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The issues of verification, calibration, and validation of computational fluid dynamics (CFD) 
codes has been receiving increasing levels of attention in the research literature and in engineering 
technology. Both CFD researchers and users of CFD codes are asking more critical and detailed 
questions concerning the accuracy, range of applicability, reliability and robustness of CFD codes 
and their predictions. This is a welcomed trend because it demonstrates that CFD is maturing from 
a research tool to the world of impacting engineering hardware and system design. In this 
environment, the broad issue of code quality assurance becomes paramount. However, the 
philosophy and methodology of building confidence in CFD code predictions has proven to be 
more difficult than many expected. A wide variety of physical modeling errors and discretization 
errors are discussed. Here, discretization errors refer to all errors caused by conversion of the 
original partial differential equations to algebraic equations, and their solution. Boundary 
conditions for both the partial differential equations and the discretized equations will be discussed. 
Contrasts are drawn between the assumptions and actual use of numerical method consistency and 
stability. Comments are also made concerning the existence and uniqueness of solutions for both 
the partial differential equations and the discrete equations. Various techniques are suggested for 
the detection and estimation of errors caused by physical modeling and discretization of the partial 
differential equations. 

* This work was performed at Sandia National Laboratories, which is operated by Lockheed 
Martin Cop. for the U. S .  Department of Energy under contract No. DE-AC04-94AL85000. 
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I. Introduct ion 

The issue of verification, calibration, and validation of computational fluid dynamics (CFD) 
codes has been receiving increasing levels of attention in the research literature and in discussions 
of engineering technology. Both CFD researchers and users of CFD codes are asking more critical 
and detailed questions concerning the accuracy and range of applicability of CFD code predictions. 
This is a welcomed trend because it shows that CFD is maturing from a research exercise to a 
useful tool that impacts engineering hardware and systems. The National Research Council 
Committee chaired by Dr. Richard Bradley [l], summarized the pertinent stages of CFD 
development as: Stage IV, “Learning to Use Effectively”; and Stage V, “Mature Capability”, as 
Most analysis done without supporting experimental comparisons. By this definition, most of us 
would agree that CFD is definitely not in Stage V. 

A clear parallel can be drawn between the state-of-the-art in CFD today and the status of 
numerical simulation of electrical analog circuits of the past. Until twenty or thirty years ago, the 
response of complex analogue circuits was determined by bread-board experiments. Since that 
time, the numerical simulation capability, in both hardware and software, for solving ordinary 
differential equations has completely changed the technology. Designers now do little or no bread- 
board experiments, but numerically simulate the response of circuits. Ordinary differential equation 
(ODE) codes are clearly in Stage V. Today the key issues in circuit simulation are related to 
characterization of electrical components as a function of voltage, current, temperature, humidity, 
electric field, etc. Progress to Stage V for ODE solvers has been extremely rapid for two reasons. 
First, the mathematical complexity of solving ODES is generally miniscule relative to partial 
differential equations (PDEs). Second, the complexity of fluid flow physics and the variety of 
geometries dwarf that of electrical circuits. 

During the last few years new concepts and terminology have arisen that take advantage of the 
increased capability of numerical simulations. Terminology such as “virtual prototyping” and 
“virtual testing” is now being used by those in engineering development to describe numerical 
simulation for design, evaluation, and “testing” of new hardware and even entire systems. This 
trend is driven by increasing competition in many markets, such as aircraft, automobiles, engines, 
and consumer products. The need to decrease the time and cost of bringing products to market is 
intense. Another reason for this new trend is the high cost and time required for testing laboratory 
or field components and complete systems. An important, sometimes dominant, element of testing 
are the safety aspects of the product or system. The potential legal and liability costs of hardware 
failures can be staggering to a company, the environment, or the public. Examples of levels of 
impact are: wave induced structural failure of an offshore oil platform, fire spread in a high-rise 
office building or hotel, or pressure vessel failure of a nuclear power plant, detonation of a nuclear 
weapon in an accidental fire. On the opposite end of the spectrum consider the impact of an 
inaccurate or misleading numerical simulation in a research paper at a conference. The effect is 
typically nil because before the simulation information is used in engineering design or hardware, 
more correct results will become available. 

The terminology, philosophy and methodology of building CFD code predictions is proving to 
be a very difficult and complex issue. The issues have been discussed and debated in the literature 
and among various engineering societies for several years. The Institute of Electrical and 
Electronics Engineers (IEEE) [2] and the American Nuclear Society [3] first studied the 
terminology of code verification and validation. A NASA ad hoc committee was formed and they 
produced a detailed definition of code calibration and validation [4]. In 1993 the International 
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Organization for Standardization (ISO)[5] and the American Institute of Aeronautics and 
Astronautics Committee on Standards also became involved in the debate. Because of the far 
reaching effects on hardware design, commercial software, government contracting, product 
liability, etc., this issue must be argued in these forums. (For a review of the history and 
perspectives on this issue, see Ref. [ 6 ] )  

The present paper avoids the debate on terminology and concentrates on the fundamentals of 
mathematical modeling of fluid dynamics and numerical solutions. For the purposes of the present 
discussion, the general terminology of code verification & validation (V&V) will be used. A wide 
variety of physical modeling errors and discretization errors are discussed. Here, discretization 
errors refer to all errors caused by conversion of the original partial differential equations to 
algebraic equations, and their solution. Boundary conditions for both the partial differential 
equations and the discretized equations will be discussed. Contrasts are drawn between the 
assumptions and actual use of numerical method consistency and stability. Comments are also 
made concerning the existence and uniqueness of solutions for both the partial differential 
equations and the discrete equations. Various techniques are suggested for the detection and 
estimation of errors caused by physical modeling and discretization of the partial differential 
equations. 

Sources of S imulation Error 

To build a logical, consistent and workable framework for the meaning of CFD quality 
assurance terminology, one must understand that CFD has a more diverse foundation and wider 
range of applications than analytical methods. Most researchers and users of CFD codes view CFD 
as an extension, or outgrowth, of traditional analytical methods in mathematical physics. Analytical 
methods, i.e., closed form, exact or approximate solutions to the equations of interest, are built on 
well defined, very reproducible, and rigorous methods of mathematical analysis. As is well 
known, the dominant shortcoming of analytical methods is that they address a much narrower 
range of fluid dynamics than computational methods. The accuracy of analytical predictions fun- 
damentally depends on the accuracy of the mathematical model of the physics; the rigor of the 
mathematical methods is rarely an issue. CFD prediction accuracy, on the other hand, additionally 
depends on the equivalence of the discrete model to the continuum model and the accuracy of the 
solution to the discrete model. 

To better understand the accuracy of CFD predictions, the fundamental sources of errors, or 
inaccuracies, must be identified and addressed. Error sources in numerically simulating physical 
phenomena described by partial differential equations can be grouped into four broad categories: 

Physical modeling errors 

Discretization errors 

Programming errors 

Computer round-off errors 

The present paper delineates and discusses physical modeling and discretization errors, but 
omits a discussion of programming and computer round-off errors. The first two categories are 



subdivided further in the following sections and each is discussed. The above categories are 
appropriate for any phenomena described by partial differential equations, e. g., heat conduction, 
solid dynamics, structural dynamics, electrodynamics, and neutron transport. The present dis- 
cussion, however, will be limited to continuum fluid dynamics with emphasis on Newtonian 
fluids. Other approaches in fluid dynamics, such as molecular dynamics, direct simulation Monte 
Carlo, and lattice gas methods, are not considered in this paper. 

Phvsical Modeling Errors 

Physical modeling errors are those caused by inaccuracies in the mathematical model of the 
physics, completely separate of numerical issues. These errors are further subdivided into three 
additional categories associated with: the partial differential equations describing the flow; the 
auxiliary, or closure, physical models; and the boundary conditions for the partial differential 
equations. All three of these sub-categories are discussed to stress the evaluation of physical 
modeling limitations, as opposed to numerical solution limitations, when conducting a CFD 
simulation. Too often, difficulties in detecting and eliminating CFD simulation errors, whether in 
code V&V activities or in day-to-day simulations, are due to a failure to consider each error source. 

Partial Differential Equations of Fluid Dynamics 

The governing equations for fluid flow can be formulated with various assumptions and the 
analyst is usually interested in using the simplest form that is appropriate for the problem being 
solved. The starting point for the following discussion is the compressible form of the unsteady 
Euler equations and then the governing equations are expanded to include more physics. As the 
complexity of the physics increases, more information is required in the modeling. The following 
list is not comprehensive, but does address the more common areas of fluid dynamics. 

Inviscid Flow: The partial differential equations that govern the flow of a compressible, 
inviscid, continuum fluid can be developed from the conservation laws of mass, momentum, and 
energy. The resulting equations are expected to be valid for all flows except when the size of the 
flow region of interest is of the same order as a characteristic length of the molecular structure, i. 
e., mean fkee path. These same equations can be developed with the Chapman-Enskog expansion 
method from the kinetic theory of gases [7]. The fust term in the expansion gives the Euler 
equations while the second term in the expansion gives the Navier-Stokes equations. The 
Chapman-Enskog approach is valid for flows that are collision-dominated and is not appropriate 
for rarefied flows as previously indicated. These equations are completed with and limited by the 
models for the fluid thermodynamic properties and the equation of state employed. 

Viscous Flow: The Navier-Stokes equations include the viscous and heat conduction 
properties of the fluid and require information on the transport property coefficients for the shear 
viscosity, bulk viscosity, and the thermal conductivity. These equations have the same limitations 
as the inviscid equations, in addition to limitations of the models for the transport properties. The 
Navier-Stokes equations can be used to determine the flow structure in weak shock waves where 
good agreement with experimental data has been obtained for low Mach numbers [8]. The Navier- 
Stokes equations for a liquid with no-slip boundary conditions can be used to determine the flow in 
small channels of height larger than approximately 10 molecular diameters [9]. For gases at low 
density, slip and temperature jump boundary conditions are required. At lower densities, the 
continuum approach becomes unsalvageable. 



,zcompressible Flow: This is a special case of the previously discussed governing equations 
where the fluid density is assumed approximately constant. There are many CFD codes that only 
include the incompressible form of the Navier-Stokes equations. In this case there is an additional 
restriction beyond those discussed above; the Mach number for fluid flows must be sufficiently 
small, typically M < 0.2 for less than 1% density change, such that density changes can be 
neglected. For liquids, the density changes are small as long as there are no large fluid temperature 
variations. 

Gas with Vibrationally Excited Molecules: For gases at elevated temperatures the vibrational 
energy levels of the molecules becomes excited and this results in the specific heats of the gas 
becoming a function of temperature. This effect becomes important at temperatures above about 
800K. This additional physics requires a vibrational rate equation if nonequilibrium effects are 
important or at high gas densities an equilibrium assumption can be used. For flow in a hypersonic 
wind tunnel nozzle, this additional physics is required for accurate flow predictions. A good 
example of this type of model is given in the paper’ by Canupp, Candler, Perkins, and Erickson 
[lo]. 

Inert Gas Mixncres: The governing equations for a mixture of perfect gases are developed 
from the theory of gas kinetics {7] and these equations are well known. The gas mixture equations 
are nearly the same as the Navier-Stokes equations except a conservation of species equation is 
obtained for each species, the energy equation has an additional term due to diffusion of species, 
and the viscosity and thermal conductivity transport properties of the mixture are required. In 
addition, the diffusion velocity of the species is required. The complete theory accounts for 
diffusion due to concentration, temperature and pressure gradient in the flow. As this theory is 
rather complex and computationally expensive, most CFD codes use some approximations, such 
as; binary diffusion coefficients are used rather the multi-component diffusion coefficients, thermal 
and pressure diffusion are neglected, or approximate mixture rules for determining the viscosity 
and thermal conductivity of the gas mixture are employed. Significant errors can occur if the 
appropriate physics is not included; for example, expansion of gas mixtures in a rarefied jet [ 1 11 
requires that pressure diffusion effects be included in the diffusion model. 

Chemically Reacting Gas: For gas mixtures with chemical reactions, the inert gas mixture 
equations are appropriate when a production term is added to the conservation of species 
equations. The production terms are readily determined after the chemical model has been 
specified. The chemical model requires that the chemical species be determined and the chemical 
reactions must be identified. For each chemical reaction used in the model, the forward and 
backward reaction rates must be known. For air, a reasonable chemical model has been determined 
while for other gas mixtures the chemical models range from well established to poorly known. 
The chemically reacting gas model is required for air when the gas temperature is greater than 
approximately 2a)oK and the density is sufficiently low that the reaction rate times are less than the 
characteristic flow times. At higher densities the chemical equilibrium assumption can be employed 
and the conservation of species equations are replaced with conservation equations for the chemical 
elements if the element composition of the mixture varies spatially. 

TurbulentlTransitionaL Flow: The previous flow models have assumed the Reynolds number 
is sufficiently low that the flow is laminar. The theory for predicting when the flow transitions to 
turbulent is an area of significant fluid dynamics research. Even reliable engineering techniques for 
predicting transition is lacking. A large number of turbulence models have been developed, with 



the greatest effort devoted to the incompressible case. As a result of turbulence, the governing 
equations have additional terms, In the conservation of momentum equation, Reynolds stress terms 
are added. In the conservation of energy equation, a new term results fi-om the diffusion of the total 
energy due to turbulent motion. In the conservation of species equation, a new term results from 
the turbulent mass transfer. The modeling of these additional turbulent correlation terms is 
performed at different levels of approximation which can require algebraic expressions to the 
solution of additional partial differential equations. For turbulent reacting flows, Probability 
Density Function (PDF) methods or other techniques appear to be required to obtain reasonable 
accuracy. The evaluation of accuracy and limitations of the various models is an ongoing activity of 
the turbulence modeling community. 

Additional Physical Phenomena: There are additional physical phenomena of increasing 
complexity that can be included in flow models, such as; thermal nonequilibrium, ionized flows, 
radiative transfer in gases, and multi-phase mixtures. These areas are not addressed because they 
introduce an increased level of complexity with modeling questions in addition to those already 
discussed which are beyond the scope of this paper. This is not to say that present CFD 
simulations in these areas are useless; we simply recognize that the physical model unknowns and 
errors in these numerical simulations can dominate the discussion instead of complementing it. 

The above list of physical modeling errors, or inaccuracies, deals with fluid physics. There are 
two other primary areas characterizing the partial differential equations; temporal nature and spatial 
dimensionality. Most CFD practitioners think of these as unrelated, but recent work is pointing out 
that they are more closely related than generally thought. It is common for a CFD analyst to 
presume that a steady-state solution exits, or that unsteady solution phenomena can be ignored. Of 
course, it is well known that above a critical Reynolds number some steady flows become 
unsteady. This behavior occurs for a test problem described by Pironneau[l2] for a two- 
dimensional channel flow with an infinite periodic array of cylindrical obstructions where the 
critical Reynolds number based on the channel half-width is 150. Above this critical Reynolds 
number the flow becomes unsteady and remains laminar. 

A classical flow that demonstrates both unsteady and steady behavior is low Reynolds number 
flow perpendicular to a long circular cylinder. For Reynolds numbers less than 49 the flow has 
been shown experimentally to be steady and two-dimensional [13]. For Reynolds numbers 
between 49 and 180, only two-dimensional, unsteady flow exists. For Reynolds numbers above 
180, it has been suggested and argued that only three-dimensional, unsteady flow exists. Recent 
impressive computational work by Mittal and Balachnadar [ 141 has shed light on this issue. They 
computed the flow at a Reynolds number of 525 using both a two-dimensional and a three- 
dimensional simulation. They found that both solutions converged to a periodic solution, but the 
mean drag coefficient for the 2-D simulation was 1.44 and the 3-D simulation produced a value of 
1.24. Experimental measurements yield a value very near their 3-D simulation value. The point of 
this example is two fold. First, a 2-D unsteady physical modeling assumption would seem to be 
appropriate and reasonable computational results are produced, but they have little relationship to 
nature. Second, be reminded this is a very simple flow lacking much of the complex flow physics 
discussed above. With the change of one parameter (Reynolds number), over a relatively small 
range, three fundamentally different flow fields, i. e., solutions to the Navier-S tokes equations, 
emerge, 

For flow geometries that appear to be two-dimensional, the usual assumption is made that the 
two-dimensional form of the governing equations is appropriate. It has been shown by Rudy 1151 
that three-dimensional steady solutions are required for laminar, hypersonic flow over a two- 



dimensional compression corner with a large deflection. In the test problem of Pironneau [12], at 
Reynolds numbers above the critical value the flow is unsteady and two-dimensional. However, at 
Reynolds numbers greater than 600 the flow becomes three-dimensional and remains unsteady. 
Knowledge of these steadyhnsteady and 2-D/3-D boundaries is rarely known, especially for the 
unbounded variety of flow geometries that can be imagined. In fact, the following generalization is 
probably true: the vast majority of high Reynolds number flows encountered in engineering and 
technology are all unsteady, 3-D flows. 

Auxiliary Physical Models 

Auxiliary physical models complete the equation set needed to describe the flow of interest. 
These auxiliary models may be given by very simple algebraic equations, or by nonlinear partial 
differential equations. 

Equation of State: The simplest equation of state is the relation for a perfect gas where the 
pressure is a function of the density, temperature, and molecular weight. The molecular weight is 
considered constant for this case. For air, this relation begins to become inaccurate at temperatures 
above approximately 700K, where vibrational excitation of the molecules begins. The perfect gas 
relation is valid at low pressures and becomes inaccurate at a pressure above approximately 10 
atmospheres. For a gas mixture of ideal gases, the equation of state remains of the same form 
except the molecular weight is determined from the mass fraction and molecular weight of all of the 
species. If the gas model uses the species conservation equations, then the equation of state should 
provide accurate results. If the gas is assumed in chemical equilibrium, then errors can be 
introduced into the equation of state if the equilibrium assumption is not satisfied. 

Thermodynamic properties: The thermodynamic properties of many individual chemical 
species have been calculated with the theory of statistical thermodynamics from a frst principles 
approach. The specific heat at constant pressure, enthalpy, and internal energy are usually 
determined as a function of temperature. These results are tabulated for a large number of species 
over certain temperature ranges and the results are usually considered to be accurate for chemical 
species that have been studied. Errors can be introduced as these properties are approximated with 
curve fits. A review of the thermodynamic properties of an 1 1-species air model has been given by 
Gupta, et. al [ 161. The mixture thermodynamic properties can be determined from the species 
thermodynamic properties and the gas mixture composition. If the gas is assumed to be in chemical 
equilibrium and the element composition fixed, then the composition is required to be determined 
only once for a range of temperatures and densities. Curve fits of the thermodynamic properties of 
equilibrium air have been developed by Tannehill[ 171 and Liu and Vinokur [ 181. Again errors can 
be introduced With curve fit approximations. A difficulty occurs with the Tannehill curve fits as 
there are some discontinuities in these results which can result in numerical convergence problems. 

Transportpropertiex The basic governing equations require a model for the stress tensor. For 
gases the stress tensor is the Newtonian form while the physical behavior of some liquids can be 
more complex and require a non-Newtonian stress model. For example, for polymeric liquids the 
non-Newtonian constitutive equations are reviewed in the article by Bird [ 191. For the simplest 
Newtonian flow models the shear viscosity, bulk viscosity, and the thermal conductivity for the 
fluid are required. For a mixture of perfect monatomic gases, the bulk viscosity coefficient is zero 
and this is the usual assumption used in CFD codes. This assumption is not appropriate for 
acoustic motions and in the interior of shock waves. For air and a perfect gas assumption, the 
viscosity is usually approximated with the Sutherland law. The relation is appropriate for 



temperatures between lOOK and 2000K. At lower temperatures, Keyes’ Viscosity relation should 
be used. The thermal conductivity is typically obtained from the assumption of a constant h n d t l  
number and a constant specific heat. Errors in the thermal conductivity start to occur at 
temperatures above approximately 700K. For flows with a mixture of chemical species, the 
viscosity, frozen thermal conductivity, and binary diffusion coefficients are determined from the 
kinetic theory of gases. Curve fits for these properties for air species have been given by Gupta, et. 
al. 1161. These properties are assumed to be of reasonable accuracy but an estimate of the error in 
these results is not available. The transport properties of the gas mixture are usually determined 
from approximate mixture rules rather than the complete relation from the kinetic gas theory. For 
air with sublimation products of graphite, for example, Ryabov [20] has determined that the error 
in the mixture viscosity is less than 5%, while the error in the frozen thermal conductivity is less 
than 10%. Ryabov indicates that the Kendall approximation for binary diffusion coefficients gives 
errors less than 11.5%. The impact of these errors on flow results does not appear to have been 
evaluated. 

Chemical model, reactions, and rates: The accuracy of chemical models is usually determined 
by the research devoted to the particular gas model. Also, many models for a gas or gas mixtures 
are a simplification of a more complete model in order to obtain reasonable computation times. For 
air, sufficient knowledge is available to decide the appropriate species to include and what reactions 
are necessary. There are generally large errors in the reaction rates for the various chemical 
reactions, but several models have evolved as standards for air. The accuracy of these chemical 
models decreases at the higher temperatures. When the flow of a new gas or gas mixture is being 
calculated, the chemical model needs careful evaluation to determine if reasonable results are being 
obtained. 

Turbulence model: The accuracy of turbulence models must be determined with experimental 
results for a wide range of Reynolds numbers, shear layer geometries, and pressure gradients. 
Recently, direct numerical simulation (DNS) has provided useful information for model evaluation. 
The DNS results have been limited to low Reynolds number flows (< 1000) and to simple flow 
geometries. The evaluation of turbulence models requires a variety of experiments which test the 
ability of the model to simulate turbulent flows of increasing flow complexity. Presently, turbu- 
lence models can be best evaluated with the benchmark test cases developed at the Stanford Con- 
ferences on turbulent flows [21]. These experiments have been carefully picked as the best 
available as far as their accuracy and specification of flow conditions required to preform numerical 
simulations. Also, a variety of experiments are required to test gas models for different levels of 
complexity; for example, incompressible flow, compressible flow, hypersonic flow, multi-com- 
ponent gas mixtures, reacting gas mixtures, two-phase flow, etc. Many codes use wall functions to 
remove the requirement of a fine grid near walls, as the walI function approach can reduce the 
required number of mesh cells by a factor of two. For some flows, for example, near boundary 
layer separation, the velocity profile near a wall is not adequately represented with a logarithmic 
region. For this case, the wall function approach can introduce significant errors even if the first 
grid point away from the wall has been carefully located at an appropriate y-plus value. The 
evaluation of accuracy and limitations of turbulence models is a major research activity that 
involves the turbulence modeling community and experimentalists. 

Boundary Conditions for the Partial Differential Equations 

The boundary conditions required for the solution of the governing partial differential equations 
arising in fluid dynamics have not received the development and attention that is needed. As 



pointed out by Oliger and Sundstrom [22] nearly twenty years ago, discretization of the boundary 
conditions have been studied before the appropriate boundary conditions have been established for 
the partial differential equations. Only after difficulties with computational boundary conditions 
have arisen has there been interest in understanding the appropriate boundary conditions that 
should be used. The paper by Oliger and Sundstrom is one of the few investigations that treat 
determination of the boundary conditions for fluid dynamics equations (mostly inviscid flows) to 
ensure a well-posed problem. As these authors point out, one can not expect reasonable numerical 
solutions unless the correct PDE boundary conditions have been approximated. It seems this lack 
of attention to what are the correct boundary conditions to the partial differential equations has 
worsened in the last twenty years; however, just recently the tide seems to be turning [23]. 

There are three types of boundaries that occur: wall boundaries, open boundaries, and free 
surfaces. The boundary conditions at these boundaries can take various forms. 

Wall Boundary Conditions: These conditions generally have clear physical significance and 
the appropriate boundary conditions are easier to determine. For example, for continuum flow at a 
rigid wall, one could have the most common, and simplest conditions; the velocity components are 
zero and the gas and wall temperature are at the same specified value. One additional, slightly more 
complex boundary condition requires information from the flow solution, i. e., the interior of the 
solution domain. An example is zero pressure gradient at the wall. For near noncontinuum flows, 
there is velocity slip and temperature jump at a wall that must be modeled. It is more difficult to 
specify the appropriate wall boundary conditions for the chemical species equations as the 
heterogeneous chemical reactions of the gas species at the wall must be modeled. Some related 
questions are: What are the appropriate wall boundary conditions when vibrational nonequilibrium 
effects are included in the gas model with a separate vibrational temperature? How accurate does a 
porous wall have to be modeled? Can the flow through a porous wall be assumed to be continuous 
or at what size do the many individual jets have to be modeled? 

Two additional error sources related to wall boundary conditions are, first, inaccurate wall 
geometry, and second, discontinuities or mathematical singularities. Inaccurate wall geometry 
refers to the difference between the actual physical geometry and its computational representation, 
i.e., fidelity of the computational to the physical geometry. Examples of these are the following: 
physical hardware not accurately fabricated to specifications; inaccurate CAD/CAM solid modeling; 
and lack of surface roughness knowledge for a turbulent flow simulation. Discontinuities in the 
boundary conditions occur, for example, where a wall can change from solid to porous with a step 
change in the surface normal velocity. There is also a discontinuity at the intersection of a sliding 
wall and a fixed wall, for example, the classic driven-cavity problem. The stagnation point on an 
axisymmetric blunt body is a mathematical singularity in the cylindrical coordinate system. For the 
partial differential equations these singularities can easily be written and understood; for the 
discrete form of the equations, such singularities can introduce numerical difficulties and errors if 
not handed correctly, 

Open Boundary Conditions: These are conditions that are specified along a boundary, or 
portion of a boundary, where there is “free” (i. e., unrestricted) inflow and/or outflow. We 
describe this type of boundary as free, simply to distinguish it from inflow or outflow through a 
porous wall discussed above. These types of boundary conditions typically result from a 
requirement that numerical solutions be obtained over a limited region of the flow. In this sense, 
errors associated with these boundaries could be considered to be associated with boundary 
conditions for the discretized formulation. Even with this view, one can still ask the question; what 
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are the exact boundary conditions for the partial differential equations on an open boundary? Or, 
the inverse question: what errors are introduced by the physical model assumptions of specified 
conditions for the partial differential equations on an open boundary? 

Even though these boundary conditions are commonly required by the finite size computational 
domain, this need not be the case. For example, if one were simulating the flow over a model in a 
wind tunnel, then the exact inflow boundary conditions must be given by a complete specification 
of all dependent variables in the partial differential equations and auxiliary equations at, say, the 
beginning of the test section. These specified flow quantities might not be consistent with the 
partial differential equations and rapid changes can occur in the computation of flow downstream 
from the inflow boundary. All of these variables would have to be measured spatially and possibly 
temporally if, for example, turbulence quantities were needed. This level of detailed knowledge, or 
calibration, of wind tunnels does not exist for the vast majority of facilities around the world. 

It was recently stated by Sani and Gresho [23], and we fully agree, that boundary conditions at 
open boundaries are often the most difficult and elusive aspect of mathematical modeling. The 
number of physical boundary conditions required, and allowed, at an open boundary is determined 
from an evaluation of the characteristics of the governing partial differential equations. The number 
of physical boundary conditions must be the same as the number of characteristics of the governing 
equations entering the computational domain. If the flow is locally supersonic, there is no upstream 
influence and accurate boundary conditions can be specified without much difficulty. Inflow, more 
specifically upstream, boundary conditions can typically be much closer to the region of interest 
than outflow, or downstream, boundary conditions. For subsonic flow over an isolated body, the 
boundary conditions should be applied at infinity where the flow is uniform and known. If the 
downstream location of the computational boundary is not located sufficiently far downstream, 
some of flow may be entering the computational domain and the correct formulation is very 
nebulous. More will be said on this topic when discretization errors are discussed. 

Free Surface Boundary Conditions: This is a more general case than the wall case and the 
development of the appropriate physical relations has been presented by Batchlor [24]. The general 
approach considers the relations that must be satisfied at the boundary between two media. At this 
interface the temperature of the two materials is the same and the heat flux normal to the boundary 
is equal on both sides. A balance of stress at the boundary with the effect of surface tension taken 
into account results in two transition relations. In addition, the tangential component of velocity is 
continuous across a material boundary separating a fluid and another media and there can be mass 
transport at the boundary. The boundary condition relations require a value of the surface tension 
for the materials involved. Also, these boundary conditions can become difficult to apply if the 
interface becomes unstable with large movement. For example, it is well known that the Rayleigh- 
Taylor instability occurs when a heavy fluid is above a light fluid in a gravitational field. 

Discretization Errors 

Discretization errors are those caused by the discretization of the partial differential equations, 
the auxiliary physical models, and the continuum boundary conditions, and the subsequent 
solution of these discrete equations. Errors generated by or associated with each of these sub- 
categories is now discussed. Techniques for detecting or quantifying some of these errors are 
discussed in the next section. 



, 
Discretization of the Partial Differential Equations 

The reformulation of the partial differential equations into algebraic equations that accurately 
represent the original equations is a bigger, more problematic, mathematical step than is generally 
recognized. Formal mathematical analysis of the relationship of differential and difference 
equations (Lax equivalence theorem) states that if the numerical method is consistent and stable, 
then the solution to each system is equal [25,26] .  A discretization method is consistent if it can be 
analytically shown that as the discretization size approaches zero, the difference equations are equal 
to the differential equations. This can be written as 

Consistency Definition: lim 6da) = aa> 
A+O 

where SA@ represents the system of finite difference equations (which includes any method for 
discretizing the the partial differential equations), &D represents the original system of partial 
differential equations of the mathematical model, and A represents the size of all discretized 
independent variables. A numerical method is stable if it can be analytically shown that as the 
solution is marched in time, or is iteratively solved, the solution remains bounded. One can write 
this as 

Stability Definition: 29- I 0; - I c N 

where cD; re resents all dependent variables of the system of equations at time n for a fixed mesh 
size of A, 
constant. 

8 represents arbitrary initial values of the dependent variables, and N is an arbitrary 

It can be proven mathematically that the above conditions are necessary and sufficient for the 
solution of the discretized system of equations to be identical to that of the partial differential 
equations. This proof is the foundation of the numerical solution of partial differential equations. If 
it were as simple as this, however, the state of the art in CFD would be further along than it is after 
thirty years of intensive research. The difficulties and hindrances to progress are diverse; some are 
mathematical in nature, some are practical issues, and some are implementation issues. In the 
following we attempt to categorize these issues. 

Approximate Consistency and Stabiliry Analyses: Consistency and stability proofs of 
numerical methods are predominantly developed for very simple model problems, never on a “real” 
problem. The model equations are always linearized equations and uncoupled from any other 
equations. For example, the most commonly used are the wave equation, the heat conduction 
equation, and the viscous Burger’s equation in one spatial dimension. These simple, linearized, 
uncoupled, one dimensional equations do not exhibit the astounding spectrum of solutions 
exhibited by the Navier-Stokes equations (vortices cannot exist in one-dimension, for example). If 
additional complex physics such as gas mixtures, turbulence, and reacting flow are included, it is 
clearly seen that these model equations are far removed from real world problems. The reason for 
the elimination of these real world complexities, of course, is that the difference equations resulting 
from the analysis are nonlinear, just as the original partial differential equations, and can not be 
analyzed. 

Additional, but related, simplifications of consistency and stability analyses are elimination of: 
mixed classification partial differential equations, non-uniform grids, and boundary conditions. 
Consistency and stability analyses are never done on differential, or difference, equations with 



mixed classification, e. g., hyperbolic and elliptic. These mixed zones, however, very commonly 
exist. For example, in every supersonic flow problem modeled by the steady Navier-Stokes 
equations hyperbolic and elliptic regions exist adjacent to one another. In the extremely rare event 
that a multi-dimensional stability analysis is conducted, the structured grid is always assumed to be 
uniformly spaced. This assumption does not correspond to real world problems. Boundary 
condition type and geometry can influence the stability of numerical methods. Only those analyses 
that include the discrete boundary conditions along with the discrete equations can provide the 
correct behavior of the numerical scheme. See for example, the book by Morton and Mayers [27] 
for references to work on the effect of boundary conditions on stability. 

Proof Applies Only in the Limit: The matching of solutions between difference and differential 
equations for consistent and stable methods applies only in the limit. The practical problem, of 
course, is that all numerical solutions obtained are never at the limit; they are always finite. 
Although this is obvious, it bears keeping in mind that the proof is a theoretical construct; equality 
is never attained. Examples of the mismatch between the two models are in order. The 
mathematical character of the difference equations can be very different from the differential 
equations. Consider inviscid supersonic flow; the numerical domain of dependence of the 
difference equations must include the domain of dependence of the differential equations. This 
mismatch can have varying effects in the discrete solution. As a second example, it has been found 
by Yee et al[28] that finite difference solutions can exhibit a much wider range of dynamical 
behaviour than their continuum counterparts. They have found that “the use of linearized analysis 
as a guide to studying strongly nonlinear PDE’s is insufficient and can lead to misleading results.” 
And finally, “In particular, when one tries to stretch the maximum limit of the linearized allowable 
time step for highly coup1 ed... nonlinear systems, most likely all of the different types of spurious 
asymptotes (e.g. spurious steady states, periodic orbits, limit cycles, or chaotic phenomena) can be 
achieved in practice depending on the initial conditions.” 

For flow over slender bodies at angle of attack, the vortex patterns can be symmetric or 
asymmetric depending on the angle of attack and flow conditions. How the difference equations 
are written in discrete form can be important in determining what solution is obtained, as shown by 
Levy, Hesselink, and Degani [29]. These authors have shown that how the left hand side of each 
difference equation is formulated in the solution procedure impacts whether the steady-state result 
is symmetric or asymmetric. The left hand sides of the difference equations are zero when the 
steady-state solution is obtained but they can influence the solution obtained from the difference 
equations. These studies indicate that the steady-state solution is not unique and there are at least 
two solutions that can satisfy the right hand side of the difference equations. If the difference form 
of the left hand side is not symmetric, spurious asymmetric results can be obtained. 

Conservation of mass, momentum and energy are so ingrained in us that we assume they are 
always true, whether a process occurs in nature or is simulated in a computer code. On any 
discretized grid, however, conservation cannot be assumed just because the original partial 
differential equations conserve mass, momentum and energy. Loss of conservation can be caused 
by a wide variety of inaccuracies and/or errors in the numerical simulation. For example, the 
following can cause loss of conservation: lack bf iterative convergence either for a steady state 
solution or a time varying solution, numerical limiters in differences schemes, artificial diffusion 
schemes, skewness of the structured or unstructured grid, etc. A related question is: does the 
numerical simulation conserve mass, momentum, and energy regardless of the grid size? This test 
is rarely applied in the verification of computer codes. Control volume methods that are constructed 
properly are the only numerical schemes that have global conservation. Other schemes have 
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conservation only in the limit when step sizes go to zero; as a result, they never do in any actual 
solution. 

Spatial ana‘ Temporal Resolution: This category of error is the most well recognized of the 
discretization errors and is unquestionably the most important. This error, also referred to as 
truncation error, is due to finite resolution in the spatial and temporal discretization. In the past, 
finite difference analyses rarely attempted to estimate the magnitude of this error on the results 
computed. Finite element methods seem to have a better record of addressing this issue. A strong 
initiative by individuals such as P. J. Roache, K. N. Ghia, F. M. White, C. J. Freitas and others 
has raised (forced) the importance of at least addressing the issue of grid convergence in CFD 
solutions. It is the opinion of the present authors that the enforced discipline was desperately 
needed for the maturation of numerical simulations. Because of the importance of this topic and 
because effective measures can be taken to control it, this matter will be addressed in detail in the 
following section on detection and quantification of errors. 

Discretization of the Auxiliary Physical Models 

If the auxiliary physical model equations are linear algebraic expressions, which can be solved 
directly, then the errors are of the computer round-off type and are very small. An example is the 
equation of state for a perfect gas. If the algebraic expressions are nonlinear in the unknowns, then 
some iterative technique is required and errors can occur if the iteration is not completely converged 
each time it is used. Equilibrium chemical composition requires iterative solution of nonlinear 
equations and errors result in the mass fraction of the chemical species if convergence is not 
adequate. 

Thermodynamic and transport properties for real gases are approximated with table look-up or 
curve fits. The required accuracy of the approximations to these properties has not been established 
and, surprisingly, for many cases in the past, the approaches resulted in large errors. Clearly these 
errors can be reduced with more accurate techniques but the data storage requirements are 
significantly increased with possible increases in computer time. The errors in the approximation of 
the individual properties of the chemical species must be compatible with the errors being 
introduced in the techniques being used to approximate the gas mixture properties. Careful 
evaluation of accuracies required for thermodynamic and transport properties used in flow 
simulations and the impact on fluid dynamic predictions have not been performed. The standard 
approach is to use reasonable approximations that result in shorter computation time, but the impact 
on solution errors has not k e n  determined. 

Probably the most important auxiliary model used in CFD is the use of turbulence models. For 
algebraic models, the primary error source is the determination of some flow field feature needed 
in the calculation, e. g., the magnitude of a turbulent length scale. The reliable determination of the 
required flow field feature has proven to be difficult for a wide variety of shear layer geometries. 
By far the most difficult, however, is the calculation of turbulent transport variables using two- 
equation turbulence models. The discretization error of these type PDE’s has been discussed 
above, and will be addressed again in the following section. 

Discretization and Implementation of Boundary Conditions 

The boundary conditions for the difference equations, whether they be for wall, open, or free 
surfaces, must provide the same independent information as provided for the PDE’s. Over- 



specification of the discrete boundary conditions (BC’s) will cause divergence of the iterative, or 
temporal, solution. Under-specification of the BC’s will cause the solution not to converge, i. e., 
wander about, or to converge to different solutions depending on arbitrary features, such as initial 
conditions, relaxation parameters, etc. This perfect balance between over- and under-specification 
of knowledge on boundaries is much more difficult to obtain for difference equations than it is for 
PDEs. We have not found a good explanation for this feature. We suggest the reason, however, is 
that in the continuum mathematics the PDE’s are perfectly coupled to the boundaries; no 
discrepancy, inconsistency, or mismatch is tolerated. In the difference equations, however, the 
coupling is weak and it depends on a variety of numerical parameters, such as the numerical 
algorithm, differencing scheme, grid size, and smoothing parameters. Recent work in numerical 
boundary conditions, [23,30], support our explanation. 

Implementation of Dirichlet boundary conditions are usually straightfoward. Neumann and 
mixed boundary conditions require that a difference method be used at the boundary. This method 
is usually of the same order accuracy as the PDE differencing method so that a globally consistent 
order scheme is obtained. However, only a grid refinement study will establish that the overall 
order of the complete numerical scheme is as expected. It should be noted that very few researchers 
have demonstrated the overall, or global, order of their simulation. 

The most difficult type of boundary condition to implement is the open BC. The entire issue of 
inflow and outflow boundary conditions in now being studied in much more depth than in the past. 
An excellent summary, and we believe required reading on the subject, of open boundary 
conditions for incompressible Navier-Stokes equations is given by Sani and Gresho [23]. This 
paper shows that there are more questions than answers on the implementation of open boundary 
conditions, even for the relatively simple physics of steady, incompressible laminar flow. 
Concerning open boundary conditions, they state “Nature is usually silent, or in fact perverse, in 
not communicating the appropriate ones.” Also, “The boundary conditions on such open portions 
of the boundary are a necessary evil ... We believe that there are no ‘true’ open boundary 
conditions, thus explaining Nature’s silence. We also believe and may demonstrate herein that 
perhaps nowhere else do theory and practice seem to clash so much.” Sani and Gresho also 
introduced the term “fuzzy boundary conditions” to suggest the existence of numerical BC’s that 
produce good numerical solutions, but if one tries to take the limit as A + 0 of these BC’s, one 
obtains unacceptable BC’s for the PDE’s. 

If the inflow boundary condition is to represent undisturbed flow at infinity, then the inflow 
boundary conditions should be applied sufficiently upstream so that the flow in the region of 
interest is not significantly influenced by the inflow BC location. For subsonic outflow, the 
boundary condition location should be varied to determine the impact on the flow in the region of 
interest. For exterior flow over a body, the continuum freestream boundary conditions are imposed 
at infinity while the freestream conditions are imposed at a finite distance in numerical simulations 
which results in errors being introduced. Gresho has coined the phrase “manufactured boundary 
conditions” to clearly point out that the conditions specified at these locations are “dreamt-up” by 
the analysts and not provided by Nature. 

The vast majority of effort in the formulation and implementation of numerical boundary 
conditions has been directed toward steady flow conditions. As CFD matures, the need for reliable 
and accurate unsteady boundary conditions will become more important in the prediction of real 
world flows. It is expected that the development of these type BC’s will be even more challenging 
than the presently used steady BC’s. 



Solution of the Discrete Equations 

The error in the solution of the discrete equations is referred to as the discrete solution error. 
The error associated with the solution can be defined as the difference between the exact solution to 
the discrete equations and the approximate solution obtained. An example of this type error is the 
difference between the exact and approximate iterative solution of the nonlinear discretized 
equations for the steady state Navier-Stokes equations. Often one reads in papers that the iteration 
procedure has been performed until there is a small change in the variables between the iterations. 
This type of test will not always produce accurate results as the convergence rate could be slowing 
down but the solution is not converged. The correct approach is to set each difference equation 
equal to a residual. At the start of the iteration, the dependent variables do not satisfy the difference 
equation and the residual is non-zero. As the iteration proceeds, the residual for all difference 
equations and at all spatial locations is driven to machine zero. Although this level of solution 
accuracy is probably not required for all simulations, it is highly recommended that this iterative 
convergence be demonstrated on coarse grid solutions. 

For transient flow simulations, at each time step the difference equations must be iterated to 
convergence where the iterative error must be much smaller than the temporal discretization error. 
When the temporal and spatial step sizes are decreased, the iterative solution at each time step could 
require that more iterations be performed to obtain smaller iterative errors. Some numerical 
schemes can require no iterations when an AD1 scheme is used, while many iterations are required 
when a Jacobi iterative solution is used. The solution technique used for the sparse matrix solver 
determines the iterations required. The iterative behavior at each time step also depends on how the 
governing equations are solved; for example, (1) with a segregated approach where each dependent 
variable is solved from a separate difference equation and is solved one at a time, (2) with a 
coupled approach where all dependent variables are solved for simultaneously from all of the 
difference equations. The behavior of the iterative solution technique at each time step must be 
understood so that no significant iterative errors are not introduced into the solution procedure. 

Detection and Estimation of Errors 

The following section discusses suggestions for methods to detect and quantify certain types of 
physical modeling, discretization, and programming errors. Some of these methods are similar to 
the types of error control methods incorporated in modem software packages for solving ordinary 
differential equations. Modern ODE solvers are extraordinarily adaptive at controlling accuracy and 
are very robust; a capability CFD code developers should strive to achieye also. 

Physical Modeling Errors . 

To detect when an incompressible flow solution is beginning to deviate .from the physical 
modeling assumption because of compressibility effects, a relatively simple test could be inserted 
into the code. For example, an average value of the speed of sound in the fluid analyzed could be 
an input parameter for the code. When the local fluid speed at any grid point became larger than 
say, 0.2, of the input speed of sound, then a warning would be issued to the user. Similar types of 
automatic error detection tests could be incorporated into a code to detect if the following types of 
physical modeling errors become larger than a specified input value at any point in the flow: 



Thermodynamic equilibrium assumption becomes in error 

If a chemically reacting gas model is required 

Thermodynamic and transport properties are evaluated outside their range of validity 

Discretization and Programming Errors 

Analytical solutions to the PDE’s of interest provide an extremely valuable tool in 
demonstrating code verification. At the present time, use of analytical solutions in code verification 
seems to be distinctly out of favor in the CFD community. There are a surprisingly large number of 
exact and approximate analytical solutions to the Euler and Navier-Stokes equations [3 1-34]. 
Possibly the reason for lack of familiarity with analytical solutions among many CFD researchers 
and practitioners is the modern concentration on numerical solutions in graduate school training. 

During the last several years a novel approach has been used to obtain exact solutions to the 
Navier-Stokes equations [35]. In their approach, a specific form of solution function is assumed to 
satisfy the PDE of interest. This function is inserted into the PDE and all the derivatives are 
analytically computed using symbolic manipulation software, such as MACSYMATM. The equation 
is simplified, and all remaining terms resulting in inequality between both sides of the equation are 
grouped into a forcing function term. This term is then considered to be simply added to the 
original PDE so that the assumed solution function satisfies the new PDE exactly. For example, in 
the Euler or Navier-Stokes equations this term can be considered to be a source term. The 
boundary conditions for the PDE are simply considered to be either the value of the solution 
function on the boundary @irichlet condition), or a Neumann condition that can be analytically 
computed from the solution function. 

To verify the CFD code, the computed body force term and boundary conditions are 
programmed into the code and a numerical solution computed. This procedure verifies, albeit for a 
very narrow range of physical modeling, a large number of numerical features in the code, for 
example; numerical method, differencing technique, spatial transformation techniques, grid spacing 
technique, and coding accuracy. Shih, Tan and Hwang [36] have taken this approach a step further 
and applied it to the incompressible Navier-Stokes equations for laminar, two-dimensional flow. 
They have obtained an impressive exact solution to the classical lid-driven cavity problem for an 
arbitrary Reynolds number. It is highly recommended that incompressible Navier-S tokes codes be 
verified with this exact solution. 

The largest contributor to numerical solution error, and the one that has caused the most 
unreliability and lack of confidence in CFD solutions, is that due to inadequate grid resolution. It is 
ironic that the quantification of this error is also the most straightforward. We believe the reason 
for this grid error/easy estimation paradox is simple: cost. The computer cost, and to a lesser extenl 
personnel time cost, to carefully conduct the error estimation analysis is probably a factor of 4 for 
2-D problems and a factor of 8 for 3-D problems beyond an “acceptable” solution. If one considers 
that the acceptable solution is usually at the limit of computer time or budgetary constraints already, 
it follows why these estimates are rarely done. We submit that our blunt assessment of the situation 
and the reason for its existence is supported by simply examining the state-of-the-art in ODE 
solvers. ODE solvers suffered the same paradox during their early years, but they are now the 
shining example for accuracy and reliability for numerical solutions. The reason they have 
progressed so rapidly in this regard is because the computer power required for their solution is 
usually minimal compared to the solution of PDE’s. The initiatives of Roache, et. al., on 



assessment of numerical error, as mentioned earlier, is forcing CFD to become more accountable. 

Spatial discretization error is estimated using Richardson’s classical method, also known as 
“deferred approach to the limit’’ and “iterated extrapolation” [37]. Using Richardson’s 
extrapolation, one can write 

Oexact = OA + aAp + higher order terms 

where 4iexaCt is the exact solution to the PDE, OA is the numerical solution obtained using a grid 
size of A, a is a constant that is determined from the numerical solution, and p is the order of the 
numerical method. It is important to note that Richardson’s method applies not only to computed 
dependent variables at all grid points, but also to solution functionals. Solution functionals are 
integrated and differentiated quantities such as body lift and surface heat flux, respectively. At least 
two numerical solutions are required to estimate discretization error using Richardson’s method. 
The fine grid solution need not be twice the number of grid points (in each coordinate direction) as 
the coarse grid, but this is common practice and it provides a more accurate estimate. Roache [38] 
has developed a Grid Convergence Index (GCI), based on Richardson’s extrapolation, that 
converts error estimates obtained from any grid refinement ratio into an equivalent grid doubling 
estimate. He argues that using the GCI would help standardize the accuracy evaluation of grid 
refined solutions. 

Careful use and estimation of error using Richardson’s method has been documented only by a 
few researchers [39-421. In most cases it has been found that two solutions are insflcient to 
properly use Richardson’s method. The reason three or more solutions are required is that from the 
first two solutions it may be found that the demonstrated order of accuracy from the calculations 
does not match the formal accuracy of the method. This can be caused by one of two reasons. 
First, numerical difficulties or errors, such as excessive grid stretching, inaccurate implementation 
of boundary conditions, and coding errors, cause a degradation in the overall accuracy of the 
method. Second, it can be found that insufficient grid resolution was used on the first two, or 
more, solutions such that formal accuracy is not attained until finer grids are used. Until computed 
accuracy from two individual solutions matches previously demonstrated accuracy of the code, 
Richardson’s method cannot be used to estimate error. 

A final observation is made that has apparently not been pointed out in the literature concerning 
the use of Richardson’s method. By examining the grid convergence plots of the researchers that 
have carefully used Richardson’s method an interesting, but unsettling, feature is observed. 
Figures 1 and 2 are grid convergence plots taken from Blottner [41] and Walker & Oberkampf 
[42], respectively. Note that both of these plots demonstrate the numerical method is second order 
accurate. It is seen that the grid fineness required to obtain the demonstrated accuracy of the code is 
also a grid that produces relative errors on the order of 1% to 0.1%. In other words, to 
demonstrate accuracy using Richardson’s method one must compute solutions that have relative 
errors on the order of 1% to 0.1%. This is a very sobering result if solutions of only +lo% are 
desired in production CFD solutions. 

VI. Summarv and Conclusions 

A discussion of the sources of errors that result from the computational fluid dynamic approach 
is presented. The validation issue of determining the errors resulting from the governing partial 



differential equations, boundary conditions, and auxiliary physical models has been addressed. 
From this discussion it is observed that the present approach in CFD is to use reasonable physical 
approximations in the modeling, but the impact of these assumptions on the errors introduced into 
CFD simulations is generally unknown. Also, modeling assumptions such as, two-dimensional 
steady flow are often made and in some cases are physically wrong. Confidence in the accuracy of 
the governing equations can be increased by using results from first principle physics solutions in 
validating the models being used. The validation of the governing equations requires carefully 
developed experiments to test the various modeling assumptions employed. 

Verification of the numerical solution of the governing equations requires that the discretization 
errors be estimated and controlled. A discussion of the sources of discretization errors that result 
from the difference form of the governing equations, boundary conditions, and auxiliary physical 
models has been addressed. With attention to performing adequate grid refinement studies, one 
believes that accurate numerical solutions can be obtained to CFD governing difference equations if 
sufficient computer resources are available. However, one might obtain an accurate result but not 
the physically correct solution. The possibility of multi-solutions to the difference equations has 
not been adequately investigated in the CFD community. , 

Approaches for detection and estimation of errors are suggested. In many cases we know the 
limitation of the physical models, and codes could be used to tell the user when these limitations 
have been exceeded. We are strong supporters of careful grid refinement studies using the 
Richardson extrapolation method to estimate the errors in numerical solutions. These studies are 
very costly, especially for three-dimensional flows. It was pointed out that the grid resolution 
required for the valid use of Richardson’s method produces results which are far beyond the 
accuracy needs of most engineering design requirements. 
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