Use of COTS [commercial-off-the-shelf] Microelectronics in Radiation Environments

PDF Version Also Available for Download.

Description

This paper addresses key issues for the cost-effective use of COTS microelectronics in radiation environments that enable circuit or system designers to manage risks and ensure mission success. COTS parts with low radiation tolerance should not be used when they degrade mission critical functions or lead to premature system failure. We review several factors and tradeoffs affecting the successful application of COTS parts including (1) hardness assurance and qualification issues, (2) system hardening techniques, and (3) life-cycle costs. The paper also describes several experimental studies that address trends in total-dose, transient, and single-event radiation hardness as COTS technology scales to ... continued below

Physical Description

11 p.

Creation Information

Winokur, P.S.; Lum, G.K.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L. & Scott, L. July 7, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper addresses key issues for the cost-effective use of COTS microelectronics in radiation environments that enable circuit or system designers to manage risks and ensure mission success. COTS parts with low radiation tolerance should not be used when they degrade mission critical functions or lead to premature system failure. We review several factors and tradeoffs affecting the successful application of COTS parts including (1) hardness assurance and qualification issues, (2) system hardening techniques, and (3) life-cycle costs. The paper also describes several experimental studies that address trends in total-dose, transient, and single-event radiation hardness as COTS technology scales to smaller feature sizes. As an example, the level at which dose-rate upset occurs in Samsung SRAMS increases from 1.4x10{sup 8} rads(Si)/s for a 256K SRAM to 7.7x10{sup 9} rads(Si)/s for a 4M SRAM, indicating unintentional hardening improvements in the design or process of a commercial technology. Additional experiments were performed to quantify variations in radiation hardness for COTS parts. In one study, only small (10-15%) variations were found in the dose-rate upset and latchup thresholds for Samsung 4M SRAMS from three different date codes. In another study, irradiations of 4M SRAMS from Samsung, Hitachi, and Toshiba indicate large differences in total-dose radiation hardness. The paper attempts to carefully define terms and clear up misunderstandings about the definitions of ''COTS'' and ''radiation-hardened'' technology.

Physical Description

11 p.

Notes

INIS; OSTI as DE00008783

Medium: P; Size: 11 pages

Source

  • Journal Name: IEEE Transactions on Nuclear Science; Other Information: Submitted to IEEE Transactions on Nuclear Science

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-1727J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 8783
  • Archival Resource Key: ark:/67531/metadc793312

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 7, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 6, 2017, 7:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Winokur, P.S.; Lum, G.K.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L. & Scott, L. Use of COTS [commercial-off-the-shelf] Microelectronics in Radiation Environments, article, July 7, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc793312/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.