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1 Findings and Significance

We emphasize results from recent years.

Acceleration driven instabilities of fluid mixing layers include the classical

cases of Rayleigh-Taylor (RT) instability, driven by a steady acceleration and

Richtmyer-Meshkov (RM) instability, driven by an impulsive acceleration.

References to this subject, which has attracted a high level of interest over

many decades, include [12, 128]; more recent references can be traced from

the series [32] and earlier volumes in this series.

Our program starts with high resolution methods of numerical simula-

tion of two (or more) distinct fluids, continues with analytic analysis of these

solutions, and the derivation of averaged equations. A striking achievement

has been the systematic agreement we obtained between simulation and ex-

periment by using a high resolution numerical method and improved physical

modeling, with surface tension. Our study is accompanied by analysis using

stochastic modeling and averaged equations for the multiphase problem. We

have quantified the error and uncertainty using statistical modeling methods.

1.1 Advanced Numerical Methods

The front tracking method provides the high resolution we require. It has

been our major tool for large scale computation. This method has was proved

in comparison [43] to be superior to other interface methods such as the level

set method and the volume of fluid method.

1.1.1 Local Grid Based Tracking

In grid free tracking, the tracked front is a triangulated surface, propagating

freely through a rectangular volume filling mesh. In grid based tracking, the
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front is regularized, or reconstructed, at each time step. After propagation,

the points of intersection of the front with all grid cell edges are determined.

Assuming at most one such intersection for each grid cell edge, the complete

interface is reconstructed in a simple manner from these intersections.

Grid based tracking is very robust. (It is similar to the level set in this

sense, the presentation of the interface in both methods being derived from

computer science graphics routines). However, grid based tracking is inac-

curate, as is the level set method. Grid based tracking, the level set, and

untracked simulations, which also determine an interface from grid based

information, all have a form of interface smoothing which resembles surface

tension.

Local grid based tracking [43] combines the two tracking algorithms, pre-

serving the advantages of each. This algorithm relies on the more accurate

grid free tracking unless there is a bifurcation. The algorithm is robust as

the problems with the grid free propagation occur only with bifurcations of

the interface. When a bifurcation occurs, a small box is constructed around

it. Grid based propagation is used inside the box. The grid free surface

triangulation near the box has to be rejoined to the reconstructed grid inside

the box in a construction which also has a grid based flavor. The result is

favorable: the accuracy of grid free tracking and the robustness of grid based

tracking are both preserved.

We carried out a systematic study [43] of this new algorithm in compar-

ison to other interface methods (level sets, volume of fluids), and found that

locally grid based front tracking is the best of all methods tested.
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1.1.2 Improved Physical Models

Front Tracking offers a very convenient framework to support surface based

physics. Normal vectors and curvature tensors are supported by the code.

Surface tension forces a pressure jump at the interface proportional to the

surface curvature. In the front tracking algorithm, it introduces a modifica-

tion to the Riemann solver, used in the normal propagation of the front.

To compute with physical mass diffusion, we first eliminate numerical

mass diffusion, with the use of Front Tracking. The second step is to add

limited amounts of mass diffusion back into the calculation, on the basis of

prescribed values for the physical mass diffusion constant. Our algorithm

computes the required diffusion per time step with the use of the analytic

solution of the diffusion equation.

1.1.3 FronTier-Lite

We have extracted the purely geometrical (physics independent) parts of the

front tracking code. This code is modular and can be called as an external

library in other codes. It is released for public distribution. We have built

a user-friendly interface for the interaction of the front tracking library with

other scientific code with the dynamic interface as part of its scientific de-

scription. This library package can be accessed through the internet at the

site:

http://www.ams.sunysb.edu/FTdownload

1.1.4 Simulation of Rayleigh-Taylor Instability

A signal success of our program has been the simulation of 3D Rayleigh-

Taylor instability with results in agreement with experiment. Our improved

front tracking method was combined with improved accuracy of physical
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Experiment Comment α
Simulation
Five experiments Immiscible [124, 129] 0.060–0.073
FronTier Immiscible [55] 0.062
TVD Ideal Untracked [53] 0.035
FronTier Ideal 0.09

Table 1: Mixing rates compared: FronTier simulation compared to experi-
ment and contrasted to untracked (TVD) and ideal fluid FronTier simula-
tions.

modeling for this purpose [55]. We compare simulation and experiment in

terms of the growth rate of the bubble side of the mixing layer, defined by

the dimensionless constant α in the equation

h = αAgt2 (1)

for the bubble (light fluid) penetration h in terms of the Atwood number

A, gravity g and time t. The values of α = αb are given in Table 1. Other

statistical measures of the mixing rate (such as the bubble width) were also

recorded and also agree with experiment.

1.2 Applied Mathematical Modeling

We derived the two-phase flow equations by averaging the microscopic dy-

namics. Let the function Xk be the phase indicator for material k (k = 1, 2);

i.e., Xk(t,x) equals 1 if position x is in fluid k at time t, zero otherwise. We

average the advection law [42] for Xk,

∂Xk

∂t
+ vint · ∇Xk = 0 . (2)

Here vint is the microphysical velocity evaluated at the interface (the velocity

component normal to the boundary ∂Xk is continuous so that vint∇̇Xk is
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well defined). We also average the microscopic conservation equations

∂ρ

∂t
+ ∇ · ρv = 0 , (3)

∂ρv

∂t
+ ∇ · ρvv = −∇p + ρg , (4)

∂ρE

∂t
+ ∇ · ρvE = −∇ · pv + ρvg . (5)

Here the dependent variables v, ρ, p, g, and E denote, respectively, the

velocity, density, pressure, gravity and total energy with E = e +v2/2 and e

the internal energy.

We denoted the ensemble average 〈·〉. The average 〈Xk〉 of the indicator

function Xk is denoted βk. The quantities ρk and pk are, respectively, phase

averages of the density ρ and pressure p while the quantities vk and Ek are

phase mass-weighted averages of the fluid z-velocity vz and total energy E:

ρk =
〈Xkρ〉

〈Xk〉
, pk =

〈Xkp〉

〈Xk〉
, vk =

〈Xkρvz〉

〈Xkρ〉
, Ek =

〈XkρE〉

〈Xkρ〉
. (6)

Applying the ensemble average to Eqs. (2)-(5), we obtain the one-dimensional

two-pressure two-phase flow averaged equations. We follow [42, 15, 19, 125]

to obtain
∂βk

∂t
+ 〈v · ∇Xk〉 = 0 , (7)

∂βkρk

∂t
+

∂βkρkvk

∂z
= 0 , (8)

∂βkρkvk

∂t
+

∂βkρkv
2

k

∂z
+

∂(βkpk)

∂z
=

〈

p
∂Xk

∂z

〉

+ βkρkg , (9)

∂βkρkEk

∂t
+

∂[βkvk(ρkEk + pk)]

∂z
= 〈pv · ∇Xk〉 + βkρkvkg . (10)

In [79] the interface velocity v∗, where v∗∂βk/∂z =< v · Xk >, has been

derived exactly from (7) and (8) independently of any closure assumption.

Theorem The interface quantity v∗ has the exact formula
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v∗ =

β1

[

∂v1

∂z
+

D1ρ1

ρ1Dt

]

v2 + β2

[

∂v2

∂z
+

D2ρ2

ρ2Dt

]

v1

β1

[

∂v1

∂z
+

D1ρ1

ρ1Dt

]

+ β2

[

∂v2

∂z
+

D2ρ2

ρ2Dt

] ≡ µv
1
v2 + µv

2
v1 , (11)

µv
k =

βk

βk + dv
kβk′

, dv
k(z, t) =

[

∂vk′

∂z
+

Dk′ρk
′

ρk′Dt

]

/

[

∂vk

∂z
+

Dkρk

ρkDt

]

. (12)

The factor dv
k(z, t) in (12) is a ratio of logarithmic rates of volume creation

for the two phases. A closure condition of spatial homogeneity assumes

dv
k(t) =

[

∫ Z
k′

Zk

∂vk′

∂z
+

Dk′ρk
′

ρk′Dt
dz

]

/

[

∫ Z
k′

Zk

∂vk

∂z
+

Dkρk

ρkDt
dz

]

. (13)

The identity (13) states that the relative extent of volume creation for the

two fluid species is independent of the spatial location in the mixing zone.

In the incompressible case, this is seen clearly from the closed form solution

dv
k(t) =

∣

∣

∣

∣

Vk′

Vk

∣

∣

∣

∣

. (14)

The p∗ closure is presented in [79] following related ideas. Closed form

incompressible solutions are given in [104], with extensions to an arbitrary

number n of fluid layers in [26].

1.3 Stochastic Methods to Quantify Uncertainty

The need for computer assisted decision making is driven by two related

factors. The first is the importance of complex scientific/technical decisions,

such as those related to global warming, for which controlled experiments

are not feasible. The second is the need for rapid or timely decisions, using

incomplete information, such as in shortening the time to market of a product

design cycle, mandating a reduction of the role of the human in the loop.
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The central issue considered here is an accurate assessment of errors in

numerical simulations [77]. Uncertainty quantification (UQ) can be viewed

as the process of adding error bars to a simulation prediction. The error bars

refer to all sources of uncertainty in the prediction, including data, physics

and numerical modeling error. The requirement for UQ comes from the in-

creasing use of simulation model based predictions to guide decision making.

In this sense, the need for UQ is a natural consequence of simulation’s attain-

ment of a status parallel to that of experiment and theory. Our approach

to uncertainty quantification uses a Bayesian framework. Specifically the

Bayesian likelihood is (up to normalization) a probability, which specifies

the probability of occurrence of an error of any given size. Our approach is

to use solution error models as defining one contribution to this likelihood.

We provide a scientific basis for the probabilities associated with numerical

solution errors.

We have studied UQ for petroleum reservoir modeling [78, 113] and for

shock physics simulations [119, 63, 64], with a focus on statistical analysis of

errors in numerical solutions.

For chaotic interfacial mixing, the central UQ problem is to define the

solution errors for chaotic flow regimes, since the chaotic simulations do not

converge in a pointwise sense, but rather add new complexity with each new

level of mesh refinement. See, for example Fig. 1. The solution is to look

for convergence in averaged quantities, i.e., the statistical moments, and the

averages which define them.

The fine scale raw data is averaged, producing coarser data, which is

subject to the normal tests of convergence and order of convergence stud-

ies, and which may satisfy its own averaged equations. Thus the problem is

very much akin to turbulence modeling, which achieves repeatability only by
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Figure 1: Density plot for a spherical implosion simulation with a perturbed
interface. The outer orange-blue boundary is the edge of the computational
domain. The red-orange circular boundary is an outgoing reflected shock and
the chaotic inner interface is the object of study. The grid size is 800× 1600.

use of averaged quantities or statistical descriptions of fluctuating quantities.

Intrinsic variation, of importance in this study, is analyzed as statistical fluc-

tuations, and these converge not pointwise, but in their statistical character,

i.e. their means, variance and possible higher moments. See [138, 47]. The

main conclusion of [138] is that convergence is very spotty, and depends on

how it is defined. Different behavior is observed in the singly and doubly

shocked material, in the single and the mixed phase material, and in the

region near the origin, where circular waves give rise to transient singular

pressures at the origin. In some cases, ensemble averages, spatial averages,

and extremely fine meshes are needed to observe convergence, which may be

as low as half order or marginal in ∆x.

1.4 Publications Resulting from DOE Support

The publications (listed in the references section), supported from the com-

pleted grant were:

• 1991: [6, 33, 51, 58, 57, 62, 90, 97, 105, 109, 111]
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• 1992: [16, 34, 36, 50, 52, 91, 94, 95, 139]

• 1993: [11, 17, 37, 39, 59, 96, 98, 115, 134]

• 1994: [5]

• 1995: [3, 28, 29, 60, 135]

• 1996: [10, 14, 13, 18, 61, 69, 99, 100, 121, 122, 130];

• 1997: [8, 30, 31, 84, 101, 106, 117]

• 1998: [4, 67, 82, 103, 102, 107, 142]

• 1999: [22, 38, 70, 104, 108, 110, 133]

• 2000: [68, 71, 75, 114]

• 2001: [21, 23, 66, 74, 76, 79, 89, 118, 83, 132];

• 2002: [24, 25, 72, 40, 41, 56, 65, 87, 86, 113, 73, 85, 9];

• 2003: [1, 2, 20, 45, 46, 54, 77, 80, 88, 92, 113, 35, 120, 126, 131, 143];

• 2004: [47, 48, 63, 119, 81, 78, 93, 116];

• 2005: [26, 53, 64, 27, 112];

• In press and submitted: [7, 43, 44, 49, 55, 137, 138, 123, 127, 136, 138,

137, 140, 141].
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