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We examine an application of the Gillespie algorithm to simulating spatially inhomogeneous
reaction-diffusion systems in mesoscopic volumes such as cells and microchambers. The method
involves discretizing the chamber into elements and modeling the diffusion of chemical species by
the movement of molecules between neighboring elements. These transitions are expressed in the
form of a set of reactions which are added to the chemical system. The derivation of the rates of
these diffusion reactions is by comparison with a finite volume discretization of the heat equation on
an unevenly spaced grid. The diffusion coefficient of each species is allowed to be inhomogeneous in
space, including discontinuities. The resulting system is solved by the Gillespie algorithm using the
fast direct method. We show that in an appropriate limit the method reproduces exact solutions of
the heat equation for a purely diffusive system and the nonlinear reaction-rate equation describing
the cubic autocatalytic reaction.
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I. INTRODUCTION

The Gillespie algorithm [1, 2] is a stochastic method
which is frequently used to simulate spatially homoge-
neous chemical systems with small reactant populations.
Under ordinary circumstances such systems are naturally
characterized by small length scales as well. Since dif-
fusion is fast on such scales (e.g., [3]) reaction-diffusion
systems are natural models of small scale, spatially in-
homogeneous chemical systems. Unless diffusion coeffi-
cients are artificially decreased (as in macroscopic exper-
iments on the formation of Turing instabilities, e.g., [4])
the range of length scale of such systems is on the order
of a typical cell, roughly 0.1 to 100 microns. In systems
of this size the number of reactant molecules may only
be in the thousands or millions.

Recently interest has turned towards using the Gille-
spie algorithm to simulate such mesoscopic, spatially in-
homogeneous systems [5, 6]. The natural extension of the
method is to discretize the reaction chamber into subvol-
umes (usually squares or cubes) and consider them to be
separate chambers which are coupled by the addition of a
set of reactions which model diffusion. Some form of the
Gillespie algorithm is then applied to the entire system
consisting of all the reactions for each subvolume plus all
the diffusion events which couple them.

The purpose of this paper is to examine the numer-
ical and computational issues involved in adding diffu-
sion to the Gillespie algorithm in this way in more detail
than has been done in the past. In particular, we show
how the diffusive rate constants can be derived from a fi-
nite volume discretization of the heat equation. We then
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show how the results of a stochastic simulation can be
compared against exact solutions of the corresponding
reaction-rate equations. This simultaneously provides a
method for code testing and enables us to determine the
rate of convergence of the error introduced by the spa-
tial discretization. This puts the algorithm on a some-
what more firm computational foundation than previous
works. We also investigate the regime in which the sim-
ulation contains only a single molecule and show that,
again in an appropriate limit, Brownian motion is ac-
curately simulated. The algorithm displays similar nu-
merical properties when chemical reactions are added to
the system. Although the method trivially generalizes to
Cartesian meshes in any dimension, to make the anal-
ysis and numerical examples as simple and clear cut as
possible we restrict our attention to systems with one
space dimension. The use of the finite volume method
makes likely the extension of the method to unstruc-
tured meshes in higher dimensions and various possibili-
ties along these lines are discussed in the conclusion.

Work in this area began with the suggestion of such
an application by Gillespie himself [1]. Elf et. al. [5]
and Fricke and Schnakenburg [6] have implemented al-
gorithms similar to that described in this paper but on
higher dimensional Cartesian meshes. In both cases the
manner in which diffusion is handled by the Gillespie al-
gorithm differs from what is presented here. These meth-
ods are also limited to uniform meshes and systems for
the which the diffusion coefficient is constant. In addi-
tion, no substantial code tests are given in either case.
Lukkien et. al. [7] describe an application of what is es-
sentially the Gillespie algorithm applied to a spatially
inhomogeneous chemical system which does not strictly
speaking include diffusion.

The master equation for reaction-diffusion systems was
studied by Baras and Mansour [8]. They compare predic-
tions obtained by the master equation to that obtained
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by simulation of mesoscopic systems using Bird’s algo-
rithm. In their work the domain was also one dimen-
sional, although the boundary conditions were periodic.
Their simulations were also restricted to uniform meshes
and constant diffusion coefficients.

Slightly further afield but still related we find the cel-
lular automata simulations of Weimar [9] and the pattern
formation studies of Turk on triangulated surfaces [10].
Similar ideas on the relationship between continuum
equations and stochastic models based on discrete near-
est neighbor interactions can be found in [15–17]. The
Monte Carlo part of the Gillespie algorithm appears to
have been reinvented a number of times and used in a
wide variety of applications, see for instance [18–20].

The underlying model assumed in what follows is that
we have a set of reactant molecules immersed in a solvent
and that the reactants undergo collisions with solvent
molecules much more frequently than they do with each
other. This is in addition to the assumption, as per the
original algorithm, that non-reacting collisions between
reactants greatly outnumber reacting collisions. The ex-
plicit addition of a solvent to the model is required to
justify the Brownian motion of the reactants in the limit
in which their populations are very small. Note that
these assumptions imply that the mean free path of the
reactant molecules is negligibly small, much smaller than
any other length scale in the system.

The outline of this paper is as follows. Section II con-
tains a brief review of the Gillespie algorithm while Sec-
tion III shows how the diffusion part of the reaction-
diffusion system is incorporated into the algorithm. Sec-
tion IV gives an overview of the algorithms and data
structures that make up the code. Section V details tests
of the code on a purely diffusive system. In Section VI
we examine a non-linear reaction-diffusion system and
test the code on an exact traveling wave solution. We
summarize the work in Section VII.

II. THE GILLESPIE ALGORITHM

The Gillespie algorithm is a well-known stochastic
method in which the number of each chemical species
is considered the independent variable and each reaction
the system undergoes is executed explicitly. Hence the
time evolution consists of a number of steps with each
step being the execution of a specific reaction at a spe-
cific time. After a reaction is executed the number of
molecules of each of the affected species is updated ac-
cording to the reaction formula and the evolution goes
on to the next step. Each reaction is assumed to be in-
dependent of the preceeding one so that the evolution of
the system is a Markov process. This section contains a
review of only those elements of the method which will be
necessary for what follows. The reader is referred to [1, 2]
for more detailed discussions.

The algorithm makes the following assumptions. We
have a chemical system consisting of S species whose

state at a given time t can be characterized by an integer
valued tuple {Si}, 1 ≤ i ≤ S, where Si is the population
of species Si. We use the convention that italicized sym-
bols represent numbers (i.e., populations) and their non-
italicized counterparts represent names. The dynamics
of the system are represented by a set of reactions of the
form

αr
1S1+αr

2S2+. . .+αr
SSS

kj−→ βr
1S1+βr

2S2+. . .+βr
SSS (1)

where αr
i and βr

i are non-negative integer constants (the
reactant and product coefficients respectively) and r
is an index which runs over the number of reactions,
1 ≤ r ≤ R. Crucially, we assume that the events are
exponentially distributed, i.e., the probability of reac-
tion j occurring in the time interval t + δt to first order
in δt is ajδt where the aj depend only on the state of
the system at time t. As pointed out in [11] this is only
strictly valid for dimolecular reactions although it can be
argued for monomolecular reactions (as will be necessary
later) and holds approximately for trimolecular reactions.
From these assumptions it can be shown that the reaction
probability density function is given by

P (τ, j) = aj exp(−aτ) (2)

where

a =
R
∑

j=1

aj . (3)

P (τ, j)dτ is the probability that at time t the next re-
action will occur in the interval (t + τ, t + τ + dτ) and
will be the jth reaction of the system. Given the state
of the system at time t the core of the algorithm is a
procedure for selecting the next reaction and the time it
is executed in such a way that over many simulations (2)
is reproduced exactly.

There exist several equivalent procedures for selecting
a pair (τ, j). The merits of each of these will be discussed
in Section IV. Here we give the basic algorithm, called
the direct method, a version of which will be used in the
final code. Let u1, u2 ∈ (0, 1) be independent, uniformly
distributed random numbers. Then the jth reaction will
be executed if

j−1
∑

r=1

ar < au1 ≤
j
∑

r=1

ar (4)

and the time at which it is executed is t + τ where

τ = − lnu2

a
. (5)

The quantity aj is often referred to as the propensity
for reaction j. Its relation to the familiar rate constant
kj is given in [1, 2] but it will be convenient to summarize
the results here for mono through trimolecular reactions
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(reactants : propensity)

∅ : kV

A : kA

A+B : kABV −1

2A : kA(A − 1)V −1 (6)

A+B+C : kABCV −2

2A+B : kA(A − 1)BV −2

3A : kA(A − 1)(A − 2)V −2.

Here k is the appropriate rate constant and V is the
volume of the reaction chamber or element.

III. DIFFUSION

In this section we show how diffusion on an irregular
grid in one dimension can be simulated by the Gillespie
algorithm. As in previous work [5, 6, 8], the basic idea
of the method is to divide the domain into a number of
subvolumes, which we will call elements, and to consider
the elements to be separate reaction chambers which are
coupled together by allowing them to exchange molecules
in a way designed to simulate diffusion. The coupling is
formulated as an additional set of reactions which are
appended to the list of chemical reactions taking place
in each element. This master list is then processed by
the Gillespie algorithm resulting in a coupled reaction-
diffusion simulation.

In order that the original Gillespie algorithm be appli-
cable to the chemical reactions occurring in each element
we require that the concentrations there be considered
uniform. This is equivalent to saying that each molecule
in a given element will have an equal chance of interact-
ing with any other molecule in the same element in a
typical time interval between chemical reactions in that
element. In order for this to be true the diffusion time
across each element for every species should be much less
than the typical reaction time. If h is the length scale of
an element, D a typical diffusion coefficient, and d the
dimension of the domain, then this requirement is

τD ≈ h2

2dD
≪ τC (7)

where τC is a typical time interval between chemical reac-
tions. However, τD will also be the approximate diffusion
time between elements, so this requirement is equivalent
to saying that the typical rate of diffusion events, i.e.,
transfers of molecules between elements, is much greater
than that of the chemical reactions inside the elements
themselves.

Note that τC will be approximately the inverse of the
propensity given in (6). These are of the form of a rate
constant multiplied by zero or more concentration val-
ues multiplied by a single population value. Hence the
propensity scales as the element population which is pro-
portional to the element volume which in turn is propor-

tional to hd. Thus τC scales as h−d and so the validity
of the above inequality improves as h is reduced.

Whether or not (7) holds in a given simulation can
easily be checked by comparing the number of diffusion
events involving an element to the number of chemical
reactions. In the example simulation in Section VI diffu-
sion events typically outnumber chemical reactions by a
hundred or more to one.

A. The Master System

It will be convenient to think of the reaction diffusion
system not as an interaction between S chemical species
in a spatially inhomogeneous domain which has been sub-
divided into E elements but as the interaction of SE
species in a homogeneous domain of unit volume. This
larger chemical system, which we call the master system,
operating in a fictitious unit volume domain enables us to
use the Gillespie algorithm in its original form. The rela-
tionship between the actual chemical system and that in
the master domain is the obvious one: species A is repre-
sented by E species labeled Ai with the index indicating
which element is occupied. The results of a simulation
in the master domain can be transformed back into the
problem domain when convenient, e.g., for purposes of
visualization. Note that the assumption of uniform con-
centration in each element implies homogeneity of the
master system. The use of the Gillespie algorithm on
the master system differs from its ordinary usage only in
the calculation of the propensity (6), in which the fac-
tor V n varies according to the volume of the element the
reaction is taking place in.

Let R be the number of reactions in the chemical sys-
tem and n the number of neighbors of each element.
Since each element contributes R chemical reactions and
Sn diffusion reactions to the master system the total
number of reactions in the master system is approxi-
mately R′ = E(R+Sn) (elements with faces on a bound-
ary may contribute more or less than Sn reactions de-
pending on the boundary conditions imposed there). For
instance, if the chemical system contains a reaction of the
form A + B → C then the master system will contain E
reactions of the form Ai + Bi → Ci. Similarly, the ESn
diffusion reactions in the master system have the form
Ai → Aj . Note that molecules in separate elements are
prevented from reacting in the master system because no
reactions on the master list allow them to do so.

B. Diffusion in One Dimension

Consider the case of the diffusion of a single species U
on a non-uniform grid in one dimension whose elements
are labeled by an index i. The master system will then
have E species labeled Ui. We consider a model of dif-
fusion whereby each element exchanges molecules with
its nearest neighbors only. In the master system the ex-
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change is represented by the transformation of a molecule
of species Ui to one of species Uj . This suggests a set of
reactions for Ui of the form

Ui
ki,i+1−→ Ui+1, Ui

ki,i−1−→ Ui−1,

Ui+1

ki+1,i−→ Ui, Ui−1

ki−1,i−→ Ui

(8)

where ki,j denotes the rate governing the reaction which
transforms Ui into Uj . Using the standard procedure,
this set of reactions results in the reaction-rate equation
for Ui

dUi

dt
= −(ki,i+1 +ki,i−1)Ui +ki+1,iUi+1 +ki−1,iUi−1 (9)

where we have used the homogeneity of the master do-
main.

The reader familiar with finite difference or finite el-
ement methods will recognize that the resulting set of
coupled ODEs for the time evolution of the variables
Ui is in the same form as that resulting from a spa-
tial discretization of a first order in time PDE using the
method of lines, where the form of the spatial operator
and the nature of the discretization are undetermined at
this point. We next show that the rate constants can be
set so that (9) is an approximation to the heat equation.

C. Finite Volume Approximation

Let u(x, t) be the concentration of species U. The two
fundamental continuum equations governing diffusion are
the conservation of mass

∂u

∂t
= −∇ · J (10)

and Fick’s law for the flux J

J = −D(x)∇u. (11)

In this paper we consider the case in which D is allowed
to vary in space but not in time.

We start by integrating (10) over element i and use
the divergence theorem to evaluate the volume integral
on the right hand side

∂Ui

∂t
= −

∫

i

∇ · J dx = J(ci − hi/2)− J(ci + hi/2) (12)

where ci denotes the center of element i. Central to the
finite volume method is the approximation used for the
flux on the boundaries of each element. Here we approx-
imate the gradient of u at the left boundary by

∇u(ci − hi/2) ≈ u(ci) − u(ci−1)

ci − ci−1

(13)

=
1

ci − ci−1

(

Ui

hi
− Ui−1

hi−1

)

.

Performing the same procedure at the right boundary,
employing (11), and inserting into (12) yields

∂Ui

∂t
= −Ui

(

Di,i−1

hi |ci − ci−1|
+

Di,i+1

hi |ci − ci+1|

)

(14)

+Ui−1

Di−1,i

hi−1 |ci − ci−1|
+ Ui+1

Di+1,i

hi+1 |ci − ci+1|

where Di,j is the diffusion coefficient evaluated at the
interface between elements i and j. This suggests setting
the rate constants in (9) to

ki,j =

{

Di,j

hi |ci − cj| , |i − j| = 1

0, otherwise
. (15)

The diffusion coefficient at the faces of the mesh is eval-
uated using the well-known weighted harmonic average
(e.g., [26, 27])

Di,j =

(

1

|ci − cj |

∫ cj

ci

ds

D(s)

)−1

(16)

where the integral is along the straight line joining the
centers of the two elements. For D(x) piecewise constant
in one dimension this is

Di,i+1 =

[

1

hi + hi+1

(

hi

Di
+

hi+1

Di+1

)]−1

(17)

which in the case of a uniform grid reduces to the usual
harmonic average Di,i+1 = (1/Di + 1/Di+1)

−1.
If we consider ui = Ui/hi to be element-centered vari-

ables and write (14) in terms of ui then the truncation
error term on the right hand side is O(h) where h indi-
cates the size of the largest element in the mesh. How-
ever we will see later that the L∞ norm of the error of
the overall scheme converges as h2. This increase in the
rate of convergence over that of the truncation error is
known as supraconvergence and is a common feature of
finite volume approximations to systems based on con-
servation laws [12].

Thus a solution to the system (9) will generate a set
of element centered concentration values ui having an
error compared to the exact solution of the heat equation
which will decrease as h2 assuming the time integration
is exact. The Gillespie algorithm is such an exact time
integrator in the sense that the only error associated with
it is a sampling error.

Note that on a uniform grid with a constant diffusion
coefficient (15) reduces to ki,j = Dh−2 which is the ex-
pression used in [5, 6]. In addition, (9) reduces to

dUi

dt
= D

Ui+1 − 2Ui + Ui−1

h2
, (18)

which is the familiar second order centered rule for finite
differences.
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D. Boundary Conditions

The natural condition for a closed microchamber is
that no molecules move through the boundary. Since
the rate constants in (15) are associated with faces of
the mesh this condition is enforced by setting the rate
constants associated with faces on the boundary to zero.
That this condition yields an approximation to a Neu-
mann condition can be seen by rewriting the flux approx-
imation (13) in terms of the rate constants and noticing
that the flux across the boundaries is zero.

Dirichlet conditions can be modeled as follows. Let the
leftmost interval have index 1 and let a fictitious element
to its left have index 0. The rate equation for U1 is

dU1

dt
= −(k1,2 + k1,0)U1 + k2,1U2 + k0,1U0. (19)

The second and fourth terms represent molecules leaving
and entering the domain through the left boundary which
can be represented by the reactions

U1

k1,0−→ ∅, ∅ k0,1−→ U1. (20)

The two rate constants can be set by choosing a reason-
able value for h0, one which is comparable to other values
in the system. For instance, choosing h0 = h1 gives

k1,0 =
D1,0

h2
1

, k0,1 = D0,1
U0

h0h1

=
D0,1u0

h1

(21)

where u0 is the boundary value of the concentration. The
choice of h0, and consequently k1,0 and k0,1, effectively
determines how rapidly the Dirichlet condition is able to
respond to changes in the concentration near the bound-
ary.

IV. ALGORITHMS AND DATA STRUCTURES

The number of reactions in the master system can eas-
ily be in the millions for even a modest mesh and a small
set of chemical reactions. Thus efficient data storage and
fast algorithms are required to make the simulation fea-
sible. Fortunately this work has already been done in
order to address the needs of simulating large chemical
systems with many reactions. In this section we give a
brief overview of these methods and their implementation
in the code which is used in the rest of the paper.

A. The Fast Direct Method

As is well-known both of Gillespie’s original algorithms
for computing the next reaction and its execution time,
called the direct method and the next reaction method,
are not efficient when the number of reactions is very
large. As a result a series of fast versions of both algo-
rithms have been developed. The fast version of the di-
rect method involves a binary tree while the fast version

of the next reaction method involves a priority queue.
Both methods require log R′ time to produce a pair (τ, j).
They differ primarily in two respects: i) the constant in
front of the log R′ term, and ii) the number of uniform
random numbers needed.

In our experience, (ii) is not a concern since the speed
of the random number generator is not a bottleneck in
the simulation. In the examples below we have used the
32-bit numerical recipes routines RAN2 and RAN3 [22]
and the 64-bit routine lsfr258 [23]. The latter is roughly
three times slower than RAN3 but the resulting simula-
tion time is only a few percent longer. Most of the simu-
lation time is spent recomputing the rates of affected re-
actions and updating the corresponding data structures.

We have chosen to use the fast direct method over the
fast next reaction method of Gibson and Bruck [14] even
though it is likely to be inferior regarding point (i). The
reason for this is that we are looking ahead to the ad-
dition of automatic mesh refinement. AMR will involve
the dynamical addition and subtraction of reactions from
the system and it is unclear how to maintain the priority
queue under these conditions. The maintenance of the
binary tree in the direct method, however, is conceptu-
ally straightforward since reactions appear as leaves of
the tree, which can easily be added and removed.

Since details of the binary tree used in the method
are given in [13, 14] we will not repeat them here but
will merely make the following observations. Because of
the nearest neighbor model of diffusion the dependency
graph of the master system remains sparse so that up-
dating all of the reactions dependent on the outcome of
a given reaction is a constant time operation. We also
note that the current implementation in the code de-
scribed below is that of a straightforward binary tree.
This means that the depth of the tree can be as high as
20 or 25, i.e., the tree may have tens of millions of leaves.
At this depth, these types of trees often suffer in per-
formance due to cache related problems. Although we
have not observed this in the examples described below
it seems prudent to warn the reader that they may occur
in higher dimensional simulations with larger meshes and
more complex chemical systems.

B. The Code

The code used in the examples below is written in
ANSI C++ and relies heavily on the standard template
library. The code was built using using CodeWarrior
V9, optimized for speed, and run on a single processor
of a dual 2GHz, 1.5Gb RAM, macintosh G5 running OS
10.3.5. In a typical simulation with a moderately large
tree (105 leaves) the code executes about 3×105 reactions
per second.
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C. Complexity

The running time of the code is a function of E, R,
S, and n, as well as the total number of molecules in
the simulation. However, as stated above the model as-
sumes that the slowest diffusion process in a given ele-
ment is much faster than the fastest chemical process.
This means that in any given simulation the number of
diffusion events will greatly outnumber the number of
chemical reactions. Hence the running time of the code
will be determined primarily by the diffusion part of the
simulation and this in turn will be determined by the
species which undergoes the most diffusion events. Thus
the complexity of the algorithm will depend primarily on
two quantities: the number of molecules of this species
and the number of elements in the mesh. In the case
where all species have similar diffusion coefficients this
number is just the total number of all species. Hence in
this section we will examine the scaling of the running
time of the code in the case of the pure diffusion of a sin-
gle species. Since the formulae here are easily generalized
to more than one space dimension we do so; the reader
should keep in mind that the examples in the sections
which follow are all performed with d = 1.

Consider a purely diffusive system involving N
molecules of one species A. From (5) we see that a typical
time step has size

τ ≈





R′

∑

i=r

ar





−1

. (22)

If h is a typical element length scale then according to (6)
and (15) ar ∝ Aih

−2 where Ai is the number of molecules
in element i. There are n diffusion reactions per element,
with n the number of neighbors of each element, so that
R ≈ nE which gives

τ ∝
(

E
∑

i=1

Aih
−2

)−1

∝ h2

N
. (23)

For a uniformly refined mesh the number of elements
scales as h−d, hence a run to time t has number of steps

Ns ≈ t

τ
∝ N

h2
∝ NE2/d (24)

and since each step requires time proportional to log E
the run time Tr scales as

Tr = O(NE2/d log E). (25)

The scaling of Ns and Tr is shown in Figure 1 for a
series of runs on the unit interval. There is one species
with N = 1000 and D = 1. The initial distribution is
uniform and the code is run to T = 0.1. The run time
is in seconds and and the number of steps is in units of
105. The data is averaged over five runs.

1.5 2 2.5

−1

−0.5

0

0.5

1

1.5

2

2.5

log
10

 E

lo
g 10

 (
N

s)

Steps

Time

(a)

2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

log
10

 N

lo
g 10

 (
T

/lo
g1

0(
E

))

Steps

Time

(b)

FIG. 1: Illustration of relations (24) and (25) in one dimen-
sion. Figure (a) shows log Ns and log(Tr/ log E) v.s. log E v.s.
log E for N = 1000. Figure (b) shows the same quantities v.s.
log N for E = 80. Least squares fits to the data in (a) give
slopes of 2.02 and 1.84 for Ns and Tr/ log E respectively while
fits to both curves in (b) give unit slope.

It is instructive to compare (25) with the complex-
ity of a simple finite element or finite difference code for
approximating solutions of the heat equation. For the
purposes of this comparison we ignore the important is-
sues of stiffness, automatic time stepping, mesh refine-
ment, etc. We assume the PDE method uses an implicit
scheme with update time per step of O(E log E). In order
that the comparison be meaningful we require the PDE
method to be second order in space and time, i.e., that
is has a truncation error which scales as O(h2, (∆t)2).
Hence in order that this error scale as h2 we should have
∆t ∝ h which leads to Ns ∝ h−1 ∝ E1/d so that the run
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time should scale as

Tpde = O(E1+1/d log E). (26)

The ratio of this time to (26) is

Tr
Tpde

= O(NE−1+1/d) (27)

so that for N small the stochastic method is favored in
all dimensions d > 1. On the other hand, for E fixed the
scaling favors the PDE method in the limit of large N ,
which is precisely the limit in which the continuum ap-
proximation becomes valid. This is not surprising since
the magnitude of a concentration appears as an ampli-
tude in a system of PDEs so it does not affect the com-
plexity. Note that here we are comparing the simulation
times for a single run of both methods. In some cases, as
in the sections which follow, it will be useful to compute
an average over a very large number of runs. In this case
the average solution may be meaningfully compared to
the result of the continuum approximation method and
it would be appropriate to append a factor of M2 to Tr.
In this case the stochastic method suffers considerably
because of the slow convergence of the sampling error.

V. TESTING DIFFUSION

The purpose of this section is to determine whether or
not the simulation of diffusion by the Gillespie algorithm
in the manner outlined above works. We do this by per-
forming two tests: (i) comparison of the simulation to an
exact solution of the heat equation and (ii) comparison
of the simulation to the statistics of Brownian motion.
While these tests are essentially straightforward, there
are one or two fine points that need to be mentioned
before we begin.

First, note that the result of a single simulation is a
randomly generated piecewise integer function over the
grid. Hence in order that a meaningful comparison be
made to a smoothly varying exact solution the results
must be averaged over many simulations. It is important
to understand that this average solution is not guaran-
teed to be in some sense representative of the final state
of the system. This will happen for instance in the case
where the system undergoes a bifurcation due to an in-
stability (as in pattern formation via a Turing instabil-
ity). In general, we should anticipate that this situation
will arise whenever we have a system which is sensitive
to initial conditions. However, there are other systems
for which the average solution does converge in a sensi-
ble way and this makes them ideal candidates for code
testing.

For these cases, averaging over simulations makes sense
and for the type of test described below the fluctations
about the average solution can be regarded as a type
of sampling error which can be decreased by increasing

the number of simulations. In this case the only prop-
erty of the fluctuations we will be interested in is their
mean. In general though other statistical properties of
the fluctuations will be more important. Indeed, one of
the attractive properties of the Gillespie algorithm is the
possibility that it can reproduce in a natural way the
statistical properties of real systems [11].

A. Initial Data

To begin a simulation the code reads a data file con-
taining among other things a set of user specified con-
centration functions which determine the average initial
conditions. For a single species A let this function be
a(x). The initial data of a simulation is the initial distri-
bution of molecules among the elements, which, as noted
above, is a piecewise integer function over the domain.
This function cannot be identical for each simulation be-
cause on average it would not represent a(x) very well.
In this section we show how the initial data is generated
from a probability distribution so that when averaged
over many instances it does converge to a(x).

Let Ai,µ be the number of molecules initially placed in
element i for simulation µ. The procedure for generating
Ai,µ is as follows. First the total number of molecules in
the simulation is computed from a(x). In some cases the
total number of molecules can be computed exactly but
in general an approximation

Ā =

∫

a(x)dx =

E
∑

i=1

∫

i

a(x)dx ≈
E
∑

i=1

Āi (28)

can be used, where Āi is a suitable quadrature of a(x)
over element i. Even though an exact expression is avail-
able for the test systems below, in what follows the trape-
zoidal rule is used to compute Āi in order that the results
be more representative of what might be encountered in
practice. Ā is of course non-integer in general. Let the
total number of molecules for simulation µ be generated
randomly from Ā by

Aµ = ⌊Ā⌋ +

{

1, u < frac(Ā)
0, u ≥ frac(Ā)

(29)

where u is a uniform random number and ⌊Ā⌋ and
frac(Ā) are the integer and fractional parts of Ā respec-
tively. The function Pi = Āi/Ā is treated as a discrete
probability distribution which is sampled Aµ times, the
outcome of each sample being used to increment Ai,µ

(hence Aµ =
∑

i Ai,µ).
It is clear that this method of producing initial data

will converge to the continuous function a(x) in the limit
M → ∞ in the sense that the averages

AM =
1

M

M
∑

µ=1

Aµ, Ai,M =
1

M

M
∑

µ=1

Ai,µ (30)
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FIG. 2: Convergence of the error measures (33) for initial
data on the unit interval. In this example E = 50, n = 3, and
Ã = 500. Least squares fits to the data give a slope of -0.5
and -0.48 for the average and maximum error respectively.

will obey

|AM − Ā| ∝ M−1/2, |Ai,M − Āi| ∝ M−1/2. (31)

To see this in practice consider the error in Ai,µ and
denote by ei,M its average over M runs

ei,M =
1

M

M
∑

µ=1

(

1 − Ai,µ

Āi

)

. (32)

We look at the average and maximum of ei,M over the
mesh

ēM =
1

E

E
∑

i=1

|ei,M | , êM = max
1≤i≤E

|ei,M | . (33)

Figure 2 shows the convergence of these two quantities
for initial data given by (35) with n = 3 and Ã = 500.
The mesh consists of 50 evenly spaced elements.

B. Time Evolution with Constant Diffusion

Coefficient

In this case the concentration a(x, t) obeys

∂a

∂t
= D

∂2a

∂x2
,

∂a

∂x
(0) =

∂a

∂x
(1) = 0. (34)

Setting D = 1, an exact solution on the unit interval
[0, 1] satisfying the boundary conditions is

a(x, t) = Ã(1 + 1/2 e−π2n2t cos(nπx)) (35)

0 0.2 0.4 0.6 0.8 1
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400

500

600

700
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a

FIG. 3: Average solution of the initial data (top curve) and
evolution to T = 0.0078 (middle curve) on a randomly spaced

grid. Here n = 3, E = 50, D = 1, Ã = 500, and M = 1000.
The solid circles are the average concentration while the solid
line is the exact solution (35).

where n is a non-negative integer. Note that the total
number of A is Ã.

In this section we look at the convergence of the er-
ror measures (33) for the time evolution. To do this
we replace Āi in (32) with Āi(t) computed from (35).
From the exact solution we see that the difference be-
tween the maximum and minimum value of a(x, t) will

decrease from Ã to Ã/2 in time

T =
ln 2

n2π2
(36)

which gives us a reasonable time at which to end the
simulation. Recall that each simulation is begun with
a randomly generated set of initial data using the algo-
rithm in the previous section. We can define an average
concentration over M runs as

ai,M =
1

M

M
∑

µ=1

Ai,µh−1
i . (37)

A typical plot of ai,M for 1000 simulations is shown in

Figure 3. In this figure n = 3, Ã = 500, and the mesh
consists of 50 randomly sized elements created by ran-
domly generating 0.1 ≤ hi ≤ 1 and scaling to the unit
interval.

Next we inspect the error measures (33). We set n = 1
which gives T ≈ 0.07. Figure 4 shows the two error
measures for a set of 104 runs to T = 0.07 on a mesh
with 50 equal size elements and with 50 randomly sized
elements. The number of molecules is set at Ã = 500 in
both cases.
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FIG. 4: Convergence to the exact solution of the heat equation
on an evenly spaced (a) and randomly spaced (b) grid. Fits
to ēM yield slopes of -0.52 and -0.5 respectively. The diffusion
coefficient is set to unity in both cases.

Again the slope is about -1/2 in both cases. As in
Figure 2, it appears that the curves in Figure 4 are con-
verging to zero error in the limit M → ∞. However,
unlike the results for the initial data, we show in Fig-
ure 5 that this is not the case. Here the time evolution
is performed on a coarser grid and we use n = 3 in (35).
In Figure 5(a) we see that ēM for E = 20 equal size el-
ements levels off at around 0.002 at M ≈ 104 and does
not decrease further. Figure 5(b) shows that this asymp-
totic sampling error is related to the mesh spacing h and
scales as h2.
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FIG. 5: Demonstration of the spatial discretization error. In
these examples n = 3 and T = ln 2/(9π2) ≈ 0.0078. In (a)
we show the error measures for E = 20 on an evenly spaced
grid. The asymptotic value of ēM is about 0.002. In (b) we
plot the asymptotic value of ēM v.s. the maximum element
size h for a series of evenly and randomly spaced grids with
10 ≤ E ≤ 40. Fits to the data gives slopes of 1.92 and 2.11
respectively.

C. Time Evolution with Discontinuous Diffusion

Coefficient

In this section we repeat the tests on the unit interval
above but with the inhomogeneous diffusion coefficient

D(x) =

{

1, 0 ≤ x ≤ 0.5
5, 0.5 < x ≤ 1

. (38)

D(x) is chosen to be discontinuous rather than smoothly
varying because we anticipate that this case will be the
one most likely encountered in practice.
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FIG. 6: The average solution (solid circles) is shown against
the exact solution (solid line) for a series of runs with the
discontinuous diffusion coefficientf (38). The top curve is the
initial data while the middle curve is the data at T = 0.0085.
In this case E = 40, M = 104, Ã = 500 and the mesh is
evenly spaced.

The eigenfunctions and eigenvalues of the weak form
of

∂

∂x

(

D(x)
∂f

∂x

)

− λ2f = 0 (39)

with Neumann boundary conditions are

fn(x) =

{

ρn cos(λnx), 0 ≤ x ≤ 0.5

cos(λn(1 − x)/
√

5), 0.5 < x ≤ 1
(40)

with λn given by the roots of

(1/
√

5) tan(λ/2) + tan(λ/2
√

5) = 0 (41)

and ρn given by

ρn =
cos(λn/2

√
5)

cos(λn/2)
. (42)

Similar to the above, we choose the following linear com-
bination of the zeroth and second eigenfunctions

a(x, t) = Ã(1 + 1/4 e−λ2
2tf2(x)), (43)

where λ2 ≈ 9.0065 and ρ2 ≈ 2.0651, and set the stopping
time to T = ln 2/λ2

2 ≈ 0.0085.
Figure 6 shows the average solution over 104 runs

against the exact solution (43) on an evenly spaced 40 ele-
ment mesh. Measuring the spatial error with the method
outlined above shows that the convergence is O(h2) in
this case as well.

D. Stopping Time

Each simulation in the above experiments is stopped
when the cumulative time exceeds the set time T . This
means that the actual stopping time, and the time at
which the comparison with (35) is made, exceeds (36) by
a small random amount. Hence the error measures ēM

and êM are not computed with respect to a fixed value
of T . In this section we show that the variation in the
stopping time is small compared to T , which provides an
a posteriori justification of this procedure.

We expect that if the stop time is T +∆T then accord-
ing to (24)

∆T ∝ 1

NE2/d
. (44)

A typical spread of ∆T for a series of 1000 simulations
similar to that in the previous section is shown in Fig-
ure 7(a). Since ∆T should be exponentially distributed
we expect that if w is the width of an exponential fitted
to the data then we should have ∆T ≈ w ∝ N−1. This
is shown in the Figure 7(b). Even on a small grid with
a modest number of molecules the average stopping time
exceeds T by only a few parts in 105.

E. Random Walks

The relationship between diffusion, brownian motion,
and random walks is well known. In this section we look
at the motion of a single molecule propagating on a mesh
by the algorithm above. If the molecule undergoes a
random walk starting at the origin at time t = 0 the
distribution of its position at time t is given by

P (r, t) =
1

(4πDt)d/2
exp

(

− r2

4Dt

)

(45)

which has the well-known expectation value

〈r2〉 = 2dDt. (46)

Let the molecule begin the simulation at t = 0 in an
element with center c0 and end the simulation at time t
in an element with center ct. A measure of (46) over M
runs is

mM =
1

M

M
∑

µ=1

|ct − c0|2µ
2dDt

. (47)

mM only measures the mean value of the distribution.
To see the whole distribution note that in one dimension
the probability of the molecule ending up in an interval
of width ∆ centered at x is

p(x, t, ∆) = erf

(

x√
4Dt

)∣

∣

∣

∣

x+∆/2

x−∆/2

. (48)
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FIG. 7: The distribution of stopping times from a series of
1000 runs is shown in Figure (a). An exponential fitted to the
data is shown by the solid circles. The initial data is (35) with
n = 1, N = 500, and the stopping time is set to T = 0.07. The
mesh consists of 50 evenly spaced elements. In (b) we show
the width w (the 1/e point) of an exponential distribution
fitted to the data as a function of N . The fit was done to the
first 25 of 50 bins for each value of N .

With D = 1 the typical time to diffuse from the center
of the unit interval to the boundary is Tb = 1/8. We set
the stopping time to a small fraction of this, T = 0.005,
in order to make it very unlikely that the molecule reach
one of the boundaries by the end of the run. The results
for (47) and (48) of the random walk of a single molecule
in one dimension for a series of 5×104 runs are shown in
Figure 8. The spatial discretization error discussed above
should be kept in mind when considering this figure. We
expect the error in the random walk to have the same
O(h2) dependency as the previous results.
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FIG. 8: Figure (a) shows mM for a series of 5×104 runs. The
mesh consists of 1000 equally sized elements, D = 1, and the
run time is T = 0.005. Figure (b) shows the distribution of
x = |ct − c0| at T = 0.005. The solid circles are the exact
distribution (48).

VI. NON-LINEAR WAVE PROPAGATION

The cubic autocatalytic reaction (see, e.g., [21])

A + 2B
k→ 3B (49)

is at the heart of several interesting and well-studied non-
linear chemical systems, the archetypal example being
the Brusselator [24, 25]. In one dimension it becomes
a good candidate for algorithm testing as a reaction-
diffusion system because of the existence of a traveling
wave solution whose wavefront has a constant velocity
and shape. In addition we will see that the averaging pro-
cedure outlined in the previous section appears to make
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sense for this system with the initial conditions described
below.

A. Wave Propagation

Let the two species A and B have the same diffusion
coefficient D and concentrations a(x, t) and b(x, t). If
the initial value of a + b is constant in space then a + b
is will be constant in time as well and the reaction-rate
equation governing b reduces to

∂b

∂t
= D

∂2b

∂r2
+ kb2(a0 − b), (50)

where a0 is the initial value of a + b. This can be put in
dimensionless form by the scaling

β =
b

a0

, τ = ka2
0t, x = r

√

ka2
0

D
. (51)

An exact traveling wave solution for β of (50) is

β(z) =
exp[−(1/

√
2)(z − z0)]

1 + exp[−(1/
√

2)(z − z0)]
(52)

where

z = x − cτ, c =
1√
2
, (53)

and z0 is a constant of integration. The boundary con-
ditions satisfied by (52) are

lim
z→+∞

β(z) = 0, lim
z→−∞

β(z) = 1. (54)

The location of the wavefront is given by β = 1/2 or
x − cτ − z0 = 0, which at τ = 0 implies x = z0.

Our aim in this section is to compare the output of the
code to the exact solution (52). However, as discussed in
Section III D the simulation requires boundary conditions
and (52) on a finite domain [0, xb] does not satisfy either a
Dirichlet or Neumann condition (or a linear combination
of them) at either boundary. Nevertheless, suppose we
choose the Neumann condition. At x = τ = 0 we have

∂β

∂x
(0, 0) = − 1√

2

exp(z0/
√

2)

(1 + exp(z0/
√

2))2
(55)

≈ − 1√
2

exp(−z0/
√

2) (56)

where the last expression holds when z0 ≫ 0. Hence
β′(0, 0) can be made arbitrarily small by choosing z0

large enough. By choosing the wave to start far enough
away from the left boundary we can enforce the Neu-
mann condition to a certain degree of accuracy there,
e.g., |β′(0, 0)| ≈ 10−3 gives z0 ≈ 9.3.

Similarly, we choose the time of the simulation such
that the wave stops before it comes close to the right
boundary. Hence we choose

z0 = 10, xb = 30, T =
√

2(xb − 2z0) = 14.1. (57)

In addition we set D = 1, k = 2.5 × 10−5, and a0 = 200,
giving a total population of 6000 molecules. The wave
starts off at x = 10 at t = 0 and travels to x = 20 at
t = 14.1. The distribution of molecules for a typical run
at time T = 14.1 for E = 60 is shown in Figure 9. Note
the large amount of variation in the data. The average
solution over 1000 runs is shown versus the exact solu-
tion (52) also in Figure 9. The reaction count in these
simulations is about 3.3 × 105 diffusion events for both
A and B and about 2 × 103 occurrences of the autocat-
alytic reaction. Each simulation required about 1.5 sec-
onds of CPU time. We can estimate the inequality (6)
on this mesh by taking the values of A and B at the cen-
ter of the wavefront, where the majority of the reactions
take place. At this point the populations are roughly
50 molecules per element so that the left hand side is
h2/2D = 1/8 while the right hand side is approximately
1/(kA2Bh−2) ≈ 1.3.

To test the sampling and spatial discretization error
we use the same domain, set a0 = 100, k = 10−4, D = 1,
and

z0 = 14, xb = 30, T =
√

2(xb − 2z0) = 2.83. (58)

The wave travels a distance of only x = 2, from one
side of the center of the grid to the other. This gives
a smaller value of β′ at the boundary, about 5 × 10−5,
which insures that this error will be smaller than the
one which is being measured. The error measures (33)
are shown in Figure 10 on a 40 element evenly spaced
mesh for M ≤ 5 × 105. The error measures are taken
with respect to the concentration of B over the interval
[0, 18.5] rather than the entire domain in order to avoid
the region of very small concentration at the right end.
The convergence of the spatial error in this case is not
as clear as in the pure diffusion case but it appears to
be at a somewhat higher rate, although this could be an
artifact of the small meshes we are restricted to due to
the slow convergence of the sampling error.

B. Dilute Reaction Times

The previous examples were computed on meshes for
which the number of molecules per element was fairly
large. In this situation all of the elements along the wave-
front will contain enough reactant molecules to execute
the autocatalytic reaction. One possible concern is that
on very dense meshes there will be few elements which
satisfy this criterion and the more complex reactions in
a system will never be executed. In this final example
we show that this is unlikely to be a problem. Con-
sider the autocatalytic system on the unit interval and
let the initial population consist of one molecule of A and
two of B. The molecules are randomly placed in elements
with equal probability (i.e., the algorithm of Section VA
is used where the concentration functions are constant).
The molecules are allowed to randomly walk over the
mesh until all three of them occupy the same element
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FIG. 9: A typical distribution of molecules at time T = 14.1 is
shown in (a) on a 60 element evenly space mesh. The average
distribution over 1000 runs is shown in (b) (solid circles) along
with the exact solution (solid line).

and the algorithm determines that the autocatalytic re-
action is executed. Using (2) and (6) the average time
until the reaction occurs is τ = (2k)−1. In Table I we
show τ when k = 1/2 on a series of meshes with E rang-
ing from 1 to 100. The diffusion coefficient has been set
to D = 10 so that the average diffusion time across the
mesh is much smaller than the expected reaction time.
The results are averaged over 1000 runs.

VII. CONCLUSION

We have examined an extension of the Gillespie algo-
rithm for simulating reaction-diffusion systems on irregu-
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FIG. 10: Convergence of the error for the cubic autocalytic
reaction. In (a) we show the error measures (33) on a 40 ele-
ment evenly spaced mesh for M ≤ 50000. In (b) the asymp-
totic value of ēM and êM are plotted versus the element size
for 30 ≤ E ≤ 60. Fits to the data have slope 2.9 and 2.5
respectively.

E 1 2 5 10 25 50 100

τ 1.06 1.07 1.07 1.04 1.03 1.09 0.99

TABLE I: Average time for a single execution of the autocat-
alytic reaction on a series of evenly spaced meshes of varying
size. The expected time is τ = 1.

larly spaced Cartesian meshes. The systems may have in-
homogeneous diffusion coefficients, including those with
discontinuities. We have shown numerical examples in
one dimension which demonstrate that the algorithm is
capable of simulating both pure diffusion and the non-
linear cubic autocatalytic reaction-diffusion system ac-
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curately in an appropriate limit. We have also shown
that the algorithm reproduces the statistics of Brownian
motion for the random walk of a single molecule, at least
on a sufficiently fine grid. We show that the spatial error
caused by the discretization of the domain scales as h2

for the diffusion problem and at least this fast for the
cubic autocatalytic reaction. It should be stressed that
we have not derived any general formulae for the scaling
of this error for an arbitrary reaction-diffusion system.
Currently this must be determined empirically and the
method used in this paper for determining this rate is
not guaranteed to work in a general setting.

Although the examples shown in this paper are in one
space dimension the method itself trivially generalizes
to higher dimensional Cartesian meshes. However, in a
general situation such as an irregularly shaped cell or
a microchamber of complex geometry one would like to
use an unstructured grid. The derivation of the diffu-
sive rate constants by the finite volume method opens
up the possibility that one can borrow more results from
the finite volume literature to generalize the method to
unstructured meshes. Possibilities along these lines in-
clude Voronoi cells [27, 28] and irregular polygons based
on underlying simplicial meshes [29, 30]. Such meshes
have many advantages over regular Cartesian meshes in-
cluding the fact that they can be graded in element size,
locally refined and unrefined, and that they approximate
the domain boundaries much more accurately.

In addition, the use of automatic mesh refinement
would seem to be very useful in future versions of the
algorithm. For instance, in the simulations of the auto-
catalytic reaction the variation in the concentrations of A
and B are greatest in the neighborhood of the wavefront
which would seem to be a reasonable place to concentrate
the elements. Elsewhere the ratio of A to B is either very
large or very small so the number of reactions is small and
in these regions it would be preferable to have fewer el-
ements. In addition, in three dimensions the scaling of

the diffusion rate is such that a large element will expe-
rience fewer diffusion events per unit time than a large
number of smaller elements with the same total volume
and population. Controlling the element size to take ad-
vantage of this may result in a substantial overall saving
in simulation time.

There are other reasons for controlling the element size
as well. For instance, up to this point we have ignored
the finite size of the reactants. If an element becomes
too small, it may become “overcrowded” and violate the
basic assumption that the reactants collide much more
frequently with the solvent than they do with each other.
An extreme case would be an element too small to contain
even a single reactant molecule. And of course elements
cannot be too large either since the inequality (7) will be
violated.

We must also be aware, however, that these restric-
tions on the element size may in some cases be mutually
exclusive. This may happen for instance in systems char-
acterized by a large separation of time scales, i.e., rate
constants and diffusion coefficients which differ by many
orders of magnitude. To be fair, these conditions arise
in a wide variety of physical systems and their accurate
simulation is an active area of work in many fields.

To summarize, this work can be considered an early
step in the simulation of reaction-diffusion systems using
the Gillespie algorithm. Many important issues remain to
be resolved such as the extension to unstructured meshes,
the effectiveness of automatic mesh refinement, and the
addition of more realistic features to the basic model such
thermodynamics and time varying domain geometry.
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