Two and Three Dimensional Nonlocal DFT for Inhomogeneous Fluids II: Solvated Polymers as a Benchmark Problem

PDF Version Also Available for Download.

Description

In a previous companion paper, we presented the details of our algorithms for performing nonlocal density functional theory (DFT) calculations in complex 2D and 3D geometries. We discussed scaling and parallelization, but did not discuss other issues of performance. In this paper, we detail the precision of our methods with respect to changes in the mesh spacing. This is a complex issue because given a Cartesian mesh, changes in mesh spacing will result in changes in surface geometry. We discuss these issue using a series of rigid solvated polymer models including square rod polymers, cylindrical polymers, and bead-chain polymers. By ... continued below

Physical Description

9 p.

Creation Information

Frink, Laura J. Douglas & Salinger, Andrew G. August 9, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In a previous companion paper, we presented the details of our algorithms for performing nonlocal density functional theory (DFT) calculations in complex 2D and 3D geometries. We discussed scaling and parallelization, but did not discuss other issues of performance. In this paper, we detail the precision of our methods with respect to changes in the mesh spacing. This is a complex issue because given a Cartesian mesh, changes in mesh spacing will result in changes in surface geometry. We discuss these issue using a series of rigid solvated polymer models including square rod polymers, cylindrical polymers, and bead-chain polymers. By comparing the results of the various models, it becomes clear that surface curvature or roughness plays an important role in determining the strength of structural solvation forces between interacting solvated polymers. The results in this paper serve as benchmarks for future application of these algorithms to complex fluid systems.

Physical Description

9 p.

Notes

OSTI as DE00009712

Medium: P; Size: 9 pages

Source

  • Journal Name: Journal Computational Physics; Other Information: Submitted to Journal Computational Physics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-2076J
  • Grant Number: AC04-94AL85000
  • DOI: 10.1007/s003590050385 | External Link
  • Office of Scientific & Technical Information Report Number: 9712
  • Archival Resource Key: ark:/67531/metadc793627

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 9, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 11, 2017, 8:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Frink, Laura J. Douglas & Salinger, Andrew G. Two and Three Dimensional Nonlocal DFT for Inhomogeneous Fluids II: Solvated Polymers as a Benchmark Problem, article, August 9, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc793627/: accessed May 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.