A computational procedure for extracting substructure-by-substructure flexibility properties from global modal parameters is presented. The present procedure consists of two key features: an element-based direct flexibility method which uniquely determines the global flexibility without resorting to case-dependent redundancy selections; and, the projection of cinematically inadmissible modes that are contained in the iterated substructural matrices. The direct flexibility method is used as the basis of an inverse problem, whose goal is to determine substructural flexibilities given the global flexibility, geometrically-determined substructural rigid-body modes, and the local-to-global assembly operators. The resulting procedure, given accurate global flexibility, extracts the exact element-by-element substructural flexibilities …
continued below
Publisher Info:
Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
Place of Publication:
Albuquerque, New Mexico
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
A computational procedure for extracting substructure-by-substructure flexibility properties from global modal parameters is presented. The present procedure consists of two key features: an element-based direct flexibility method which uniquely determines the global flexibility without resorting to case-dependent redundancy selections; and, the projection of cinematically inadmissible modes that are contained in the iterated substructural matrices. The direct flexibility method is used as the basis of an inverse problem, whose goal is to determine substructural flexibilities given the global flexibility, geometrically-determined substructural rigid-body modes, and the local-to-global assembly operators. The resulting procedure, given accurate global flexibility, extracts the exact element-by-element substructural flexibilities for determinate structures. For indeterminate structures, the accuracy depends on the iteration tolerance limits. The procedure is illustrated using both simple and complex numerical examples, and appears to be effective for structural applications such as damage localization and finite element model reconciliation.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Alvin, K. F. & Park, K. C.Extraction of Substructural Flexibility from Global Frequencies and Mode Shapes,
article,
July 16, 1999;
Albuquerque, New Mexico.
(https://digital.library.unt.edu/ark:/67531/metadc793725/:
accessed October 13, 2024),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.