ENGINEERING CHANGE NOTICE

2. ECN Category
- Supplemental []
- Direct Revision []
- Change ECN []
- Temporary []
- Standby []
- Supersede []
- Cancel/ Void []

3. Originators Name, Organization, MSIN, and Telephone No.
R.D. KECK, 15510, T4-20, 3-1768

4. Date
06/15/95

5. Project Title/No./Work Order No.
Seismic Fan Shutdown System

6. Bldg./Sys./Fac. No.
234-5Z/99B

7. App. Designator
SQ

8. Document Numbers Changed by this ECN
WHC-SD-CP-SDD-004 Rev 1

9. Related ECN No(s)
702505

10. Related PO No.
N/A

11a. Modification Work
- Yes (do blk 11b) []
- No (NA Blks 11b 11c, 11d) []

11b. Work Package No.
N/A

11c. Modification Work Completed
N/A

11d. Restored to Original Condition
(Temp. or Standby ECN Only)
N/A

12. Description of Change
Complete update of rev. 1 including incorporation of ECN 702505

13a. Justification
- Criteria Change []
- Design Improvement []
- Environmental []
- As-Found []
- Facilitate Const. []
- Const. Error/Omission []
- Design Error/Omission []

13b. Justification Details
Modify system design description to make it consistent with the original design intent, incorporate maintenance requirements, provide additional justification for excluding some equipment from safety boundary, updating references and incorporate ECN 702505. See pages 3 and 4 for USQ.

14. Distribution
RD Keck T4-20
LE Edveleon T5-48
DR Groth T4-15
JP King T5-51
DA Connors T3-01
O.S.T.I. (2) A3-36
Central Files A3-88

Release Stamp
OFFICIAL RELEASE BY WHC
DATE JUN 27 1995
55

A-7900-013-1 (04/94)
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Engineering Change Notice

15. Design Verification Required
- [] Yes
- [x] No

16. Cost Impact

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional</td>
<td>$ NA</td>
</tr>
<tr>
<td>Savings</td>
<td>$ NA</td>
</tr>
</tbody>
</table>

17. Schedule Impact (Days)
- Improvement [] N/A
- Delay [] N/A

18. Change Impact Review
Indicate the related documents (other than the engineering documents identified on page 1) that will be affected by the change described in block 12. Enter the affected document number in block 19.

- [] SSD/DD
- [] Functional Design Criteria
- [] Operating Specification
- [] Criticality Specification
- [] Conceptual Design Report
- [] Equipment Spec.
- [] Construction Spec.
- [] Procurement Spec.
- [] Vendor Information
- [] OM Manual
- [] FSAR/SAR
- [] Safety Equipment List
- [] Radiation Work Permit
- [] Environmental Impact Statement
- [] Environmental Report
- [] Environmental Permit
- [] Seismic/Stress Analysis
- [] Stress/Design Report
- [] Interface Control Drawing
- [] Calibration Procedure
- [] Installation Procedure
- [] Maintenance Procedure
- [] Engineering Procedure
- [] Operating Procedure
- [] Operational Safety Requirement
- [] IEFD Drawing
- [] Cell Arrangement Drawing
- [] Essential Material Specification
- [] Fac. Proc. Samp. Schedule
- [] Inspection Plan
- [] Inventory Adjustment Request
- [] Tank Calibration Manual
- [] Health Physics Procedure
- [] Spare Multiple Unit Listing
- [] Test Procedures/Specification
- [] Component Index
- [] ASME Coded Item
- [] Human Factor Consideration
- [] Computer Software
- [] Electric Circuit Schedule
- [] ICRS Procedure
- [] Process Control Manual/Plan
- [] Process Flow Chart
- [] Purchase Requisition

19. Other Affected Documents
(Not listed below will not be revised by this ECN.) Signatures indicate that the signing organization has been notified of other affected documents listed below.

<table>
<thead>
<tr>
<th>Document Number / Revision</th>
<th>Document Number / Revision</th>
<th>Document Number / Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAK C1I9193</td>
<td>5MC-59-C-11108 Rev.14</td>
<td>ZSE-99B-001</td>
</tr>
</tbody>
</table>

20. Approvals

OPERATIONS and ENGINEERING

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Kedl</td>
<td>6/20/95</td>
</tr>
<tr>
<td>Cog. Engr.</td>
<td>6/20/95</td>
</tr>
<tr>
<td>Cog. Mgr.</td>
<td>6/19/95</td>
</tr>
<tr>
<td>QA</td>
<td>6/21/95</td>
</tr>
</tbody>
</table>

ARCHITECT-ENGINEER

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Environ.</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT of ENERGY

Signature or a control number that tracks the approval signature.

Additional

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oph. Op.</td>
<td>6/19/95</td>
</tr>
<tr>
<td>J. Kung</td>
<td></td>
</tr>
</tbody>
</table>

Independent Review

Checking
REFERENCE ITEM #: ECN614399

TITLE: Definition and Means of Maintaining the Supply Ventilation System Seismic Shutdown Portion of the PFP Safety Envelope

Description of CHANGE: Modify system design description to make it consistent with the original design intent, incorporate maintenance requirements, provide additional justification for excluding some equipment from the safety boundary, updating references, and incorporating ECN 702505.

QUESTIONS (Supporting information is required for each question. Attach additional pages as necessary. Specifically note SAR sections and/or TSRs reviewed to come to conclusion.)

Does the REFERENCED ITEM:

A. Make PROPOSED CHANGES to the facility or procedures which differ from conditions described in the safety basis?

[] N/A [X] No [] Yes/Maybe

Basis: The requirement for the seismic fan shutdown system is provided in WHC-SD-CP-SAR-021, chapter 9, section 9.2.4A.3. The criteria requires "Automatic shutdown of building ventilation supply fans (and electrically-powered exhaust)". The changes to the SDD better define which fans must be shutdown as part of the safety envelope. Thus there is no impact to the safety basis.

B. Make PROPOSED CHANGES that represent conditions that have not been analyzed in the safety basis?

[] N/A [X] No [] Yes/Maybe

Basis: The failure modes of the ventilation system have been analyzed previously. As a result the seismic fan shutdown system was installed to mitigate one failure scenario. This is noted in WHC-SD-CP-SAR-021, chapter 9, section 9.2.4A.3. The changes to this document are consistent with the safety analyses noted in the SAR.

C. Describe tests or experiments which differ from those described in the safety basis?

[] N/A [X] No [] Yes/Maybe

Basis: No test or experiment is involved.

D. Is a change to the TSRs involved?

[] N/A [X] No [] Yes/Maybe

Basis: The TSR for the seismic fan shutdown system is found in WHC-SD-CP-OSR-010, LCO 3.2.3. The change to the subject document will not change the LCO. The change does further refine the dry air process fans to be shutdown as the stage 2 fans. This refinement is consistent with the LCO.

Note: If any of the questions are answered "Yes/Maybe" a Safety Evaluation shall be performed.
<table>
<thead>
<tr>
<th>USQE No. 1</th>
<th>R. D. Keck</th>
<th>USQE No. 2</th>
<th>A. H. NGUYENHUU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Name</td>
<td>R. D. Keck</td>
<td>Print Name</td>
<td>A. H. NGUYENHUU</td>
</tr>
<tr>
<td>Signature</td>
<td>R. D. Keck</td>
<td>Signature</td>
<td>A. H. NGUYENHUU</td>
</tr>
<tr>
<td>Date</td>
<td>6/15/95</td>
<td>Date</td>
<td>6/15/95</td>
</tr>
</tbody>
</table>

MRP 5.12, Figure 3. (2/95)
RELEASE AUTHORIZATION

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>WHC-SD-CP-SDD-004, REV 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>Definition and Means of Maintaining the Supply Ventilation System Seismic Shutdown Portion of the PFP Safety Envelope</td>
</tr>
<tr>
<td>Release Date:</td>
<td>6/23/95</td>
</tr>
</tbody>
</table>

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

<table>
<thead>
<tr>
<th>WHC Information Release Administration Specialist:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>June 23, 1995</td>
</tr>
</tbody>
</table>

Kara M. Broz

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from:
U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650

A-6001-400.2 (09/94) WEF256
Definition and Means of Maintaining the Supply Ventilation System Seismic Shutdown Portion of the PFP Safety Envelope

Abstract

The Supply Ventilation System Seismic Shutdown ensures that the 234-5Z building supply fans and the dry air process fans are shutdown following a seismic event as described in the PFP Final Safety Analysis Report. This document defines the safety envelope for the Ventilation System Seismic Shutdown and identifies the operability requirements, components, and procedures which ensure this safety envelope is maintained.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Definition and Means of Maintaining the Supply Ventilation System Seismic Shutdown Portion of the PFP Safety Envelope

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change - Replace, Add, and Delete Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EDT-140646</td>
</tr>
<tr>
<td>1</td>
<td>Revised per ECN-166682</td>
</tr>
<tr>
<td>2</td>
<td>Revised per ECN-614399 Incorporated ECN-702505</td>
</tr>
</tbody>
</table>

Authorized for Release: [Signature] 1/20/10
Table of Contents

1.0. PURPOSE ... 3

2.0. BACKGROUND ... 3

3.0. SYSTEM FUNCTIONAL REQUIREMENTS 3
 3.1. OSR REQUIREMENTS AND SYSTEM OPERATION 4
 3.2. OSR SURVEILLANCE AND RECOVERY ACTIONS 4

4.0. SAFETY ENVELOPE (SE) EQUIPMENT 5
 4.1. SELECTION OF SE EQUIPMENT 5
 4.2. JUSTIFICATION FOR EXCLUSION OF EQUIPMENT FROM SE 8

5.0. SAFETY ENVELOPE PROCEDURES 10
 5.1. SE OPERATING PROCEDURE 11
 5.1.1 ZO-060-119, Perform Emergency Shutdown of Ventilation System .. 11
 5.2. SE ALARM RESPONSE PROCEDURE 11
 5.2.1 ZO-060-811, Alarm Responses for Seismic Panel Alarms 11
 5.3 EQUIPMENT MAINTENANCE AND REPAIR 11

6.0. SAFETY ENVELOPE SURVEILLANCE REQUIREMENTS 11
 6.1. SURVEILLANCE REQUIREMENT SR 3.2.3.1 11
 6.2. SURVEILLANCE REQUIREMENT SR 3.2.3.2 12

REFERENCES .. 13

Appendix A - OSR Systems Compliance Sheet 14
Appendix B - Master Component Index Input List 17
Appendix C - SE Boundary Identification Drawings 19
Appendix D - Essential Drawing List 19
1.0. PURPOSE

The purpose of this document is to record the technical evaluation of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements, WHC-SD-CP-OSR-010, Rev. 0. May 1994, Section 3.2.3, "Supply Ventilation System Seismic Shutdown." This document, with its appendices, provides the following:

1. The system functional requirements for determining system operability (Section 3).
2. Evaluations of equipment to determine the safety boundary for the system (Section 4).
3. A list of annotated drawings which show the safety envelope boundaries (Appendix C).
4. A list of the safety envelope equipment (Appendix B).
5. Functional requirements for the individual safety envelope equipment, including appropriate setpoints and process parameters (Section 4.1).
6. A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment within the safety envelope (Sections 5 and 6 and Appendix A).

2.0. BACKGROUND

The 234-5Z building in the Plutonium Finishing Plant (PFP) has been analyzed to determine the consequences of a 0.20 g safe shutdown earthquake (SSE). WHC-SD-CP-SAR-021, "Plutonium Finishing Plant Final Safety Analysis Report," Chapter 9, Section 9.2.4, "Seismic Event" concluded that the most serious spread of contamination from an SSE would occur if the building were pressurized by the main supply fans while the exhaust fans no longer functioned. In accordance with WHC-CM-1.3, section MRP 5.46, the supply ventilation system seismic shutdown system is designated Safety Class 1.

3.0. SYSTEM FUNCTIONAL REQUIREMENTS

The supply ventilation system seismic shutdown is provided to mitigate the consequences of exhaust fan failures during a seismic event which breaches the structural confinement barriers. On receipt of a signal from either of two accelerometers, the ventilation control circuits must remove electrical power from fans which may pressurize the building. Each accelerometer has two sensors mounted in the east-west and north-south directions. A vertical sensor is not
Each accelerometer is set to actuate (open a circuit) if it detects an acceleration greater than 0.07g.

3.1. OSR REQUIREMENTS AND SYSTEM OPERATION

As specified in WHC-SD-CP-OSR-010, LCO 3.2.3, an accelerometer-activated system shall shut down the 234-5Z supply ventilation in the event of an earthquake greater than 0.07g. More specifically, the building supply fans and the dry air stage 2 process fans (supply fans) must be secured, preventing the pressurization of the building. Power is removed from the undervoltage coil of the circuit breaker for the supply fan motors. A detailed sequence of equipment operation is provided in Section 4.1. Exhaust fans and minor supply fans are also shut down by this system to provide an orderly shutdown of the ventilation system, but this function is not a safety requirement.

The supply ventilation system seismic shutdown is considered inoperable if it fails to shutdown the supply fans upon occurrence of a greater than 0.07 g seismic event. In the event that a seismic event is sensed by the power operator and the supply ventilation seismic shutdown system fails to shut down the supply fans, the supply fans will be shutdown manually using either the manual seismic shutdown switch (appendix A, required action A.1) or individual controls (appendix A, required action A.2). Although not required by the OSR, the operator should shutdown 234-5Z exhaust fans to maintain ventilation balance and avoid possible excessive differential pressures throughout the building.

3.2. OSR SURVEILLANCE AND RECOVERY ACTIONS

Annual functional testing of the accelerometer-activated shutdown is required. The LCO requirement specifies the 0.07 g acceleration at which the seismic shutdown is to occur; therefore a surveillance is also required to verify the calibration of the accelerometer.

If the functional test or calibration have not been performed within the required interval or are unsatisfactory, the supply ventilation seismic shutdown system shall be considered inoperable. Operations will be limited such that no additional plutonium is brought into the 234-5Z and 236-Z buildings. If the system fails the functional test or calibration, repairs shall be initiated within 24 hours of failure. If the system is not...

1 A vertical sensor was not included for the following two reasons. First, seismic analyses determined that building damage that would result in a loss of containment are caused by the horizontal components of earthquakes. Second, tests determined that construction and general operating activities cause primarily vertical accelerations. Thus nuisance trips could be minimized without missing a potentially damaging earthquake by not including a vertical sensor.
Definition and Means of Maintaining the Supply Ventilation
System Seismic Shutdown Portion of the PFP Safety Envelope

returned to an OPERABLE condition within 10 days, the 234-52 supply fans shall be shutdown or a written RECOVERY PLAN shall be initiated to remove DISPERSIBLE plutonium from the gloveboxes in 234-5Z and 236-Z.

Because the ventilation seismic shutdown system consists of two redundant channels of instrumentation, each capable of shutting down the building supply fans and the dry air stage 2 process fans (supply fans), the system shall be considered OPERABLE if at least one of the two channels is fully operational. This allows maintenance to be performed on one channel of the system while the other channel ensures compliance with the LCO. However, the ventilation seismic shutdown system is designed to operate under normal circumstances with both channels of instrumentation. Therefore, Plant Manager and PFP Safety approval is required for facility operation of more than 24 hours duration with only one channel of the ventilation seismic shutdown system OPERATIONAL. The inoperable accelerometer channel must be restored to an OPERABLE condition within 30 days. If the inoperable channel cannot be returned to an OPERABLE condition, a report must be submitted to the DOE regional office which addresses equipment failure, corrective actions taken, plan of action to restore channel operation, and compensatory measures.

4.0. SAFETY ENVELOPE (SE) EQUIPMENT

4.1. SELECTION OF SE EQUIPMENT

The following discussion describes the function of the equipment which forms the supply ventilation system seismic shutdown safety envelope and the justification for including this equipment in the safety envelope. Most safety envelope equipment for this system is relied upon in the FSAR to function to mitigate the uncontrolled release of radioactive materials following an earthquake which involves the failure of a physical barrier(s). The only exception to this is the "on-line/bypass" switches which indicate that the Seismic Shutdown System is not OPERABLE. (The information in parentheses indicates the location of the equipment on drawings H-2-78073 sheet 2, H-2-96422 sheet 1, and H-2-96436 sheet 4).

4.1.1 Accelerometers 1 and 2 (H-2-78073, sheet 2, lines 54 and 60) and contacts ACCLRM1 and ACCLRM2 (sheet 2, lines 51 and 57).

The accelerometers detect an earthquake greater than 0.07g and initiate the actions required to shutdown the 234-5Z ventilation supply fans and dry air process supply fans. When an earthquake greater than 0.07g has been detected, contacts ACCLRM1 and ACCLRM2 open.
4.1.2 Relays K1, K2, K3, K4 (H-2-78073, sheet 2, lines 51, 57, 52 and 58 respectively) and the associated contacts described below.

Relays K1, K2, K3, and K4 are normally energized. Following an earthquake of greater than 0.079g, relays K1, K2, K3, and K4 are deenergized when contacts ACCLRM1 and ACCLRM2 open. Deenergizing relays K1, K2, K3, and K4 opens their associated contacts as described below.

- Contacts K1-1, K2-1, K1-2 and K2-2 (H-2-78073, sheet 2, line 2).

Contacts K1-1, K2-1, K1-2 and K2-2 are closed when relays K1 and K2 are energized. Deenergizing relays K1 and K2 opens contacts K1-1, K2-1, K1-2 and K2-2. Opening contacts K1-1 or K2-1 deenergizes the undervoltage relays for supply fans S1, S2, S3 and S4. Opening contacts K1-2 or K2-2 deenergizes the undervoltage relays for supply fans S5, S6, S7 and S8.

- Contacts K1-3 and K2-3 (H-2-96436, sheet 4, line 18).

Contacts K1-3 and K2-3 are closed when relays K1 and K2 are energized. Deenergizing relays K1 and K2 opens contacts K1-3 and K2-3. Opening contacts K1-3 or K2-3 deenergizes the 15 HP, stage 2 process fan associated with the electric air dryer unit located on the second floor adjacent to column C19.

- Contacts K3-1 and K4-1 (H-2-96422, sheet 1, line 16).

Contacts K3-1 and K4-1 are closed when relays K3 and K4 are energized. Deenergizing relays K3 and K4 opens contacts K3-1 and K4-1. Opening contacts K3-1 or K4-1 deenergizes the 15 HP, stage 2 process fan associated with the steam air dryer unit located on the second floor adjacent to column C19.

4.1.3 Motor starter 3M in the electric air dryer control cabinet (H-2-96436, sheet 4, line 18) and associated 480V, 3-phase contacts (H-2-96436, sheet 4, zone 6F).

Motor starter 3M is energized when the electric dry air system is operating. Following a seismic event which initiates a ventilation shutdown, motor starter 3M is deenergized when contact K1-3 or K2-3 opens. Deenergizing motor starter 3M opens 480 volt, 3 phase contacts, which deenergizes the electric dry air, 15 HP, stage 2 process fan.
4.1.4 Motor starter 3M in the steam air dryer control cabinet (H-2-96422, line 16) and associated 480V, 3-phase contacts (H-2-96422, zone 6F).

Motor starter 3M is energized when the steam dry air system is operating. Following a seismic event which initiates a ventilation shutdown, motor starter 3M is deenergized when contact K3-1 or K4-1 opens. Deenergizing motor starter 3M opens 480 volt, 3 phase contacts, which deenergizes the steam dry air, 15 HP, stage 2 process fan.

4.1.5 Undervoltage relays for supply fan breakers 1 through 8 (H-2-78073, sheet 2, lines 3, 4, 5, and 6).

The undervoltage relays for supply fan breakers 1 through 8 must be energized for the breakers to remain closed. Following a seismic event which initiates a ventilation shutdown, the undervoltage relays are deenergized when contacts K1-1, K2-1, K1-2 and K2-2 open. Deenergizing the undervoltage relays opens the associated supply fan breakers due to spring pressure actuating the tripper bars.

4.1.6 Supply fan breakers for fans S1 through S8.

The supply fan breakers for fans S1 through S8 provide electrical power to the supply fans when the breakers are closed. Following a seismic event which initiates a ventilation shutdown, the supply fan breakers are opened, deenergizing supply fans S1 through S8, when the undervoltage relay for each breaker is deenergized.

4.1.7 Accelerometer 1 and 2 "on-line/bypass" switches (H-2-78073, sheet 2, lines 52, 81 and 87 and lines 58, 82 and 87) and associated wiring.

The accelerometer 1 and 2 "on-line/bypass" switches allow the accelerometers to be tested while preventing relays K1, K2, K3 and K4 from being deenergized. Additional contacts on the "on-line/bypass" switches energize the "seismic fan shutdown system disabled" horns and alarm light when both switches are placed in the bypass position. This latter function alerts plant personnel that the seismic fan shutdown system is not OPERABLE and justifies the inclusion of the switches and their associated wiring in the safety envelope.

This equipment is not required to function following a seismic event and therefore does not need to be seismically qualified.
4.1.8 Seismic fan shutdown system disabled alarm horns (2) and alarm light (H-2-78073, sheet 2, line 87 and below) and the associated wiring to the UPS power supply.

The seismic fan shutdown system disabled alarm horns and alarm light energize when both accelerometer 1 and 2 "on-line/bypass" switches have been placed in the bypass position. This alerts plant personnel that the seismic fan shutdown system is not OPERABLE. This justifies the inclusion of the alarm horns and light and associated wiring to the UPS power supply in the safety envelope.

This equipment is not required to function following a seismic event and therefore does not need to be seismically qualified.

4.2. JUSTIFICATION FOR EXCLUSION OF EQUIPMENT FROM SE

The components excluded from the safety envelope are not required to operate to satisfy WHC-SD-CP-OSR-010, LCO 3.2.3.

Specific components not included in the safety envelope and the reasoning behind their exclusion is discussed below.

4.2.1 120 VAC dedicated seismic shutdown uninterruptable power supply (UPS).

The seismic shutdown UPS is not included in the safety envelope because the seismic shutdown system utilizes a "fail-safe" design in which power is required to keep the fans operating. The seismic shutdown UPS is not required to ensure the shutdown of the 234-5Z supply fans and the dry air stage 2 process supply fans in the event of an earthquake greater than or equal to 0.07g. If the UPS power is lost, the seismic fan shutdown system will operate to deenergize the supply fans, as required. While an inadvertent loss of the seismic shutdown UPS and the resultant loss of ventilation in the facility will interrupt plant operations, this does not justify its inclusion in the safety envelope.

4.2.2 Seismic status panel with the exception of the seismic fan shutdown system disabled horns and alarm light.

The seismic status panel provides individual accelerometer bypass alarms, seismic detectors on line indication, seismic alarms, UPS available indication, and power available indication. None of the above alarms or indications are required to function to ensure that the seismic fan shutdown system operates properly or to alert personnel of the system's inability to operate properly. Therefore none of seismic status panel indications, alarms or components discussed above are included in the safety envelope.
4.2.3 Relays KES-5, KES-9, KES-10, and KES-13 and their associated contacts.

Relays KES-5, KES-9, KES-10, and KES-13 and their associated contacts function to shut down the 234-52 exhaust fans following a 0.07g earthquake. The exhaust fans are not a safety concern since the fans cannot cause a pressurization of the building. As noted in section 2.0, pressurization of the building as the result of an earthquake is the safety concern that this system mitigates. Therefore, relays KES-5, KES-9, KES-10, and KES-13 and their associated contacts are not included in the safety envelope.

4.2.4 Relays KES-1, KES-4 and KES-6 and their associated contacts.

Relays KES-4 and KES-6 and their associated contacts function to shut down the electric and steam stage 1 process supply fans, filter frame supply fan (S-10) and the air conditioning supply fan to the inspection area (S-11) following a 0.07g earthquake.

The stage 1 process fans for the electric and steam dry air systems are 2 horsepower fans. The fans move air through the first drying stage of the air dryers. The stage 2, 15 horsepower fans (see 4.1.3 and 4.1.4) provide the motive force to supply air to the gloveboxes. Without the stage 2 fans operating, the stage 1 fans do not have the capacity to move a large volume of air to the gloveboxes. Thus the stage 1 fans will not cause a significant release of radioactive material following a seismic event.

Fan S-10 is driven by a ½ horsepower motor. It uses air from Zone 1 to pressurize an annular space around each Zone 3 and Zone 4 filter in the final filter rooms. This prevents leakage during normal operation even if a filter gasket fails to seal. It does not provide any mechanism for a significant release after a seismic event.

Fan S-11 is driven by another small motor, and while it provides air to the Zone 3A inspection area, it is not fed from the supply plenum unless an adequate differential pressure is maintained in Zone 3A. If the pressure differential is lost and the fan continues to operate, any air that S-11 moves will come from the same zone. In view of the flow path and the volume of air moved by this fan, will not cause a significant release of radioactive material following a seismic event.

For these reasons, relays KES-4 and KES-6 and their associated contacts are not included in the safety envelope.
4.2.5 Relays KES-7, KES-11, and timing module KTD-8 and their associated contacts.

Relays KES-7, KES-11, and timing module KTD-8 and their associated contacts function to delay the shutdown of the exhaust fans for about 20 seconds after the supply fans have been shutdown by the seismic fan shutdown system. The shutdown of the exhaust fans is not a safety concern since the fans cannot cause a pressurization of the building. As noted in section 2.0, pressurization of the building as the result of an earthquake is the safety concern that this system mitigates. Therefore relays KES-7, KES-11, and timing module KTD-8 and their associated relays are not included in the safety envelope.

4.2.6 The wiring and junction boxes which connect safety envelope components.

The wiring and junction boxes which connect the seismic shutdown control panels, seismic status panel, undervoltage relays for supply fans S1 through S8, and the electric and steam air dryer starter cabinets are excluded from the safety envelope because the seismic shutdown system utilizes a "fail-safe" design in which power is required to keep the fans operating. The continuity of connecting wiring is not required to ensure the shutdown of the 234-5Z supply fans and the dry air process supply fans in the event of a 0.07g earthquake. If any of the connecting wiring in a conduit is severed or shorted together, the seismic fan shutdown system will operate to deenergize the required supply fans. While an inadvertent break in this wiring and the resultant loss of ventilation in the facility will interrupt plant operations, this is not justification for including the seismic shutdown systems connecting wiring in the safety envelope. Associated wiring identified in Section 4.1.13 is excluded from this section since the wiring is required to alert operators when the seismic shutdown system is not OPERABLE. Therefore, the wiring addressed in Section 4.1.13 is included in the safety envelope.

5.0. SAFETY ENVELOPE PROCEDURES

The following procedures and practices are required to ensure compliance with LCO 3.2.3 is achieved during all MODES. The procedures include operating procedures, alarm response procedures and maintenance procedures. Each procedure included in the Safety Envelope and the justification for its inclusion is presented below.
5.1. SE OPERATING PROCEDURE

5.1.1 ZO-060-119, Perform Emergency Shutdown of Ventilation System

One of the LCO 3.2.3 Actions requires the 234-5Z supply ventilation to be shutdown by the manual seismic shutdown switch or the individual supply fan switches when operations personnel sense a seismic event, if the supply fans were not shutdown by the accelerometer-activated ventilation seismic shutdown system. ZO-060-119 provides the procedural steps required to recognize this situation and manually shutdown the supply ventilation. Although not required by the OSR, ZO-060-119 also directs the operator to shutdown 234-5Z exhaust fans to maintain ventilation balance and avoid possible excessive differential pressures throughout the building.

5.2. SE ALARM RESPONSE PROCEDURE

5.2.1 ZO-060-811, Alarm Responses for Seismic Panel Alarms

This procedure provides instructions for responding to seismic alarms (Appendix B).

5.3 EQUIPMENT MAINTENANCE AND REPAIR

In house repair or attempted repair of the Safety Class 1 equipment except for the supply fan circuit breakers is not permitted. Repair of supply fan circuit breakers is permitted if followed by satisfactory performance of ZSE-12A-001 or ZSE-12A-002. Other Safety Class 1 equipment or parts within the equipment may only be replaced with like equipment or parts by in house work forces.

6.0. SAFETY ENVELOPE SURVEILLANCE REQUIREMENTS

6.1. SURVEILLANCE REQUIREMENT SR 3.2.3.1

OSR Surveillance Requirement SR 3.2.3.1 requires an annual FUNCTIONAL TEST of the accelerometer activated supply ventilation system seismic shutdown system. This test is performed by procedure ZSE-99B-001, "Annual Seismic Shutdown System In-Service-Test." To satisfy this requirement the procedure must exercise every component in the system from the accelerometers to the supply fan circuit breakers. The procedure must verify that a signal from either accelerometer results in a trip signal to each supply fan motor controller and that each motor controller interrupts power to its motor on receipt of a trip signal. ZSE-12A-001 and ZSE-12A-002 perform an annual test of the supply fan breakers undervoltage (UV) trip to ensure a loss of voltage to the undervoltage relay will open the circuit breaker.
6.2. SURVEILLANCE REQUIREMENT SR 3.2.3.2

OSR Surveillance Requirement SR 3.2.3.2 requires an annual calibration of each accelerometer channel. This calibration is performed by procedure ZSE-99B-002, "Annual Functional Test of Terra Technology Accelerometers." To satisfy the surveillance requirement, this procedure verifies the calibration of the accelerometer to ensure it provides a trip signal when stimulated by a force equivalent to a 0.07 g seismic event. If an accelerometer is found to be out of calibration, it is sent back to the manufacturer for calibration.
REFERENCES

Plutonium Finishing Plant Operational Safety Requirements, WHC-SD-CP-OSR-010, Rev 0, May 1994

Operating Procedure, ZO-060-112, Respond to Alarms Related to Power Equipment.

Maintenance Procedure, ZSE-99B-001, Annual Seismic Shutdown System In-Service Test.

Maintenance Procedure, ZSE-99B-002, Annual Functional Test of Terra Technology Accelerometer.

Maintenance Procedure, ZSE-12A-001, Annual Inspection and Testing Electrical Switchgear Breakers for Supply Fans SF-1 through SF-4

Maintenance Procedure, ZSE-12A-002, Annual Inspection and Testing Electrical Switchgear Breakers for Supply Fans SF-5 through SF-8

Operating Procedure, ZO-060-119, Perform Emergency Shutdown of Ventilation System.

PFP Safety Equipment List, WHC-SD-CP-TI-108.

LCO 3.2.3 The accelerometer activated 234-5Z supply ventilation system seismic shutdown shall be OPERABLE and set to shutdown building supply and dry air process fans (supply fans) in the event of a greater than 0.07 g seismic event.

APPLICABILITY: ALL MODES

ACTIONS:

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. A seismic event greater than 0.07 g has been detected at PFP and the</td>
<td>Building exhaust should also be reduced, in conjunction with ACTIONS A.1 and A.2,</td>
<td></td>
</tr>
<tr>
<td>supply ventilation system seismic shutdown failed to shutdown the supply</td>
<td>_shutdowning fans if necessary, to maintain building negative pressures within</td>
<td></td>
</tr>
<tr>
<td>fans.</td>
<td>normal operating range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.1 Shutdown the 234-5Z supply fans with the manual seismic shutdown switch.</td>
<td>IMMEDIATELY</td>
</tr>
<tr>
<td></td>
<td>A.2 Shutdown the 234-5Z supply fans with the individual fan switches.</td>
<td>IMMEDIATELY</td>
</tr>
<tr>
<td>B. The accelerometer activated supply ventilation system seismic shutdown</td>
<td>Enter MODE 2, Limited Plutonium Handling Operations. Limit operations such that no</td>
<td>IMMEDIATELY</td>
</tr>
<tr>
<td>system is inoperable.</td>
<td>additional DISPERIBLE plutonium is brought into the 234-5Z and 236-2 buildings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2.1 Restore supply ventilation system seismic shutdown OPERABILITY</td>
<td>10 days</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2.2 Reduce DISPERIBLE plutonium to below accepted risk envelope quantities</td>
<td>10 days</td>
</tr>
<tr>
<td></td>
<td>in accordance with a RECOVERY PLAN.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building exhaust should also be reduced, in conjunction with ACTION B.2.3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shutdowning fans if necessary, to maintain building negative pressures within</td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal operating range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2.3 Shutdown the 234-5Z supply fans.</td>
<td>10 days</td>
</tr>
</tbody>
</table>
Definition and Means of Maintaining the Supply Ventilation System Seismic Shutdown Portion of the PFP Safety Envelope

APPLICABLE OSR LCO (WHC-SD-CP-OSR-010 Section 3.0):

3.2.3 Supply Ventilation System Seismic Shutdown

SURVEILLANCE REQUIREMENTS:

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.2.3.1</td>
<td>Perform FUNCTIONAL TEST of the accelerometer activated ventilation system seismic shutdown.</td>
</tr>
<tr>
<td>SR 3.2.3.2</td>
<td>Perform a calibration of each accelerometer channel.</td>
</tr>
</tbody>
</table>

APPLICABLE ACCIDENT ANALYSES (WHC-SD-CP-021, CH 9) SECTION/TITLE:

9.2.4 Seismic Event
9.2.4A.6 Seismic Accident Analysis

APPLICABLE PLANT/PROCESS DESIGN/OPERATION DESCRIPTION(S) [FSAR CHAPTER/SECTION]:

1.5.5 Updating and Expanding Seismic Analysis
2.1.1.6 Earthquake
2.1.2.3 Earthquake
2.5 Seismic Risk Acceptance and Justification
4.2.5 Seismic Design
4.4 Classifications of Structures, Components, and Systems
5.4.1 Ventilation Systems

BOUNDARY IDENTIFICATION DRAWINGS:

H-2-78073, sheet 2, Seismic shutdown system, electrical
H-2-16318, sheet 1, Fan Control Schematic and Control Panel
H-2-16318, sheet 3, Fan Control Schematic Emergency Shutdown
H-2-96422, Steam dry air controller, electrical
H-2-96436, sheet 4, Electric dry air controller, electrical

ESSENTIAL SYSTEM DRAWINGS:

H-2-78073, sheet 2, Seismic shutdown system, electrical
H-2-16318, sheet 1, Fan Control Schematic and Control Panel
H-2-16318, sheet 3, Fan Control Schematic Emergency Shutdown
H-2-96422, Steam dry air controller, electrical
H-2-96436, sheet 4, Electric dry air controller, electrical
H-2-26538, sheet 1, 480-V Normal power one-line diagram

IMPLEMENTING PROCEDURES/COMPLIANCE VERIFICATION

OPERATING:

20-060-811, Alarm Responses for Seismic Panel Alarms
20-060-117, Perform Power Equipment Surveillance
20-060-119, Perform Emergency Shutdown of Ventilation System
20-060-102, Startup/Shutdown Ventilation System
20-100-030, Perform Facility Surveillance and Responses

LABORATORY: None

HEALTH PHYSICS: None

OPERATING SPECIFICATION(S): None
Frequency

<table>
<thead>
<tr>
<th>Procedure Description</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Test/Calibration</td>
<td>ZSE-124-002</td>
</tr>
<tr>
<td>Electrical Switchgear Breaker Functional Test, SPS 1 through 4</td>
<td>ZSE-124-001</td>
</tr>
<tr>
<td>Functional Test</td>
<td>ZSE-998-001</td>
</tr>
</tbody>
</table>

Maintenance

Administrative: None

Surveillance Requirements:

3.2.3 Supply Ventilation System Seismic Shutdown

Applicable OSR LCO (MHC-SD-CP-080-00 section 3.0):

OSR LCO Compliance Sheet
Appendix B - Master Component Index Input List

APPLICABLE OSR LCO (HHC-SD-CP-OSR-010 Section 3.0):
3.2.3 Supply Ventilation System Seismic Shutdown

<table>
<thead>
<tr>
<th>MASTER COMPONENT INDEX NUMBER</th>
<th>FUNCTIONAL DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>ESSENTIAL DRAWING NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCELEROMETER-1</td>
<td>Accelerometer 1</td>
<td>Terra Technology DCA-333</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>ACCELEROMETER-2</td>
<td>Accelerometer 2</td>
<td>Terra Technology DCA-333</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-K1-99B</td>
<td>Seismic shutdown control panel, relay K1</td>
<td>Nutherm, Inc #EGPI-003</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-K2-99B</td>
<td>Seismic shutdown control panel, relay K2</td>
<td>Nutherm, Inc #EGPI-003</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-K3-99B</td>
<td>Seismic shutdown control panel, relay K3</td>
<td>Nutherm, Inc #EGPI-003</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-K4-99B</td>
<td>Seismic shutdown control panel, relay K4</td>
<td>Nutherm, Inc #EGPI-003</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>MS-SEL1-99B</td>
<td>Seismic shutdown control panel, Accelerometer 1 ONLINE\BYPASS switch</td>
<td>Westinghouse #PB1KEH2AF101</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>MS-SEL2-99B</td>
<td>Seismic shutdown control panel, Accelerometer 2 ONLINE\BYPASS switch</td>
<td>Westinghouse #PB1KEH2AF101</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>AL-HORN1-99B</td>
<td>Seismic status panel, system disabled horn</td>
<td>Mallory Sonalert SC11ON #64F76</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>AL-HORN2-99B</td>
<td>Column A10, system disabled horn</td>
<td>Mallory Sonalert SC11ON #64F76</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>I-LITE1-99B</td>
<td>Column A10, system disabled light</td>
<td>Westinghouse PB1GVRV7</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV1-12A</td>
<td>S1 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV2-12A</td>
<td>S2 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV3-12A</td>
<td>S3 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV4-12A</td>
<td>S4 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV5-12A</td>
<td>S5 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV6-12A</td>
<td>S6 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV7-12A</td>
<td>S7 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>RLY-UV8-12A</td>
<td>S8 breaker undervoltage relay</td>
<td>Westinghouse DK-25 Style Nos 1332 874 and 1241 581</td>
<td>H-2-78073 Sheet 2</td>
</tr>
<tr>
<td>FSX103</td>
<td>S1 circuit breaker</td>
<td>Westinghouse DK-25</td>
<td>H-2-26538</td>
</tr>
</tbody>
</table>
APPLICABLE OSR LCO (WHC-SD-CP-OSR-010 Section 3.0):

3.2.3 Supply Ventilation System Seismic Shutdown

<table>
<thead>
<tr>
<th>FBX105</th>
<th>S2 circuit breaker</th>
<th>Westinghouse DK-25</th>
<th>H-2-26538</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBX106</td>
<td>S3 circuit breaker</td>
<td>Westinghouse DK-25</td>
<td>H-2-26538</td>
</tr>
<tr>
<td>FBX107</td>
<td>S4 circuit breaker</td>
<td>Westinghouse DK-25</td>
<td>H-2-26538</td>
</tr>
<tr>
<td>FBX205</td>
<td>S5 circuit breaker</td>
<td>Westinghouse DK-25</td>
<td>H-2-26538</td>
</tr>
<tr>
<td>FBX206</td>
<td>S6 circuit breaker</td>
<td>Westinghouse DK-25</td>
<td>H-2-26538</td>
</tr>
<tr>
<td>FBX207</td>
<td>S7 circuit breaker</td>
<td>Westinghouse DK-25</td>
<td>H-2-26538</td>
</tr>
<tr>
<td>FBX211</td>
<td>S8 circuit breaker</td>
<td>Westinghouse DK-25</td>
<td>H-2-26538</td>
</tr>
<tr>
<td>RLY-3MS-230</td>
<td>Steam dry air controller, motor starter 3M</td>
<td>General Electric CR4G2WP</td>
<td>H-2-96422</td>
</tr>
</tbody>
</table>

NOTES/COMMENTS: None
Appendix C - SE Boundary Identification Drawings

H-2-78073, sheet 2, Seismic shutdown system, electrical
H-2-16318, sheet 1, Fan Control Schematic and Control Panel
H-2-16318, sheet 3, Fan Control Schematic Emergency Shutdown
H-2-96422, Steam dry air controller, electrical
H-2-96436, sheet 4, Electric dry air controller, electrical

Appendix D - Essential Drawing List

H-2-78073, sheet 2, Seismic shutdown system, electrical
H-2-16318, sheet 1, Fan Control Schematic and Control Panel
H-2-16318, sheet 3, Fan Control Schematic Emergency Shutdown
H-2-96422, Steam dry air controller, electrical
H-2-96436, sheet 4, Electric dry air controller, electrical
H-2-26538, sheets 1 through 52, 480-V Normal power one-line diagram