eIement flexibility. The elements or substructures are defined herein with respect to a set of measured de-

grees of freedom (DOF). Thus no mode shape expansions are utilized, and the extracted local flexibilities

are equivalent to analytic model matrices which are reduced or condensed to the same DOF. The disas-

sembly is different than that of Refs. [15] and [17] because it does not assume the form of the elemental

eigenvectors. The key constraints which operate on the inverse algorithm are the presewation of substruc-

tural rigid-body modes and the block-diagonaI form of the estimated subtructureby-substructure flexibility

matrix. The inverse formulation leads to a complex nonlinear matrix equation, which is solved in a itera-

tive fashion. The aforementioned constraints are imposed on the estimated result at each iteration.

The remainder of the paper is organized as follows. In Section 2 the classical Force method for assem-

bly of global flexibility is reviewed. We conclude that such a non-systematic approach, which was aban-

doned for the most part in favor of the systematic Displacement method for structural analysis, is not an

appropriate basis for the inverse problem. In Section 3, the direct and systematic flexibility method is de-

veloped, which provides the basis of the present procedure. In Section 4, the inverse probIem is derived

mathematiccdly,and solution methods are developed. Then, in Sections 5 and 6, numerical examples are

used to illustrate the procedure on both simple and complex problems. FinaHy,conclusions me offered in
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Section 7.

2. Detemination of Substmctural Flexibili~ tia Clmsical Force N1ethod

A typical structural identification procedure provides the structural mode shapes cD(R,m) and modal

frequencies C@, m), where m is the number of identified modes and n is the number of measured de-

grees of freedom. This data maybe used for improvement and validation of an analytical math model (i.e.

finite element model) of the structure, or it may be used in a more direct fashion to compute “physical”

quantities, such as stiffness and mass matrices, which can be interrogated to understand the structure’s be-

havior. When the number of measured degrees of freedom is larger than the number of identified modes,

direct procedures such as in [2] for computing a gIobal stiffness matrix directly from this limited data will

fail. Thus, it is not always feasible to obtain the global stiffness matrix directly from modaI test data. How-

ever, one can construct a rank-deficient flexibility matrix defined as

Fg = QW2QT (1)

Our present challenge is to extract the substructural stiffness or substructural flexibility matrices from

the above system-identified deficient global flexibility. It should be noted that, in some cases, estimates of

16 These can beresidual flexibility for each input-output pairing may also be obtained from experiment .

utilized to enrich the global flexibility matrix and hence improve the identification of substructural flexi-

bility.

The theoretical basis for deriving the global flexibility from substructural flexibilities is knowmas the

force method (see, e.g., Argyns and KeIsey [19]). For determinate structures, the force method yields the

global flexibility matrix (see, e.g., Felippa [20]) as

F8 = B;F,BO

5
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whereF’g istheglobal flexibility, Fe is the node-to-node flexibility matrices, and BOis the load transfor-

mation matrix from the applied loads to the internal force for determinate structures.

If the structure is statically indeterminate, one must obtain the so-called redundant load transformation

matrix, B ~, and modify Eq. (2) accordingly:

Fg
[

-1 T

1=Bj Fe- FeB~(B;FeB1) B1 Fe ‘O (3)

where B ~ is the transformation matrix which relates intemaI forces in so-called redundant elements to the

resultant internal force dhibution in the remaining non-redundant elements. Basically, if one were to de-

termine the node-to-node substructural flexibility matrix Fe from the above expressions Eq. (2) and Eq.

(3), one must first construct the Ioad transformation matrices B. and B~. Hence, a key feature for the ex-

traction of Fe depends on the choice of the Ioad transformation matrices B. and B~. However, the diffi-

culty in their unique determinations was a decisive reason in favoring the matrix stiffness method which

is now known as the finite element method. It should be noted that a majority of real structures are of in-

determinate type. Therefore, for continuum structures such as plates and shells, the node-to-node substruc-

tural flexibility Fe is difficult to define uniquely (aIthoughthe resultant gIobal flexibility is unique), which

can lead to complexities in interpreting the extracted results. In addition, from a computational viewpoint,

generalized inverses of B., B ~ and their null-spacebases that are required for extracting Fe present com-

putational challenges.

The preceding observations motivated the present authors to employ a recentIy developed direct flex-

ibility method [22] for the extraction of element-by-eIement substructural flexibility matrices from the

measured frequencies and mode shapes.
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3. E1ement-by-Element Substructural Flexibility

Consider the displacement-based finite element structural equilibrium equation given by:

LTK(s)Lug = fg
K(s) =

L

.

K(n

(4)

(s) .
where {L(n~, n), rzs2 n } is the assembly matrix operator, K IS a blockdiagonal matrix composed of

the element-by-element stiffness matrices, Ug is the global nodal displacement vector, and fg is the global

external force vector, respectively.

Thus, if we express

LTK(s)L = ~

&?
(5)

then our objective will be accomplished if we obtain K
(s)

‘s)+ from theor its generalized inverse F = K

above expression, which is a special inverse problem. To this end, what we are about to employ is adapted

from the so-called algebraically partitioned solution procedure for parallel computations of large-scale

structural problems and its theoretical basis presented in terms of a direct flexibility method [22]. The es-

sential idea of this algebraic partitioning is to decompose a global structure into a set of elemenr-by-e/e-

ment substructures. This partitioning gives rise to two interface quantities: the Lagrange multipliers to

account for the substructural interface forces and the rigid-body displacements for floating substructures.

Hence, the solution of the substructural flexibility, viz., a generalized inverse of K(s), is in turn obtained

by solving the two interface quantities.

To begin with, we introduce the substructural displacement vector d and the substructural internal
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force p in terms of the global displacement vector Ug and the elemental stiffness matrix K(s), respective-

ly: .

d = Lug

P=
K@)d = K(SJLug

(6)

We now present a forrmiation for the derivation of elemental flexibility matrices in a step-by-step manner.

Step 1: Partitioningof the global equation into substructural equations

This step simply involves the algebraic decomposition of LT, that is, the solution of

LTp = fg

to yield

p = (LT)+fg -~

= f-N?t

(7)

(8)

where f = Gf ~, G is a generalized inverse of LT, N is a null space basis of LT, and the Lagrange mul-

tipliers k are the complementruy contributions to the solution of p due to algebraic partitioning. In phys-

ical terms, k represents the interface forces along the substructural boundaries.

From the physical point of view, the null-space matrix N is the displacement conzparibili~ operaror

that satisfies the following condition:

iVTd = O where

Examples given in Section 5 offer how to construct the

d = Lug (9)

interface displacement compatibility operator

N. A detailed algorithmic description of constructing N from the assembly matrix L is given in [22].

Step 2: Solution of element-by-element displacement d

Using a pseudoinverse of the substructural stiffness K(s), one can solve for the substructural displace-

s
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merit vector from Eq. (6) as

d = K(s)+p - Rdr (lo)

where R is the orthonormalized null space basis for K(s) which is equivalently the orthonormalized (not

mass-normalized) rigid-body modal vectors, and dr is the substructural rigid-body displacement vector to

be determined. Since K(s) is a stiffness matrix, its generalized inverse is a flexibility matrix which can be

denoted by F and has the same domain-bydomain bIock diagonal form as K(s) (see Eq. (4)). Using a

spectral decomposition of K(s), viz.

K(s) = YAYT

RTY = O

WYT + RRT = I

YTY= I

with Y as the orthonormal basis for X(s), we note that

[ [1[1
1

(K(s) + RRT)-* = [y ~ :: ‘T

RT

[1= ‘-PR 1[1A-l O ~T

OIRT

= Y’A-%T+RRT

= K(s)++ RRT

= F+RRT

Therefore, can compute F from K(s) using R as

F = (K(s) + RRT)-’ –RRT

(11)

(13)

9
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and re-wri[e Eq. (10) as

d = Fp-Rdr (14)

Note also that R satisfies the substructural static force equilibrium condition

RTp = O (15)

Furthermore F possesses the complete deformation basis of K(s) with the same null space of K(s). This

is in contrast to the elemental flexibility Fe in Eq. (2) and Eq. (3), which is a nonsin=@rwquantity based

on userdefined constraints (and thus is not uniquely defined). We will call a generalized inverse of K(s)

that satisfies the above property a mzfidly complete subdomainfleibihy. This property plays important

roles not only in the computation of 1 but also for computing d for a given external force.

Substituting p from Eq. (8) into Eq. (10), one obtains the substructural displacement given by

d = Lug = F{f -Ml) -Rdr (16]

Step 3: Global displacement L/gfrom the substructural displacement d

The solution vector of the global system Jig can be obtained by a least-squares projection of the sub-

structural-level solution d. This is accomplished from Eq. (16) as

u~ = GTd, G = L(LTL)-l
(17)

= GTF(f - Nk) - GTRdr

Thus, the solution of the global problem is reduced to the solution of two variables, k and dr. This is ad-

dressed below.

Step 4: Solution of X and dr

The three solution steps outlined so far can be brought together to form a coupled difference equation

[0



,

,

as follows. First, we impose the substructural static force equilibrium condition

turd reaction force vector Eq. (8) to yield:

RT(f - Al) = O

Second, we apply the elemental displacement compatibility condition Eq. (9) to

NT{ F(f-NX) -Rdr} = O

The preceding two equations can be rearranged to form a coupIed equation as

where

FN = NTFN

RN = NTR

Step 5: Global flexibility Fg from elemental flexibility matrices F

Let us solve for L from Eq. (20):

k = F; (NTFf - R~dr)

Now substitute Eq. (22) intoEq.(21) to obtain d, as

d, = [K/(R;F;lNTF-RT)f

Eq. (15) to

Eq. (16) to

~the substruc-

(18)

obtain:

(19)

(20)

(21)

(23)

Finally, ?. is obtained from Eq. (22) and Eq. (23) as

II
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k = F:NTFf -F; RJKR]-l(R;F;NTF -RT)f (24)

Substituting k and dr into the global displacement equation Eq. (17), one finds that the global flexibility

Fg is related to the elemental flexibility F according to:

‘8
= FJg

F8 = GT(F-FA -ATF - FMF + FR)G,

A = KNFR

M = KN - KNFRKN

KN = NF~lNT

‘! T
F// = R[RTKNRJ R

G = L(LTL)-l

(25)

Thus, Eq. (25) effectively “assembIes” elemental or substructural flexibilities into the global flexibil-

ity. In contrast to the cIassicaI force method (see, e.g., Argyris and KeIsey [19] and Felippa [20]), the

present global flexibility given by Eq. (25) does not require any modelerdependent assembly equations

such as B, needed in the classical force method. In particular, with the substructural connectivity matrix

L together with the elemental rigid-body modes R, the construction of the global flexibility is straightfor-

ward-

1[should be noted, however, that the present purpose is to extract the elementaI flexibility or elemental

stiffness matrices based on the experimentally determined global flexibility matrix Fg. This will be ad-

dressed in the next section.

4. Extraction of EIement-by-Element Flexibility from Measured Global Flexibility

In order to extract the element-by-element substructural flexibility from the experimentally deter-

mined :Iobal flexibility Fg, the presen[ approach calls for two stages. First, we seek an iterated substruc-
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turd flexibility from the formula derived in Eq. (25). It turns out that the substructural flexibility matrices,

although they are enercyise converged, contain deformation mode shapes that are in general not kine-

maticaIIy admissible. Hence, the unwanted modes need to be projected out. We now present these two

steps.

4.1 Iterative Solution of F

The forrmda Eq. (25) derived in the preceding section, reIating the substructural free-free flexibility F

to the global flexibility Fg, can be used to obtain F via iterations as follows. First, we re-write Eq. (25) as

LFgLT = F- FA-ATF-FMF+FR

and obtain from the experimentally determined gIobal flexibility an initial estimate of FO by taking its

block diagonal matrices as

where the indices j~ and ms are the location indicator and the size of the s -th element flexibility matrix.

Second, iterate on F using the following formula

?+ ‘ - tiAk -AkTFb%kti+F; = LF8LT = L(W2-2@T+ F;sidu’’)LT (28)

where we also require that #+’ for use in the next iteration should again retain only its block diagonal

entries.

4.2 ~nematical]Y Admi~~ibIesub~t~u~tuml F1e~ibi]itY

The preceding iterated substructural flexibility F matrices, while energywise converged, of~enpos-

sess modes that are not cinematically comparable. The most fundamental property that each floating sub-

structure must possess is that the deformation modes of each substructure must be orthogonal to its ri:id-
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body modes. If, in addition to the rigid-body modes, a specific set of substructural deformation modes are

predetermined, the remainder of the deformation modes must rdsobe orthogonal to the predetermined de-

formation modes. Since one does not generally know a-priori what substructural deformation modes must

be present, the most one can usually do is to orthogonalize the iterated flexibility matrices (which are

spanned by the substructural deformation modes) with respect to the substmctural rigid-body modes. This

can be camied out by the following projection for each substructure:

F = P#PR, PR = I - RRT (29)

where F is desiematedas a cinematically admissible substructural flexibility matix.

Once the element-by-element substructural flexibility matrices F are obtained, the comesponding

stiffness matrices can be obtained by

K(s) =
T -1

P~(F+RR ) PR (30)

As an example, for a free-free planar (i.e. motion restricted to a plane) beam, the elemental stiffness

matrix is given by

EI 6/ 412-61212
K(s) = ~

1 -12-61 12 -61

161 212-61411

The rigid-body modes are given by

l-l

(31)
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R=~02s
Jzlls

o 2s

s r= 4+12 (32)

The cinematically admissible flexibility is obtained as

T ‘]
F = P#(s) + RR ) PR (33)

Observe the duality of Eq. (30) and Eq. (33). It should be pointed out that this duality does not hold in the

case of node-to-node flexibility matrices obtained by the classical force method.

4.3 Summary of Present Procedure

As noted in the preceding subsection, projections are applied to the iterated substructural flexibility

matrices such that the flexibilities are orthogonal to the substructure rigid-body modes. It is recommended

that these projections be applied at each iteration in the solution for F and can therefore be incorporated

into the iteration formula Eq. (28). Furthermore, because the projection matrix P~ is orthogonal to F~ in

Eqs. (25) and (28), the final iterative formula is significantly simplified, viz.

~+ 1-@MkFk = PR(LF8LT)PR (34)

where the global flexibility Fg is approximated by the measured modal flexibility matrix @f2-2@T,

residualwhich, if possible, should also be enriched by estimates of the residual flexibility Fg from the iden-

tified model (e.g. see [24]).

Several nonlinex solution strategies maybe applied to solve for F, including a Ricca[i equation-based

i[era[ion, a homotopy method25and Sequential Quadratic Programming methods26,among others. Based

on our limited experience, a discrete homotopy-like method has been implemented for the present soIu-

15
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5. Two Simple Examples: Determinate and Indeterminate Trusses

Before we demonstrate the present procedure to realistic problems, we demonstrate the present proce-

dure using two simple examples: a three-DOF determinate spring-mass system and a three-DOF indeter-

minate spring-mass system as shown in Figure 1.

5.1 Determinate 3-DOF Truss Problem

The global stiffness matrix Kg and the global flexibility matrix Fg are respectively given by

The element assembly operator L, the displacement compatibility matrix N, and the rigid-body modes are

obtained as

L= R=

100
(36)

since oniy element 2 and 3, when disassembled, are in floating condition.

Iteration given by Eq. (27) yields the following iterated (marked by superscript k) elemental flexibility

mdtnces:

16
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(37)

,

which, although energywise converged, do possesscinematically inadmissible modes except F‘ . In order

to project out the unwanted modes, we employ Eq. (29) to obtain

Finally, using Eq. (30) one obtains the elemental stiffness matrices as

K’

’107 ‘2=’0[3::1‘3=’4:0-::1

(38)

(39)

which is the desired result.

5.2 Indeterminate 3-DOF Truss Problem

For this case, the global stiffness matrix Kg is given by

[111 -10 0
Kg = -lo 110 -loo (40)

o -loo 200

The element assembly operator L, the displacementcompatibility matrix N, and the rigid-body mode ma-

trix R are obtained as
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L=

1100

100

010 ,N=
010

M001

001

The iterated flexibility yields

{F]}k= I.0000,

r

J-o
&

10
‘z

‘i
o -$

00

{F2}k =
1.6610xIO-1 7.2818x10-2

17.~81~x10-2 7.9539 xlo-2

7

{F3}k = 3.6243x10-2 L7997x10-2
7 {F4}k = 0.01

(41)

11.7997 X10-2 9.7503 xlo-~

3k
Once again, although iterated values of {F2}k and {F } are in e~or, the use of projection transforma-

tion given by Eq. (29) recovers the correct elemental flexibility, which are then utilized ~’iaEq. (30) to

obtain the eIemental stiffness matrices. The resuIts are the same as obtained for the determinate case Eq.

(39).

6. Application to Complex Modeling: An Engine Mount

Application of [he above deformation-displacement relation to the square box part of an engine-sup-

port ladder (Figure 2) has been carried out to extract substructural flexibility. The ladder is modeled \vith

eight pkmr beam elements which include axial stiffness. In the present numerical experiment. the global

IS
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stiffness matrix is generated analytically. The global flexibility matrix is thus Kjl as the starting point.

Following a similar steps as employed in the previous two examples, we obtained the cinematically ad-

missible eIementaI flexibility from which the free-free elemental stiffness matrices are extracted.

Table 1shows the convergence of the elemental eigenvalues of the horizontal mid-element shown in

Fi=me 2. As can be seen in the above table, the initial errors of the two substructurzdbending eigenvalues

are 74% and 69o, respectively. However, after iterations and faltering of unwanted modes, the extracted

substructural stiffness matrix yields the two bending modes with accuracy in excess of fourdigit accuracy.

Table 1: Eigenvalues of Horizontal Mid-Element

Mode Exact Initial Iterated

Bending 1 1.6666E+05 2.8992E+05 1.6672E+05

Bendin~ 2 5.2000E+05 4.8771E+05 5.2003E+05

Axial 2.0000E+06 2.0011E+06 2.0UOOE+06

We have also applied the present procedure to a numerical simulation of partial damage in the ladder

structure studied in the previous example, with the objective of localizing the damage. In order to provide

realism to the simulation, a high fidelity 35,000 d.o.f. plate element model of the welded tubular stxucture

was utilized. The model is highly accurate and has been correlated to a modaI test of a physical specimen

using test modes up to 800 Hz (see [4]). However, because we do not have experimental data from a dam-

aged structure, we will utilize an incomplete set of frequencies and mode shapes as determined by our an-

alytical model in a nominal and simulated damaged condition. The lowest 25 modes of the model

representing the nominal undamaged structure were extracted and #obal and substructmd flexibility ma-

trices based on 14 and 19 flexible modes were computed. To represent an example of partial damage to

one of thejoint welds, the element-to-element connections along the top and side of one of the four joints

\vas released. to simulate a crack propagated along 5(Y2c of the joint circumference.
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The sensor configuration assumed for this simulated experiment is shown in Figure 3. The accelerom-

eters are pIaced in sets of 6 at 16 different cross-sections of the structure. This configuration allows us to

define globaJand elemental node points with 6 d.o.f. per node, and to define elements or substructures con-

necting those nodes which are directly analogous to 12d.o.f. beam elements (although the eIement formu-

lation is irrelevant to the procedure, since we arejust extracting the resultant flexibility). The definition of

these global md Iocd d.o.f. based on the sensor configuration is shown in Figure 4.

Figures 5 and 6 illustrate the relative changes in the flexibility properties due to the induced damage

based on using 14 or 19 modes to construct the flexibility-The dashed lines shown indicate the range of

degrees-of-freedom of the model (global or substructural) which are directly related to the damage loca-

tion. Note that the global flexibility changes, using 14 modes to construct the flexibility matrix, indicate

approximately the correct location, but other significant changes are seen across the structure. If 19modes

are used, the localization based on the global changes becomes much sharper, and the magnitude of the

relative change is also more accurate. The damage indicator based on the substructural flexibilities, how-

ever, is very sharp for both the 14 mode and 19 mode cases, and in comparison with the global changes

are more informative.

Thus, comparing the substructural-based vs. globaI-baseddamage indications, we observe the distinct

advantage of the present procedure. In passing, it should be noted that, by increasing the number of iden-

tified modes, one should eventually identify the locationsbased on either the global d.o.f. or the local d.o.f.

changes. This may, however, not be feasible. On the other hand, the present substructural flexibility ex-

traction procedure captures the relative substructure-by-substructure changes much more sharply than is

typical by methods based on global changes.
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7. Discussions

A method is presented for extracting the element-by+Aementsubst.mctural flexibility matrices from

the measured structural frequencies and mode shapes. The present method utilizes a element-by-element

direct flexibility method that assembles the global flexibility matrix from the free-free substructural flex-

ibility matrices. Specifically, the present method consists of the following attributes:

1.

‘7--

3.

4.

The present method of assembling the global flexibility matrix dots not depend, unlike the classical

force method [19], on the ways the Ioad paths are determined for redundant joints for statically

indeterminate structures. The substructural rigid-body modes and the substructural connectivity

topolokg uniquely determine the global flexibility matrix.

Since the iterated substructural flexibility matrices of~en embody the so-called kinernarically

inadmissible modes, a projection operator is introduced that faltersout modes that are not orthogonal

to the rigid-modes- The remaining deformation modes consist of a consistent set of deformation

modes plus the rigid-body modes. The resultin~ filtered flexibility matrix, termed herein

kinemarically ad]?zissihlefle.ribili~ nrarri.r, is used to obtain substructural stiffness matrix.

For determinate structures, the present method yields the substructural flexibility without iteration.

For indeterminate structures, iterations and the use of the cinematically admissible flexibility matrix

lead to the desired converged flexibility matrices (see the example probIem in Section 5 and Table 1

of Section 6).

The present procedure is applied to a laboratory model of an en~inemount beam with the known joint

damages. It is shown that the location of dama~es is very sharply identified by the present localized

flexibility changes than is possible by the chan~es in the global flexibility matrix.

In addition. though not elaborated herein, the present method has been applied to obtain an initial set of

>Lmctura]pxame[ers for detailed model updating procedures. The preliminary experience indicates that



.
, ,

the initiaIly estimated parameters given by the present method not only accelerate the parameter optimi-

zation computations, but more importandy enhance the feasible parameter ranges.
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