The Experimental Analysis of Local Heat and Mass Transfer Data for Vertical Falling Film Absorption

PDF Version Also Available for Download.

Description

In pure heat transfer, specifications of effectiveness, fluid properties, and flows enable calculation of the heat exchanger area. In the case of falling film absorption, a simultaneous heat and mass transfer governs the performance of the absorber. The exchange of mass across the liquid-vapor interface involves the generation of heat. The heat effects associated with the mass exchange increase the temperature, which affects the equilibrium state of the pressure and composition and in turn affects the mass. The falling film flow rate coupled to the physical properties of kinematic viscosity and surface tension govern the flow regime of a vertical ... continued below

Physical Description

9 pages

Creation Information

Keyhani, M. & Miller, W. A. November 14, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In pure heat transfer, specifications of effectiveness, fluid properties, and flows enable calculation of the heat exchanger area. In the case of falling film absorption, a simultaneous heat and mass transfer governs the performance of the absorber. The exchange of mass across the liquid-vapor interface involves the generation of heat. The heat effects associated with the mass exchange increase the temperature, which affects the equilibrium state of the pressure and composition and in turn affects the mass. The falling film flow rate coupled to the physical properties of kinematic viscosity and surface tension govern the flow regime of a vertical falling film. Wavy-laminar, roll-wave laminar, and turbulent flows will develop convective contributions that can enhance the transfer of mass into the film. The combined interaction of all these factors makes the absorption process very difficult to analyze and predict. A study of simultaneous heat and mass transfer was therefore conduct ed on a vertical falling film absorber to better understand the mechanisms driving the heat and mass transfer processes. Falling films are characteristically unstable, and a wavy-laminar flow was observed during the experimental study. The wavy flow further complicates the problem; therefore, only limited information is known about the temperature and concentration profiles along the length of the absorber that describe the local heat and mass transfer rates.

Physical Description

9 pages

Notes

OSTI as DE00009280

Source

  • International Mechanical Engineering Congress and Exposition, Nashville, TN (US), 11/14/1999--11/19/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ORNL/CP-103985
  • Report No.: EC 12 02 00 0
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 9280
  • Archival Resource Key: ark:/67531/metadc793134

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 14, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Nov. 29, 2017, 1:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Keyhani, M. & Miller, W. A. The Experimental Analysis of Local Heat and Mass Transfer Data for Vertical Falling Film Absorption, article, November 14, 1999; (digital.library.unt.edu/ark:/67531/metadc793134/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.