
NUREGlCR-6263
MTR 94W0000114
VOl. 1

High Integrity Software for
Nuclear Power Plants

Candidate Guidelines, Technical Basis
and Research Needs

Executive Summary

Manuscript Completed: June 1995
Date Published: June 1995

Prepared by
S. Seth, W. Bail, D. Cleaves, H. Cohen,
D. Hybertson, C. Schaefer, G. Stark, A. 72,
B. Ulery

The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102

Prepared for
Division of Systems Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC Job Code L2610

Quotations used from the UtiZity Requirements Document (URD), NP-6780-L, V3,
Ch. 10, are reproduced based on the written permission of EPRI.

Quotations used from copyrighted documents of The American Society of Mechanical
Engineers (ASME), the International Electrotechnical Commission (IEC), the Institute of
Electrical and Electronics Engineers, Inc. (IEEE), and RTCA, Inc. are reproduced with
the permission of the respective organizations. Please note that IEEE ‘ I . . . takes no
responsibility or will assume no liability from the placement and context in this
publication.” For further information on the materials and standards of these
organizations contact them directly at the following addresses:

ASME, 345 East 47th Street, New York, NY 10017 (Phone: 212-705-8500;
FAX 212-705-8501)

IEC, 3 rue de VarembC, P.O. Box 131, CH-1211, Geneva 20, Switzerland
(Phone: 41-22-919-021 1; FAX: 41-22-919-0300; Telex: 414121 lec ch)

IEEE, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331
(Phone: 908-562-3800; FAX: 908-562-1571; Telex 833233)

RTCA, Inc., 1140 Connecticut Avenue, N.W., Suite 1020, Washington, DC 20036
(Phone: 202-833-9339; FAX: 202-833-9434; Telex 2407254 RTCA UQ)

NUREGICR-6263. Vol. 1

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

ABSTRACT

The work documented in this report was performed in support of the U.S. Nuclear Regulatory
Commission to examine the technical basis for candidate guidelines that could be considered in
reviewing and evaluating high integrity computer software used in the safety systems of nuclear
power plants. The framework for the work consisted of the following software development and
assurance activities: requirements specification; design; coding; verification and validation,
including static analysis and dynamic testing; safety analysis; operation and maintenance;
configuration management; quality assurance; and planning and management. Each activity
(framework element) was subdivided into technical areas (framework subelements). The report
describes the development of approximately 200 candidate guidelines that span the entire range
of software life-cycle activities; the assessment of the technical basis for those candidate
guidelines; and the identification, categorization and prioritization of research needs for
improving the technical basis. The report has two volumes: Volume 1, Executive Summary,
includes an overview of the framework and of each framework element, the complete set of
candidate guidelines, the results of the assessment of the technical basis for each candidate
guideline, and a discussion of research needs that support the regulatory function; Volume 2 is
the main report.

...
111 NUREGKR-6263, Vol. I

CONTENTS

SECTION

Abstract

NRC Summary

Acknowledgments

1 Introduction

2 System Context and Framework

3 Development of Candidate Guidelines

4

5 Assessment of Technical Basis

6

7 Discussion of Research Needed

8

References

Framework Elements and Candidate Guidelines

Identification, Categorization and Prioritization of Research Needs

High-Priority Research Needs Supporting the Regulatory Function

PAGE
...
111

vii

ix

ES- 1

ES-2

ES-6

ES-9

ES- 16

ES- 19

ES-2 1

ES-23

RE- 1

V NUREGlCR-6263, Vol. 1

FIGURES

FIGURE PAGE

ES-1 Framework for System Development

ES-2 Framework for Software Development and Assurance

ES-3

ES-5

ES-3 Framework Elements and Subelements for Developing Candidate Guidelines ES-7

ES-4 Development of Candidate Guidelines (Example: Software Design) ES-8

TABLES

TABLE

ES- 1 Candidate Guidelines and Assessment of Technical Basis

ES-2 Research Needs Supporting the Regulatory Function

ES-3 Ranking of High-Priority Research Needs Supporting
the Regulatory Function

PAGE

ES-29

ES-57

ES-67

NUREGICR-6263, Vol. 1 vi

NRC SUMMARY

The objective for this project was to provide assistance to the NRC for the development of a
technical basis for regulatory positions related to the use of high-integrity software in nuclear
power plants. The assistance included the identification of research issues that could enhance a
technical basis.

This report contains a comprehensive discussion of the present state of software engineering
processes and design attributes in the form of candida.te guidelines for the elements of the
software life cycle and assurance activities. The candidate guidelines are considered by the
contractor to be good practices that are important in the development of high integrity software
for nuclear power plants. Most of the design attributes can be found in current software industry
standards.

It is emphasized here that the application of the candidate guidelines to regulation and the
determination of the need for the research identified in this report require further assessments by
the NRC. The assessments will include consideration of the contribution to safety, the degree to
which the candidate guidelines have an acceptable technical basis, and the cost-effectiveness of
each guideline and research issue.

The NRC’s current regulatory position on issues associated with the application of digital computer
technology to instrumentation and control (I&C) systems that are important to safety and the NRC’s
staff actions to resolve these issues are presented in (1) SECY-91-292, Digital Computer Systemsfor
Advanced Light Water Reactors; (2) SECY-93-087, Policy, Technical and Licensing Issues
Pertaining to Evolutionary and Advanced Light- Water Reactor (ALWR) Designs, Section I1 Q,
“Defense Against Common-Mode Failures in Digital Instrumentation and Control Systems,”
April 1993, as clarified by the Staff Requirements Memorandum (SRM) 011 SECY-93-087,
July 1993; (3) the draft Operating Reactors Digital Retrofits Digital System Review Procedure and
the draft Branch Technical Position, Digital Instrumentation and Control Systems in Advanced
Plants (presented at the Digital Systems Reliability and Safety Workshop, sponsored by the NRC
and the National Institute of Standards and Technology, 13-14 September 1993); and (4) Generic
Letter 95-02, Use of NUMARC/EPRI Report TR-102348, ‘Guideline on Licensing Digital
Upgrades, in Determining the Acceptability of Perj5orming Analog-to-Digital Replacements Under
I O CFR 50.59, April 1995. These documents present the current NRC position on basic safety
issues, together with the NRC policy statements with regard to the resolution of these issues. It
should be noted that a number of Final Safety Evaluation Reports (FSERs) have been issued
approving retrofit and advanced applications of digital I&C safety systems.

vii NUREGICR-6263, Vol. 1

ACKNOWLEDGMENTS

The work presented in this report involved the analysis, integration, and synthesis of a vast
amount of technical information on a broad spectrum of topics related to high integrity software.
The guidance provided by NRC staff during the course of this work was invaluable. The authors
especially acknowledge the efforts of the following NRC staff members: Robert Brill (NRC
Project Officer), Leo Beltracchi, Frank Coffman, John Gallagher, Joe Joyce, Joel Gamer,
Jim Stewart, and Jerry Wermiel.

The report also benefited significantly from the peer review provided by a panel consisting of the
following experts: Me1 Barnes, Taz Daughtrey, Michael DeWalt, Ray Ets, Roger Fujii,
Carl Gilbert, Richard Hamlet, Herbert Hecht, Gordon Hughes, Paul Joannou, Ted Keller,
Kathryn Kemp, Schlomo Koch, John Matras, John McDermid, Joseph Naser, Ronald Reeves,
and Dolores Wallace. Their affiliations are provided in Volume 2, Appendix B. The authors
express sincere gratitude to the panel members for the perspectives and the comments they
offered. Comments provided by William Agresti, Charles Howell, and Gary Vecellio, who
contributed to MITRE’S internal peer review, are also gratefully acknowledged. Many MITRE
personnel contributed to the success of the Experts’ Peer Review Meeting on High Integrity
Software for Nuclear Plants, which was held at MITRE, 24-26 May 1994. Special thanks go to
William Agresti, who served as the moderator for the meeting, and Brenda Fox, who coordinated
all the meeting arrangements.

The preparation of this report, from the working drafts of individual sections to the final
integrated product, required various types of technical support activities, which included
developing and maintaining computer databases, coordinating the technical information needs of
the project team members, and editing. The authors feel especially indebted for the painstaking
and conscientious efforts of Tammy Ryan, Brenda Fox, and Sheila McHale, who bore the brunt
of this work. Thanks are also due to Susan Gerrard and Dee Krzebetkowski for their support of
the project. Finally, Rona Brigre of Brikre Associates deserves praise and many thanks for her
sound advice and valuable suggestions during the final editing of this document.

ix NUREGKR-6263, Vol. 1

EXECUTIVE SUMMARY

1 . Introduction

Instrumentation and control (I&C) systems based on the use of digital computer technology offer
several advantages, such as higher availability due to automatic self-test and diagnostics, greater
flexibility, and increased data availability. W e digital systems have replaced selected analog
systems at a number of existing nuclear power plants, future reactor designs are expected to make
extensive use of advanced applications of digital computer technology. To ensure that safety is not
compromised, a proper implementation of this technology in nuclear power plants must address
several potentially safety-significant concerns, including potential common-mode failures due to
the use of common software in redundant channels [USNRC GL 95-02]. The NRC’s current
regulatory positions on issues associated with the application of digital computer technology to
I&C systems that are important to safety, and the NRC staff actions taken to resolve these issues,
are presented in documents referenced in the “NRC Summary” at the beginning of this volume.

The NRC has also undertaken several activities towards developing additional regulatory guidance
for reviewing and approving digital computer systems to be used in the safety systems of nuclear
power plants. The work documented in this report is an important part of that overall initiative.
Specifically, it is in support of the NRC’s efforts to examine the technical basis for guidelines that
could be considered in reviewing and evaluating the safety system software. Based on that
examination, candidate guidelines with an adequate technical basis could be considered by the
NRC in developing regulatory guidance, such as Regulatory Guides or revisions to the Standard
Review Plan. Candidate guidelines with an inadequate technical basis could be considered by the
NRC in developing research projects.

The NRC’s draft Branch Technical Position for advanced plants [USNRC-BTP DRAFT], which
requires an orderly and systematic process for the development of software through its various life-
cycle stages, provided a starting point for this work. The approach taken consisted of the
following steps:

1. Develop candidate guidelines applicable to each software life-cycle stage.

2. Examine and describe the technical basis for each candidate guideline, where it exists.

3 . Identify research needs where the technical basis for a given candidate guideline is
insufficient or lacking.

Several previous studies have indicated considerable variability in the scope and depth of guidance
available in the existing standards on developing high integrity software [EPRI, 1992;
IAEA, 1993; NIST NUREG/CR-5930]. The approach outlined above provided a methodology
for identifying those candidate guidelines whose use would involve considerable subjectivity
because of the lack of sufficiently detailed methods, measures, or criteria; and for suggesting
research that could minimize the uncertainty and vagueness in the available guidance for
implementing the candidate guidelines considered.

ES-1 NUREGICR-6263, Vol. 1

A panel of outside experts with considerable knowledge of software safety and reliability relative to
different government and industry programs provided a peer review of this report in its preliminary
draft stage. A meeting of the expert panel was held as part of this process to discuss the peer
review comments. Discussions at the meeting were aimed at obtaining the best judgment of, rather
than consensus among, the experts. Written comments provided prior to the meeting, as well as
meeting discussions, were used in revising the report.

It is emphasized here that the application of the candidate guidelines to the regulatory process and
the determination of the need for and scope of research identified in this report require further
assessment by the NRC. This assessment will include consideration of the contribution to safety
and the cost-effectiveness of each guideline, and equally important, its potential impact on the
incorporation of advances in digital computer technology. The regulatory process is not intended
to be a deterrent to the application of technology advances, provided that the safety of the final
product is maintained or enhanced.

The remainder of this volume summarizes the major aspects of the work: the framework for and
development of the candidate guidelines (Sections 2 and 3); overview of the framework elements
(Section 4); the assessment of the technical basis (Section 5); and the discussion of research needs
(Sections 6,7 and 8). Detailed descriptions of the technical basis for the candidate guidelines are
provided in the main report (Volume 2).

Table ES-1 lists all the candidate guidelines along with the results of assessment of the technical
basis for each guideline and the research needs identified to address any gaps in its technical basis.
The importance of research needs that directly support the regulatory function is summarized in
Table ES-2. For convenience, the tables are located at the end of this volume.

2. System Context and Framework

System-Software Interface

Since software is an integral part of I&C systems based on digital computer technology,
requirements for the software must be allocated by and derived from the functional and safety
requirements of the system. The system framework depicted in Figure ES-1, which is adapted
from [Fujii, 19931 and [NIST, 19931, shows that a proper system design identifies software
components, hardware components (including computer hardware), and human operators, and
allocates requirements and constraints to each component. Examples of the types of requirements
allocated to the various components of an I&C system that should be considered in an intsgrated
manner are (1) fault detection, diagnostic, and recovery capabilities; (2) responses to design basis
events, including computer-unique failure modes; (3) operator-machine interface requirements;
(4) timing, response time, throughput, and performance requirements; and (5) functional diversity
or defense-in-depth, as required.

Several significant studies on the sources, nature, and distribution of software defects underscore
the importance of specifying a complete, clear, and correct set of requirements for the software.

NUREGKR-6263, V O ~ . 1 ES-2

System lntegratlon

Software Verification and Validation
Software Safety Analysis

Software Configuration Management
Software Quality Assurance

Software Project Management

Figure ES-1. Framework for System Development

For example, [Basili and Perricone, 19841, [Davis, 19901, and [Jones, 19911 provide evidence
that approximately half of software defects can be traced to errors made during the requirements
stage. Errors in requirements specifications are also difficult to detect in subsequent testing and are
labor-intensive to correct [Boehm, 1975; Grady, 1992; OECD HALDEN, 19931. Therefore,
preventing the insertion of errors in the early requirements specification stages of software
development not only minimizes risk, but also provides a cost-effective approach for developing
high integrity software.

For advanced applications of digital I&C systems in nuclear power plants, detailed system-level
standards are not available that would encompass the system-software interface, and provide
guidance on issues related to system decomposition and interrelationships among the system
components-hardware, software, and human operators. This is a vital need relative to the
necessary systems analysis that should be performed for such applications. However, it was
explicitly assumed in developing the candidate guidelines and associated technical basis, as
documented in this report, that the systems analysis has been properly conducted, and the system-
software interface completely defined.

Software Development and Assurance

The software development component of the overall system development, which is depicted
separately in Figure ES-2, provided the framework for developing the candidate guidelines. It
incorporates the main ideas from [USNRC-BTP DRAFT], [LLNL NUREG/CR-6101], and
[NIST, 19931, which in turn are based on various standards, such as [EEElO12] and
[ASME-NQA-Za].

Software life-cycle activities, which constitute the elements of the framework, are depicted in
Figure ES-2 as relating to either development or assurance. The illustration of software
development activities in the figure does not imply an endorsement of any particular model. In
particular. the timing of the activities shown may vary and overlap. The software assurance
activities are closely coupled with the development activities and are performed throughout the life
cycle. They provide oversight of. and support to, software development so that the generated
products meet the safety requirements, are of the necessary quality, and are within cost and
schedule. Also shown in Figure ES-2 are NRC audit activities that serve to verify that the software
development process and the associated documentation are adequate.

The development and organization of the candidate guidelines as documented herein maps directly
to the elements of the framework of Figure ES-2. However, depending on the technical content of
a given activity element, and in order to avoid overlapping discussion, some elements have been
combined or regrouped. For example, the candidate guidelines for the four successive levels of
software testing and for verification and validation (V&V), all of which are depicted in the
framework as separate life-cycle activities, are presented herein within the following three
elements: V&V-Static, V&V-Dynamic (Testing), and V&V-General Considerations. This
regrouping allows focus on the two separate technical aspects of V&V-static analyses and
dynamic testing-that are important to both software development and software assurance.
Similarly, software planning and software project management are combined as the element
Software Planning and Management. The planning for each life-cycle activity is also discussed in
the individual element corresponding to that activity.

NUREGKR-6263. Vol. 1 ES-4

M
CT
VI

c

Activities

Planning Audit

b

Requirements
Audit

WIE: Thls chart deplcts software development
actlvitles without endorslng any partlcular
process model.

Design Audit

lrnplernentatlon
Audit

lntegratlon
Audit

Valldatlon
Audit

Installation
Audit

Figure ES-2. Framework for Software Development and Assurance

Figure ES-3 shows the organization of the candidate guidelines. Further details on the scope of
each framework element and of the subelements defined within each element are provided in
Section 4 below.

3 . Development of Candidate Guidelines

For each software development or assurance activity (framework element), candidate guidelines
were grouped based on their subject matter into technical areas (framework subelements). For
example, one of the subelements of the element Software Design is Interface Integrity. Certain
recent standards that cover a broad range of software development activities and that are generally
recognized in the nuclear industry were the primary sources for deriving candidate guidelines
within each framework subelement. These sources, termed the “baseline” in this report, were the
foIlowing: Standard Criteria for Digital Computers in Safety Systems of Nuclear Power
Generating Stations [IEEE7-4.3.2]; the Advanced Light Water Reactor Utility Requirements
Document [URD]; and standards such as [IEC880], [ASME-NQA-2a: Part 2.71, and various
Institute of Electrical and Electronics Engineers (IEEE) standards explicitly referenced within
requirements or guidelines contained in [IEEE7-4.3.2] and the [URD]. The NRC’s draft
regulatory guidance documents [USNRC-BTP DRAFT] and [USNRC-REmOFlTS D W] are
included in the baseline as well.

Pertinent statements that describe software attributes relevant to safety were extracted from the
baseline to develop the candidate guidelines. Guidance in the standards relative to specific methods
or approaches (e g , object-oriented versus structured analysis in the element on Software Design)
or whch had little relationship to safety was not extracted. Although statements from the baseline
sources range from requirements to nonbinding guidance, they were all considered as components
for developing the set of candidate guidelines. For uniformity, all candidate guidelines use
“should” in stating the desired software attributes, although “shall” may have been used in the
corresponding statement in the baseline source.

Because standards have different objectives, applications, and vintage, it is common to observe
overlap, mismatch, or gaps in the scope, nature, completeness, and specificity of guidance on a
given topic. Therefore, for each framework subelement, based on a consideration of the essential
attributes of the guidance contained in the baseline, any gaps for which additional guidelines might
be considered were identified. The suggested additional guidelines to fill the observed gaps were
derived from defense, aviation, aerospace, and nuclear industry standards, including some
developed in other countries, which are not encompassed by the baseline, e.g., [DOD-STD-2167A],
[RTCA DO-178B1, and [MOD55]; from pertinent results of work sponsored by the NRC: and from
the researchers’ software engineering experience with other government programs.

The process described above, which is also depicted in Figure ES-4, was used to develop a set of
candidate guidelines for each framework subelement that summarizes the software safety

NUREG/CR-6263, VOI. 1 ES-6

M
[r

Requlrernents
SpecHlcatlon

Completeness
Unambiguily
Consistency
Verifiability
Modifiability
Traceabilii
Readability

Deslgn
ModularDesign
External Interface
Interfaces to Safety
Components
Interlacelntegrily
Data Integrity
Flow Control
FmrUandlim

Candldate
Guidellnes

Codlna
Development Envimnmenl
Target Environment and
Reusable Components
Data Structure
Logic Structure

Operation 1 and
Maintenance

Maintenance Planning
Performance Monitoring

VbV-Stat Ic

Requirements V&V
DesignV&V
COdeV&V

VbV-Dynarn k
(Testlng)

ManagemenlAspeds

Technical Aspeds

UnitTesting
Integration and System

lnstallatbn Testing

Affeding All Test Leveb

Affeding A i Test Leveb

Testing

Conflguratlon
Management

Software Configmtbn

Configuratbn ldentiflcatbn
Configvatbn Change Control
Conflguetbn Status Accounting
Configutatbn Audits and

External Interface Contml
Subcontractor and Vendor Contn
Automated Support for

Management Plan

R W I M

Configuratbn Management

Quality
Aasurance

ProgramPlanand
implementation

VbV-General

V&V.Van

V&V d Tods
Independence d V&V

Plannlng and
Management

SdtwareDevebpment
and Management Plan
OlherPlans

Figure ES-3. Framework Elements and Subelements for Developing Candidate Guidelines

c

c s

m
cf
00

Identification of
Attributes Related

to Safety

1- Baseline Sources

[IEEE7-4.3.2], [URD], and
referenced standards (e.g.,
[IEC880] and [ASME-NQA])

Framework Subelements > for Software Design

Other Standards
such as used in defense, aviation,
aerospace, and nuclear industries;
for example, [DOD-STD-2167A],
[RTCA DO-I 781, and [AIAA-R-0131

Guidelines

Figure ES-4. Development of Candidate Guidelines (Example: Software Design)

attributes derived from the baseline and any suggested additional guidelines. The candidate
guidelines should not be considered as substitutes for the standards from which they were derived.
The source standards provide additional details related to the attributes selected for high integrity
software.

4. Framework Elements and Candidate Guidelines

The following is a brief overview of each element of the framework for software development and
assurance. It explains the safety significance of each element, and indicates the scope of the
subelements into which it is subdivided and for which candidate guidelines were developed. The
candidate guidelines for all the framework subelements are presented in Table ES-1 at the end of
this volume.

Software Requirements Specification

The software requirements specification (SRS) is the highest-level software specification of a
software component of a system. Its scope is defined by the collection of system requirements that
are allocated by the system design to that software component. Any software requirement that is a
prerequisite to the system’s meeting a system safety requirement is a software safety requirement.
The SRS therefore has a vital role in the overall argument that the software is “safe,” because a
precise specification of the software requirements is necessary to provide assurance that the
software will serve its intended purpose.

The candidate guidelines relating to this framework element were grouped into subelements
corresponding to seven attributes or properties of the information that should be identified in the
SRS. These subelements are listed below, together with the anticipated benefits of adherence to
the candidate guidelines for each:

Completeness-Ensure that all necessary requirements are included.

Unambiguity-Ensure that requirements are interpreted the same way by all readers.

Consistency-Ensure that requirements do not conflict with each other.

Verifiability-Determine that a practical method exists to verify that each requirement
is satisfied.

Modifiability-Ensure that requirements are easy to modify correctly.

Traceability-Determine that software requirements trace to the system
requirementddesign, and the software design can be traced to the software
requirements.

Readability-Ensure that readers can easily read and understand all requirements.

ES-9 NUREGICR-6263. V O ~ . 1

Software Design

The design of a software component is the foundation for implementing the requirements and the
constraints specified in the SRS. Those areas which could compromise the integrity and the
robustness of the software design were identified as subelements for this framework element.
These subelements are listed below, together with the anticipated benefits of adherence to the
candidate guidelines for each

Modular Design-Enhance the quality of software by dividing it into manageable,
more understandable sets of interrelated components with clearly defined interfaces.
Modular design contributes to safety by minimizing the ripple effect of design changes,
and the propagation of abnormal conditions.

External InterfaceEnsure that specified external events are addressed up front so
that other processing, specifically safety processing, will continue without interruption.

Interfaces to Safety Components-Focus on separating safety and nonsafety
software components to ensure that processing of the latter does not interfere with that
of the former under any circumstances (e g , by ensuring that only the necessary
information is communicated through defined parameters and by performing periodic
self-tests to confm that safety software in protected memory is not corrupted).

Interface Integrity-Ensure the correctness of the interfaces between software
components so that errors, such as invalid protocol and data, do not occur.

Data Integrity-Ensure that the software operates in defined states by minimizing the
occurrence of errors that could transition the software to an undefined state or allow an
unintended function to be performed.

Flow Control-Ensure the correct and continual processing of safety components.

Error Handling-Ensure that the software is robust and able to recover from an error
by following a well-defined strategy.

Software Coding

Software coding is implementation of the SRS in accordance with the design for a software
component. Subelements for this framework element were defined by focusing on both external
and internal aspects of developing software that could affect the correctness of the source code, and
thereby its predictable execution. The external aspects consist of the development environment,
and the target environment and reusable components; the internal aspects that affect the source code
are data structure and logic structure. These subelements are listed below, together with the
anticipated benefits of adherence to the candidate guidelines for each:

Development Environment-Provide for the analysis of characteristics of the
software development environment that might introduce errors resulting in a safety
hazard. The environment typically involves the use of automated support tools to
reduce the need for human effort and the associated risk of introducing human errors.

NUFZEGICR-6263, Vol. 1 ES- 10

Target Environment and Reusable Components-Ensure that the interface of a
new software component with other existing software environments (eg., operating
system reusable software components) is sufficiently defined that software integrity is
not compromised by behavior undocumented in the interface information.

Data Structure-Address the representation of data using the available constructs to
ensure high-quality implementation of the overall design.

Logic StructureProvide for a structured approach to coding the logic to ensure its
correctness.

Software V &V-S t a t i c

Static software V&V is a subset of V&V that covers static methods in two broad categories:
reviews or inspections and analytic techniques. Three subelements are defined for this framework
element: requirements, design, and code V&V. These subelements are listed below, together with
the anticipated benefits of adherence to the candidate guidelines for each:

Requirements V&V-Demonstrate that the specified software requirements and
software safety constraints satisfy the requirements and safety constraints allocated to
the software in the system design. The candidate guidelines for requirements V&V
have a basis in the candidate guidelines for SRS, with the quality attributes most central
to the goal of requirements V&V being completeness, unambiguity, and consistency.

Design V&V-Check that a design is complete: that all I t qels of the design between
the SRS and the source code satisfy the software requirements and, in particular, the
software safety constraints given in the SRS. Successful design V&V thus increases
confidence that the source code will correctly implement the software requirements,
assuming that the source code correctly implements the design.

Code V&V-Demonstrate that the source code correctly implements the software
design, and the object code is a correct translation of the source code. These represent
the last two links in the chain of argument from the SRS to the object code to increase
confidence that software will fulfill its safety function, will not introduce hazards, and
will otherwise behave as specified.

Software V&V-Dynamic (Testing)

Dynamic software testing is a subset of both software development and V&V. It involves
executing the software to determine whether actual results match expected results, or to estimate the
reliability of the software. Testing has multiple goals, including (1) exposing failures unique to
execution (e.g., timing, iteration of logic and data, introduction of unknown paths caused by
program interrupts); (2) confirming the understanding of the software achieved through static
analysis techniques; and (3) demonstrating compliance with functional, performance, and interface
requirements.

ES-I 1 NUREGJCR-6263, Vol. 1

0

0

In making an argument that a software component is safe, it is important to demonstrate that the
system behaves as expected under both normal and abnormal conditions. Testing, therefore, has
an important role in the overall argument that software is safe. The strategy adopted in choosing
test cases and executing tests has an effect on the types of failures that are observed and the faults,
that are discovered and corrected in the software. Thus, it is important that the testing strategy
provide evidence of the software being “stressed,” using a thorough mix of testing techniques
during the test process.

Dynamic testing consists of several levels, starting with unit or component testing, and ending with
installation tests conducted in the field. The subelements for this framework element include two
on the general management and technical aspects of testing, and three on the various levels of
testing. These subelements are listed below, together with the anticipated benefits of adherence to
the candidate guidelines for each:

Management Aspects Affecting All Test Levels-Ensure that test planning and
management take into account the tradeoffs among resources, staffing, and schedule,
and provide adequate confidence in the software.

Technical Aspects Affecting All Test Levels-Provide for an evaluation of test
plans and specifications to demonstrate compliance with the SRS and the software
design.

Unit Testing-Ensure that individual units behave as specified in the design
document, that all of the module interfaces behave as expected, and that the extreme
cases of internal control and data structures do not result in unintended tehavior.

Integration and System Testing-Determine how units interact as larger
composite items. Once all of the major design items have been integrated with each
other and with any hardware subsystems, the purpose is to detect inconsistencies in the
hardware-software interaction by exercising and testing the complete system against the
SRS, using pre-defined success criteria.

Installation Testing-Ensure that the software system can be installed, properly
configured, and executed in the customer’s execution environment. The testing
includes not only the integrated system, but also the user documentation that will
accompany it.

Software V&V-General Considerations

Software V&V activities take place throughout the software life cycle, and provide confidence that
the safety system and development requirements have been implemented and can handle abnormal
conditions. Software V&V ensures that the software adequately and correctly performs all
intended functions, and that the products of any given cycle meet the requirements of the previous
cycle(s). V&V ranges in rigor from informal reviews to formal proofs, and is an important part of
the safety assurance argument for high integrity software.

NUREG/CR-6263, Vol. 1 ES-12

The static and dynamic testing portions of V&V have already been addressed explicitly. The
subelements for this framework element deal with general V&V considerations. These
subelements are listed below, together with the anticipated benefits of adherence to the candidate
guidelines for each:

0

V&V Plan-Organize the V&V activities, provide visibility of these activities to the
customer and to management, and provide direction to V&V personnel. The V&V plan
plays an important role in the success of a V&V program by establishing control of the
V&V activities.

V&V Reports-Document the evidence to be presented to an auditor. Confidence in
the safety of a software system depends on how thoroughly the V&V activities have
demonstrated that the source code, software design, and software requirements have
satisfied the system safety requirements allocated to the software. The safety case for
software is the set of reasoned arguments that the software correctly implements all
safety requirements and constraints allocated to the software in the system design.

V&V of Tools-Provide assurance that support tools, such as those used in code
generation, do not cause a defect in the operational system, and other tools (e.g., data
flow analysis tool) satisfy their intended purpose of catching defects in the operational
code.

Independence of V&V-Provide for the technical, managerial, and financial
independence required for an effective V&V effort.

Software Safety Analysis

Software safety analysis demonstrates that the system is safe when the software operates both as
intended and in the presence of abnormal conditions and events (ACEs). ACEs include events
external to the safety system, as well as conditions internal to the computer hardware or software
(e.g., initialization status or buffer overflow), which have the potential for defeating the safety
function. Software safety analysis activities include the development and implementation of a
software safety plan that provides for thorough software safety analyses during the entire
development process.

It is critical that software safety be viewed in the context of its associated hardware, environment,
and operators, and that all software interfaces with these components be addressed. Therefore, a
system-level analysis identifying the hazardous system states and the functions-including safety-
related actions-to be performed by the software is a prerequisite. The safety importance of this
framework element is intrinsic to system safety assurance.

Two subelements were defined for this framework element to address the major aspects of the
software safety analysis activity. These subelements are listed below, together with the anticipated
benefits of adherence to the candidate guidelines for each

Management Aspects-Ensure the development and implementation of a proper
software safety plan, including documentation of the results of safety analyses.

ES- 13 NUR.EG/CR-6263, Vol. 1

0 Technical Aspects-Determine that software safety requirements analysis, software
safety design analysis, software safety code analysis, software safety test analysis, and
software safety change analysis are thoroughly performed to ensure that ACES,
including computer-unique failure modes, do not compromise system safety.

Software Operation and Maintenance

Software operation focuses on delivering system utility, including system operation and
operational support services. Software maintenance refers to those activities required to keep a
software system operational and responsive to users’ needs by modifying it to correct faults,
improving its performance or other attributes, or adapting it to a specified environment.

Changes to the software are inevitable and should be anticipated to occur during the 40- to 60-year
expected lifetime of nuclear power plants. Many factors distinguish maintenance from new
software development, for example, the transition to and the continuity of maintenance support, the
need to monitor and change the operational system without disrupting it, the need to respond
quickly to problem reports, and limited V&V of minor upgrades. These factors must be accounted
for to ensure that safety is not compromised.

Three subelements were defined for this framework element. These subelements are listed below,
together with the anticipated benefits of adherence to the candidate guidelines for each:

0 Software Maintainability-Facilitate modifications to a software system or
component to correct faults, improve its performance or other attributes, or adapt it to a
different environment, as well as facilitate tasks such as performance monitoring and
change impact analysis.

Maintenance Planning-Address activities that are critical to successful operational
software support, especially those activities related to providing the continuity of
software engineering support and V&V.

Performance Monitoring-Focus specifically on proactive measures to assess the
software and to maintain confidence in the operational system.

Software Configuration Management

Software configuration management (SCM) is a process that applies to the entire software life
cycle, and contributes to software safety by ensuring the integrity of the executable code with
respect to the components that constitute a particular version of the software. It provides the
procedures necessary to ensure that (1) possible impacts of software modifications are evaluated
before changes are made, (2) various software system products are examined for consistency after
changes have been made, and (3) software is tested according to established standards after
changes have been made.

NUREG/CR-6263, Vol. 1 ES- 14

Eight subelements were identified for this framework element. These subelements are listed
below, together with the anticipated benefits of adherence to the candidate guidelines for each:

SCM Plan-Address the management organization and the procedures, activities,
schedules, and resources necessary to perform SCM for the software system.

Configuration IdentXcation-Require appropriate identification of configuration
items so that they can be properly referenced, traced, and controlled.

Configuration Change Control-Provide the controls necessary for managing and
controlling the change process.

Configuration Status Accounting-Provide for data management and tracking of
the status of items under configuration control.

Configuration Audits and Reviews-Provide a check on the completeness of a
software product, and ensure that developers have satisfied external obligations.

External Interface Control-Provide for the management of the interfaces with
procedures, organizations, or items outside the scope of SCM proper, to prevent
problems from arising in software system development.

Subcontractor and Vendor Control-Ensure that SCM procedures apply to
purchased and subcontractor-developed software, so that the safety and integrity of the
entire software system can be guaranteed.

Automated Support for Configuration Management-Provide for the use of
automated tools since SCM on large systems is laborious and error-prone if performed
manually.

Software Quality Assurance

The development of software that has the highest functional reliability requires the establishment of
an effective software quality assurance (SQA) program and the verification, such as by checking,
auditing, and inspection, that all activities affecting safety functions have been correctly performed.
The criteria established in [10 CFR Part 50: Appendix B] provide the regulatory basis and the
framework necessary to implement SQA program plans and procedures.

The candidate guidelines for this framework element are given under the subelement h g m Plan
and Implementation. The anticipated benefit of adherence to these guidelines is the further
delineation of those aspects of an SQA program which should be an integral part of the
development and management of a high integrity software system through its entire life cycle.

ES-15 NUREG/CR-6263, Vol. 1

Software Planning and Management

Planning and management activities begin before software development starts, are conducted
throughout the software development cycle, and continue through software operation and
maintenance. The planning process focuses on the identification and scheduling of activities and
resources required to complete a future project successfully. The management process is
concerned with following those plans, controlling plan evolution, monitoring project activity and
progress, and imposing risk mitigation actions.

The development of software that is important to safety demands significantly greater management
and technical attention than that required for less stringently constrained software products. The
reason for this increased attention is the critical need for high integrity software to perform its
safety functions correctly. Therefore, extreme care must be taken during the development of the
software to minimize the insertion of defects and to maximize the detection and removal of defects
before it is placed into service. A critical part of this care must be guaranteed through well-planned
development processes, which are monitored and controlled by effective management practices.

Two framework subelements provide the candidate guidelines on software planning and
management. These subelements are listed below, together with the anticipated benefits of
adherence to the candidate guidelines for each:

Software Development and Management Plan-Provide for the overall
planning and control of all software life-cycle activities.

Other Plans-Provide for supporting project planning documentation (e.g., software
safety plan, software test plan, and software maintenance plan).

5 . Assessment of Technical Basis

The following five criteria stated in [Beltracchi, 19941 were considered in describing and assessing
the adequacy of the technical basis for each candidate guideline:

Criterion 1-The topic has been clearly coupled to safe operations.

Criterion 2-The scope of the topic is clearly defined.

Criterion 3-A substantive body of knowledge exists, and the preponderance bf the
evidence supports a technical conclusion.

Criterion 4-A repeatable method to correlate relevant characteristics with performance
exists.

Criterion 5-A threshold for acceptance can be established.

NUREGKR-6263, Vol. 1 ES-16

In applying the above criteria to assess the technical basis for guidelines on computer software, it is
necessary to recognize the unique character of software systems and the maturity level of the
software industry. The following paragraphs summarize the general nature of the technical basis
that is available for requirements on software and the manner in which the five criteria were applied
to assess the technical basis for the candidate guidelines in this report.

Nature of Available Technical Basis

In the case of a software system, first principles are not available to provide the kind of technical
basis that can be obtained for hardware. A software component is an abstract construct of
interlocking concepts involving data sets, relationships among data items, and algorithms. Like all
digitally encoded information, software results in discontinuous behavior, and possibly drastic
consequences, with the smallest possible perturbation-the change of a single bit. Even sampling
arbitrarily ‘‘close” to a fault may not reveal the cause for an observable failure. ‘‘“here is no
meaningful metric in which small changes and small effects go hand in hand, and there never will
be” [Dijkstra, 19891. Furthermore, many problems with developing software arise from its
inherent complexity and the nonlinear increase in complexity with size. ‘From the complexity
comes the difficulty of enumerating, much less understanding, all the possible states of the
program, and from that comes the unreliability” [Brooks, 19871. Based on a great deal of research
completed on software-based systems in normal environments, it appears that deterministic
evaluation of such complex systems is currently an intractable problem [Littlewood and Stringini,
1992; Butler and Finelli, 1993; Bennett, 1991; Zucconi, 1991; Lavine, 1990; Leveson et al., 1991;
SAND93-22 101.

In lieu of first principles, the technical basis might rely on empirical evidence that certain
requirements will be effective in managing the complexity inherent in software systems, and in
minimizing the introduction of defects into the software during its design and coding. Empirical
correlations between specific software design characteristics and software reliability could help
define the necessary software characteristics and thereby provide the technical basis for requiring
those characteristics. However, the maturity of the software industry in relation to the high degree
of complexity in software systems is such that empirical evidence of this nature is not well
documented or established in a quantified manner. The majority of judgments on the quality of
software are based on good practice, peer review, and expert opinion within the software
engineering community [Fenton et al., 19941.

In the absence of first principles or a substantive body of empirical evidence to support requirements
on software development, the safety and reliability of the o v e d system-comprising hardware,
software, and user-can be, and generally are, assured by applying the defense-in-depthsafety
principle, requiring an adequate level of diversity and redundancy in system design (including,
where necessary, a combination of analog and digital systems), and emphasizing high quality in
implementing system safety objectives mEE7-4.3.2:D; NUREG-0493; USNRC-BTP DRAFT].

As documented in this report, the technical basis for each guideline generally relies on standards
that reflect the best practices in the software industry. In terms of its simplicity and reliance on best
industry standards, the technical basis for many guidelines for software development is similar to

ES-17 NUREGICR-6263, V O ~ . 1

that for the quality assurance of safety-related hardware in nuclear plants [10 CFR Part 50:
Appendix B] or the General Design Criteria; e.g., “The protection system shall be separate from
control system . . .” [10 CFR Part 50: Appendix A: Criterion 241. In general, the relationship to
safety does not need much elaboration, as in the following example: “The software design should
include self-supervision of control flow and data.” Such guidelines for software development and
the above examples of regulations for nuclear plant safety for which the technical basis is readily
apparent may be contrasted with other regulations and guidance that are founded on extensive
experimentation, testing, and analyses. An example of the latter is [10 CFR Part 50: Appendix K],
which provides the requirements for evaluating the capability of emergency core cooling systems in
nuclear power plants.

Finally, in examining the technical basis, all candidate guidelines in this report were considered to
be relevant to the development of high integrity software, without regard to the relative degree to
which individual guidelines contribute to safety. For example, the safety rationale for guidelines
describing the attributes of completeness of SRS might differ from that for guidelines specifying
the protection of critical data, or those providing for control of software configuration items. The
technical basis (including the relationship to safety) for the candidate guidelines was not examined
from the standpoint of their relative values and impacts.

Method and Results of Assessment

The set of five criteria previously mentioned provides an objective methodology for examining the
technical basis. However, given the nature of the available technical basis as discussed in the
preceding paragraphs, evaluation of the technical information supporting each candidate guideline
against each criterion involved considerable subjectivity.

Since the candidate guidelines for a given framework subelement are closely coupled, the technical
basis was developed and described for the group of guidelines as a whole. This information,
which is provided in the main report (Volume 2), includes the following for each subelement:
scope and relation to safety; excerpts from the baseline sources as supporting evidence; discussion
of the baseline; any suggested additions to the baseline and their rationale; potential methods for
meeting the guidelines; and assessment of the technical basis, including references to research
needs identified to fill gaps in the technical basis.

Because the attributes of candidate guidelines for a given subelement were selected from baseline
and other sources based on their relationship to safety and relevance to the scope of the topic
covered in the subelement, the first two of the five criteria, namely those on relation to safety and
definition of scope, were not used again in assessing the technical basis. The technical bbis for
each candidate guideline was evaluated with respect to the remaining three criteria on the strength
of the evidence, the availability of a method for satisfying the guidelines, and the availability of a
threshold of acceptance for determining conformance to the guidelines.

NUREGICR-6263. Vol. 1 ES-18

The supporting body of knowledge or evidence for the candidate guidelines was judged to be
satisfactory, questionable, or unsatisfactory based on the following:

Satisfactory

(a) One baseline source (as defined above) or two other sources support(s) the
candidate guideline.

(b) There is no conflicting standard or issue with respect to (a).

Questionable

Criterion (a) is partially satisfied, or Criterion (b) is not satisfied.

Unsatisfactory

Criterion (a) is not satisfied.

Similarly, the availability of methods for meeting the candidate guidelines was judged to be
satisfactory or unsatisfactory depending on whether or not a method is available, and judged as
questionable if there is a significant issue that affects the effectiveness or adequacy of the method
identified.

The assessment of the availability of a threshold for acceptance was based on whether different
evaluators using an available set of evaluation criteria would come to the same answer (yes or no)
concerning the conformance of the software to a given guideline. In several cases, implementing a
candidate guideline involves the use of a standard (e.g., a standard for the development of a formal
set of software test plans and specifications). In the cases where such a standard does not provide
its own acceptance criteria, or if subjective judgment is also requixcd to assess the quality of items
required by the standard, the availability of a threshold was judged to be partial or questionable.

The results of the assessment of the technical basis for each candidate guideline are provided in
Table ES-1 at the end of this volume. Of the 201 candidate guidelines, only 84 meet all the
technical basis assessment criteria. The primary reason for this is the lack of a satisfactory
threshold of acceptance (Criterion 5) for more than half of the candidate guidelines. Most of the
candidate guidelines (1 88) have adequate supporting evidence (Criterion 3), although the method
of implementation (Criterion 4) is inadequate for about a quarter of the guidelines.

6 . Identification, Categorization and Prioritization of Research
Needs

The lack of an adequate technical basis for a candidate guideline, including the presence of issues
related to available implementation or review methods within a framework subelement, indicated a
research need. A total of 61 research needs were identified to address the gaps in the technical
basis. The words “research need” are used here to indicate any type of further work, such as a
survey, which may or may not be characteristically labeled as “research.” In identifying research

ES-19 NUREGICR-6263, V O ~ .

needs, the focus was on addressing generic issues, rather than specific methodologies. In several
instances, the evaluation of conformance to a candidate guideline could involve considerable
subjectivity on the part of an evaluator, even though appropriate standards for review exist. In
these instances, where further research to establish a threshold was considered impractical, no
research need was identified, although the threshold for acceptance (technical basis criterion 5) was
judged to be questionable. All of the research needs identified are referenced in Table ES-1
according to the candidate guideline whose technical basis they are intended to support. The table
also shows the guidelines whose threshold of acceptance was judged to be inadequate, but for
which research was considered unnecessary. The main report (Volume 2) contains a discussion of
the objective and the rationale for each research need. Research needs are organized according to
the framework element they support and are discussed at the end of the corresponding section in
Volume 2.

Since candidate guidelines and associated implementation approaches or issues are of interest to
software developers and researchers, as well as to reviewers or auditors, there are obvious
overlaps with respect to which organization might be interested in, or perform the necessary
research identified to fill the gaps in the technical basis: the NRC, the nuclear industry, the
software industry, or other research and regulatory organizations. However, as part of an overall
assessment, those research needs that would directly support the NRC’s regulatory function of
performing reviews and audits were segregated from those that are more related to developing
methods and tools for the industry to use in producing safe software. In addition, many of the
research needs were judged as providing substantial support for both groups. Therefore, the
identified research needs were grouped into three categories:

Category X : Research needs that directly support the regulatory function

Category B: Research needs that provide substantial support both to the regulatory
function and to industry

Category C: Research needs that support primarily industry, Le., support the
engineering of safe software

The number of research needs in each category is as follows: Category A-13; Category B-24;
and Category C-24. The 37 research needs that support the regulatory function (Categories A
and B), along with the rationale for their importance to that function, are presented in Table ES-2 at
the end of this volume.

All of the research needs were then prioritized based on a subjective evaluation that considered the
following specific perspectives: (1) relationship to safety; (2) degree of leverage provided by the
research, based on the level of maturity of the software industry relative to the life-cycle activity
(framework element) where the gap in the technical basis exists; and (3) type of research product,
i.e., methods, criteria, measures, empirical data, or tools for implementing a guideline. As noted
before, the prioritization did not involve a cost-benefit analysis.

With respect to the first perspective, although all research needs identified are related to safety, they
could still be distinguished by how direct that relationship is. For example, research related to
software reliability was judged to contribute more directly to safety than that related to software

NUREGKR-6263, VOI. 1 ES-20

maintainability. In using the second perspective, the framework elements of Software
Requirements Specification and Software Safety Analysis were assessed as the least mature, and
therefore, research related to these framework elements could be expected to provide the greatest
leverage. The difficulty and importance of specifying valid software requirements was discussed
in Section 2. The next level of maturity and relative leverage was reflected in the framework
elements of Software Design and Software V&V--both static and dynamic. The remaining
framework elements were judged to have a level of industry experience and standardization such
that research related to those framework elements would provide relatively the least leverage. The
third perspective used in prioritizing the research needs was the type of research needed to address
the gap in the technical basis. D e f ~ g measures and criteria for evaluation was given the highest
priority since it addresses the lack of useful and valid measures of software properties and other
acceptance criteria, and also supports primarily the regulatory function. On the other hand,
research addressing the automation of support (e.g., tools to generate test cases from requirements
specifications) was assigned low priority.

All of the research needs were rated individually as high-, medium-, or low-priority according to
each of the three perspectives. A composite priority rating of high/medium/low was then given
based on the three individual ratings, as well as the consideration of any overlap with ongoing
NRC research. While the details on the rating process are given in the main report (Volume 2), the
composite ratings of Category A and B research needs are included in Table ES-2. Twelve of
those research needs are indicated as high-priority; these are discussed in Section 8.

7. Discussion of Research Needed

Traditional methods and practices in software engineering generally are not based on standard
engineering approaches and principles, such as the use of proven components and architectures
and an empirical foundation of measurement and experimentation (e.g., [Fenton et al., 19941).
Thus, many of the gaps in technical basis identified in this report are related to two broad areas
of concern that reflect the general lack of maturity of software engineering and that pose
problems in developing high integrity software. These two areas are (1) lack of standardized
software solutions for specific applications within the domain that software supports, and
(2) lack of an empirical foundation based on measurement, analysis, and experimentation. The
progress in these areas is slow, partly because of the inherent differences between the software
product and the physical products of more traditional engineering fields. The digital nature of
software precludes the traditional benefits of approximation and continuity, as discussed in
Section 5. A brief discussion of the two areas of concern and the need to focus on research
related to both process and product is presented below.

Standardization

Because software serves many disciplines, the practice of software engineering has tended to
emphasize general methods that could be applied to the development of custom software for any
application or discipline. However, the software industry has recently been developing a
“software version” of the principles of proven technology and standardization used in other
engineering fields. The software engineering discipline has now matured to the point where the

ES-2 1 NUREGKR-6263, V O ~ . 1

notion that every new software system is unique (i.e., has unique requirements and therefore a
unique custom-built architecture and design) is giving way to the understanding that many
software systems have much in common, and that this commonality can be exploited [Hooper
and Chester, 19911. Stability and standardization in the system requirements and architectures in
an application area lead to stability in the requirements of the software systems in that application
area [DOD, 19921. There is potential for codifying and standardizing all aspects of software
systems, including requirements, architectures, design, code, and the mapping between system
and software, all of which become proven or standardized when that potential is realized in the
application area. The manner in which these proven aspects of software support the regulatory
function is the same as that for traditional engineering: as the software becomes accepted,
standardized, and proven, it will be codified and used for developing regulatory acceptance
criteria. In the case of high integrity software, the proven or standardized aspects will strengthen
the basis for acceptance, which in the short term must rely on (1) a demonstration of an .
appropriate development process, which is only an indirect indicator of the quality and safety of
a software product, and (2) an attempt to demonstrate clearly the quality and safety of newly
developed custom software, which is expected to remain a difficult task for some time.

Several of the research needs set forth in this report would facilitate the standardization of
various aspects of software systems that support nuclear power plant safety systems, in addition
to addressing the specific gaps in technical basis. The general approach is called dornuin-specijk
sofhvare engineering, or domain engineering. It is viewed as an important theme cutting across
the research needs because it benefits both industry and the regulatory function. Section 14.3.1
of the main report (Volume 2) provides further information on the domain engineering approach
and discusses its applicability to the domain of nuclear power plant safety systems. An
important aspect of this approach is that it addre, ses the interface between the system and the
software. It provides greater benefit if standardization exists in the application area, and it
encourages the development of more detailed guidance on system-software interface
requirements. Domain engineering involves focusing on the specific software-supported
application domain (in this case, nuclear power plant safety systems) and providing the
following information, based on experience: (1) models of the behavior of software-supported
systems in the application domain and their interfaces with other systems and with humans;
(2) standard requirements specifications that cover the set of software systems in the domain;
(3) one or more standard software architectures and lower-level designs that map to the standard
specifications; and (4) code that implements the design and satisfies the requirements [Prieto-
Diaz and Arango, 1991; Arango, 19941. An important part of this information is the mapping
between the system and the software, i.e., which system requirements and designs relate to
which software requirements and designs, again based on experience-a knowledge of what
works.

In defining the application domain that applies in this case, namely, the nuclear power plant safety
systems, it is useful to distinguish two types of functions performed by the software. The first type is
concerned with performing the plant safety functions themselves. These safety functions are identified
at the system level and flow down through the software requirements, design, and code. The second
type is concerned with maintaining the integrity of the system and software elements that perform the

NUREG/CR-6263, Vol. 1 ES-22

primary safety functions, such as error checking and fault tolerance. The integrity functions are
partially identified at the system level but are significantly expanded within the software itself. The
domain engineering perspective on the research needs identified in the present work addresses the
integrity aspects of both types of software functions: plant safety functions, which predominantly are
specific to the nuclear power plant safety systems; and integrity functions, which might be common to
other application domains, e.g., mission-critical aviation and space systems, or to software systems in
general.

It is especially noted here that the availability of detailed system-level standards for defining the
system-software interface, which currently do not exist, will provide considerable impetus to the
domain engineering of software for nuclear plant I&C systems. This is in addition to the
advantages they will offer towards developing complete and accurate software requirements
specifications, the importance of which was discussed in Section 2.

Measurement and Experimentation

Another area of significant gaps is software measurement. Despite the amount of effort
expended to date in the area of software metrics, there is little empirical foundation for software
measurement and experimentation. Most of the “evidence” provided in the software literature is
not based on the results of controlled experiments, but is instead either anecdotal evidence or
“advocacy research” [Fenton et al., 19941. Even “common-sense” claims, such as the notion
that the use of formal notation leads to higher-quality specifications, are not necessarily
supported by the experimental evidence. (In fact, [Naur, 19931 found evidence that the use of a
formal notation can lead to more defects.) Given the lack of useful measures and experimental
evidence, together with the significance of demonstrating the ;afety of software, the
identification and prioritization of research needs as documented herein emphasized
experimentation to facilitate progress in this difficult area.

Product- and Process-Related Research

Because of the difficulty of assessing the quality of software products, the currently accepted
approach is to supplement the product assessment with an assessment of the process used to
develop the software. The assumption is that certain “disciplined” processes tend to increase the
quality and safety of the software that is produced. This approach is expected to continue
playing a major role in software development and assurance until the two areas of concern
discussed above are remedied. Therefore, the identified research needs span the life cycle and
include both product- and process-related research.

8 . High-Priority Research Needs Supporting the Regulatory
Function

The twelve research needs in Categories A and B selected as high-priority were ranked subjectively
based on overall considerations. The resulting priority sequence is shown in Table ES-3, and the
rationale for the ranking of each research need is discussed below. A brief discussion of the
importance of these research needs is also part of Table ES-2. Of the twelve research needs, eight
are related to domain-specific software engineering; these are identified as “Domain” following
their titles in Table ES-3.

ES-23 NUREG/CR-6263. Vol. 1

1. DeveloD regulatorv review criteria based on domain analvsis of nuclear power plant softw are
svstems TR3-1R6-11

This is considered to be the most important research need for several reasons. First, it addresses
the problem of lack of understanding of the interplay between software and the system context in
which it is defined. Second, it captures common or standard proven requirements and criteria
for evaluating requirements (not just the process of developing requirements); this should
contribute to resolving for nuclear power plant safety software the largest problem area in
software engineering in general, namely, specifying, understanding, and verifying software
requirements. This research is the most substantial part-the anchor-of the domain-specific
software engineering effort, whose importance has been described earlier in Section 7. Once the
nuclear power plant software community understands what the requirements should be, those
requirements can be used for new systems and incorporated into standard review criteria, rather
than created anew for each system.

2. Identifi common software-related ACEs or hazards based on domain-swific experience
JBUl

This research need is perhaps the one most closely tied to safety among all the research needs
identified in this report. Articulating and understanding the set of ACEs or hazards that can
occur in nuclear power plant systems and software would help establish ways to avoid or
mitigate them in current and future software systems. This research need is also an important
part of the domain-specific software engineering effort, although it is somewhat more specific
than the previous research need. For these reasons, it is nearly as important as the previous
research need, and the two should be worked together.

3. Identifi proven software architectures or designs that satisfv svstem safetv principles
{includinp diversity and redundancy) in software systems R 4-32

Although the area of design in general is relatively mahm in software engineering, the
application of system safety principles to software design presents a new challenge because
software cannot simply apply the methods and implementation approaches in the same way that
they are understood and applied at the system level. The application of these principles to
software is problematic because of the fundamental diffemms between software and the
physical systems on which the safety principles and methods matured. For example,
redundancy works for physical systems whose components wear out differentially, but does not
work analogously for software because all copies of the software will have the same faults.
Even attempts to achieve independence, and thereby avoid common-mode failures, through
software design diversity (in the form of N-version programming) have been less than
successful because the resulting versions do not appear to be mutually independent.

Therefore, the importance of this research is that it would identify proven architectures and
designs based on experiential evidence. Increasing experience in domain-specific software
engineering has resulted in greater recognition of the importance of a good software architecture
to the overall quality of and confidence in software system. Software architectures and designs
that have proven themselves to be successful in meeting safety principles could be used in the

NUREGKR-6263, Vol. 1 ES-24

regulatory review to evaluate whether the software design for a new system is adequate in this
respect. This research is related to research need No. 1 in that architectures and designs
identified would correspond to the requirements and domain models identified as part of research
need No. 1. This research is ranked high because of the proven technology and the broad scope
involved, but is ranked lower than the above two research needs because they offer more direct
leverage in terms of supporting requirements and safety analysis.

4. Determine definition and measurement of software reliability R3-4R6-41

This research need is important in several respects. First, it defines a measure that can be used in
the regulatory function. There is currently no adequate way to measure the ultra-high levels of
software reliability required for nuclear power plants. The immaturity of software with regard to
lack of measurement, as discussed earlier in this section, makes regulating software much more
difficult. This research is intended to establish such a measure; the resulting criteria could be
used in the regulatory review to evaluate software reliability requirements and assess whether
they have been met. Second, reliability is very important because it is directly tied to safety.
Third, this research need is related to requirements specifications, which, as indicated above,
may be the biggest problem area for software development, as well as for V&V, because it
would enable more precise reliability values to be specified as well as verified. It therefore
addresses an important gap in the current ability to determine the reliability of a software system,
or of a nuclear power plant safety system that includes software. This research goal would be
difficult to achieve quickly, but it is important. It is ranked lower than the previous three
research needs because it is concerned with the measure of a single attribute and does not
contribute directly to the proven technology argument as they do.

5. Develop adautable software operational profiles for each generic class of safety svstems and
a measure of their fit to specific systems TR7-141

This research is important because it would establish a realistic profile or model of the pattern of
data input to the software system. This is needed as the basis for statistical testing, and would
also support the evaluation of reliability. This research need is important because of its relation
to safety and to the domain engineering effort, but is ranked lower than the previous research
needs because it is considered to offer slightly lower leverage than the requirements, safety,
reliability, and architecture issues that constitute those research needs.

6 . Determine common notation for or translation between svstem-level engineering and
software safety requirements TR3-2R6-21

This research would provide a common proven mapping between the notation of the system
requirements and that of the software requirements, and would therefore provide further system-
software links. This is an important issue, but the reason this research is ranked lower than the
previous ones is the narrower scope of the issue involved. This research supports the domain
analysis effort under research need No. 1 and should be worked in conjunction with that effort.

ES-25 NUREGXR-6263, Vol. 1

7. Identifv common safety software performance reauirements based on domain-smific
exDerience TR3- 101

This research serves a role analogous to that of research need No. 2 (common ACES or hazards);
however, in this part of the domain-specific software engineering effort, the common artifacts
produced would be safety software performance requirements. These requirements would help
ensure that timing constraints are met. Although this is an important area, this research need is
ranked lower than those above because its scope is more narrow.

8. Conduct emuirical study of software failures in hiph integrity svstems lR7-2/R8-1/R9-41

An understanding of software failure patterns in the system context could provide valuable
feedback that would help resolve many of the errors and minimize failures in future systems.
The resulting codified information could be incorporated into standard regulatory review criteria.
This research is important because of its general relation to safety and to the proven technology
argument of domain engineering. However, its leverage as test-related research is rated as
somewhat lower than that of most of the previous research needs, and its relation to safety is
perhaps slightly less direct as well.

9. Identifv software architectures that use self-monitoring functions and other apmoaches to
fault tolerance and still satisfv Derformance recpirements lR4-61

This research supports research need No. 3, but focuses more on the tradeoff between self-
monitoring and fault tolerance versus performance and timing requirements. This is important,
but the narrower focus of the research, along with its somewhat lower leverage as design-related
research, lowers its ranking below that of the previous research needs.

10. Define criteria for acceptable design of error handliny and ~erformance margin lR4-41

This research would provide criteria needed to adequately perform the regulatory review of
software design with regard to meeting safety requirements. The general rationale for its ranking is
similar to that for the previous research need; however, this research addresses somewhat lower-
level design than the architectural issues addressed in the previous one, and it does not contribute
directly to domain engineering. These two differences are responsible for the slightly lower
ranking of this research.

1 1 . Define criteria for acceDtable design and use of softvmre interruuts lR4-21

This research also provides criteria needed to adequately perform the regulatory review of
software design with regard to meeting safety requirements. The general rationale for its ranking
is similar to that for the previous two research needs; however, this research is focused on the
more narrowly defined issue of the design and use of interrupts, and that results in the slightly
lower ranking of this research.

NUREGKR-6263, Val. I ES-26

12. Identify criteria for evaluating adequacv of uath coverage in software testing lR7-61

This research is important because it would provide criteria for evaluating path coverage during
software testing, which is related to safety. It is impossible to cover all paths in a software system,
so it is important to determine a threshold and achievable types of coverage, and at the same time
reduce to an acceptable level the risk involved in not testing some of the paths. Although testing in
general is partially mature and understood in software engineering, criteria for path coverage are
inadequate. Regulatory review could use these criteria in evaluating specified tests to determine
whether they meet the threshold and cover the required types of paths. This research need is
ranked last among the high-priority research needs because of a combination of the following: its
leverage as test-related research is somewhat lower than that of most of the previous needs, its
relation to safety is slightly less direct, and it does not directly support the proven technology
argument of the domain engineering effort.

ES-27 NUREGICR-6263, Vol. 1

Table ES-1. Candidate Guidelines and Assessment of Technical Basis

G3-1

Criteria for Assessment of Technical Basis
1 . Relation to Safety
2. Definition of Scope
3.
4. Existence of a Method
5 . Threshold for Acceptance

Since Criteria 1 and 2 were used in selecting and developing
the candidate guidelines, they were not used again in assessing
the technical basis. Section 5 provides a discussion of the
assessment of the technical basis, and defines the assessment
criteria. The assessment results are shown in the table as
Y (Satisfactory), Q (Questionable), or N (Not Satisfactory).

Body of Knowledge and Evidence

Identification Numbers of Candidate Guidelines and Research Needs.
the section in the main report in which the candidate guidelines and the research needs for each element are presented, while
the second is sequential within the section. For example, [G3-51 and [R3-21 are the fifth candidate guideline and the
second research need, respectively, in Section 3, on Software Requirments Specification in Volume 2. A research need applicable to
more than one framework element has multiple identification numbers, and is discussed in the section of the main report identified
by the first number. For example, [R3-l/R6-1] is discussed in Section 3 of Volume 2.
Acronyms are defined at the end of the table.

The first number corresponds to the number of

Assessment of
Technical Basis: I

For each software input, the SRS should specify the following:
Data format requirements
Precision and accuracy requirements
How often the input must be read

No.

G3-2

G3-3

Candidate Guideline

bor each software output, the SRS should specify the following:
Data format requirements
Precision and accuracy requirements
How often the output must be updated

The SRS should specify each abnormal hardware condition or event that the
software must detect. Abnormal hardware conditions and events include
failure of input or output device, processor, and memory.

Research
Need

G3-4

G3-5

The SRS should specify each abnormal software condition or event that the
software must detect. Abnormal software conditions and events include
failure of software services at the operating-system level and failure of logic
in application-level software (only general types of such failures can be
identified prior to software design).

The SRS should specify the time-dependent input-to-output relation (Le., the
required functions) that the software component must implement. That is, thc
SRS should specify allowed sequences of outputs given any combination of
sequences of inputs and abnormal conditionslevents. "Sequence" here means
an ordered list of <time, value (or dime. event>) pairs, including startup of
processing, response to interrupts, response for no input, and response to
variations in sampling of data. The specification should cover all possible
values (valid or invalid) of inputs.

ES-29

Y Y

Y Y

Y Y

Y Q

Y Q

NURJ5GlC.R-6263, Vol. 1

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

No. Candidate Guideline

Assessment of
Technical Basis:

Criterion
7

3 1 4 1 5
Research

Need

G3-6 h e time-dependent input-to-output relation specified by the SRS should not
permit any behavior that would violate any requirement (including safety
requirements) that the system design allocates to the software component or
any requirement that is derived from general system requirements.

G3-7 The SRS should specify the maximum percentage of available resources
(processor, dynamic memory, mass storage, network capacity) that the
software may use and should specify timing requirements, including speed,
recovery time, and response time.

_ _ _ _ ~ ~ ~~ ~

G3-8 The SRS should specify reliability requirements for the software.

G3-9 Software maintainability requirements should be analyzed and specified prior
to system design. These requirements should address coding standards and
design.constraints, as well as requirements for the supporting to& and
documentation.

G3-10 The SRS should specify necessary design constraints (conformance to
standards, hardware constraints).

Software Requirements Specffication: . u n a t ; l a t u i t s ~ ~ ; ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~
x ,, , :*, ~ 1 .&",'

~ , V ' :, 'L .'.+:&*;:.j.h'w,>;

G3-11 The SRS should be unambiguous. Each requirement should have only one
interpretation.

~~ _ _ _ _ ~ ~ _____~ _ _ _ ~ ~ ~ ~ ~

G3-13 Every requirement in the SRS should be verifiable. A method or process
should exist (inspection, demonstration, analysis, or testing) that can show
%at an implementation fulfills the requirement.

NUREGICR-6263, Vol. I ES-30

Y Q

Y Q

Y Y

Y Y

Y Q

Y Y

-
Q

-
Y

Q -
N

-
N

R3- 1/R6- 1
R3-2lR6-2

R3-10

R3-4lR6-4

R3-5/R6-5

R3-1lR6-1
R3-2lR6-2

R3-6lR6-6

q3-7/R6-7

R3-4IR6-4
R3-5R6-5
R3-8R6-8

R3-9

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

1 Assessment of
Technical Basis:

I No. I Candidate Guideline

4. Software Design

(34-2 The critical data structures and related operations in the software design
should be encapsulated within components.

NUREGKR-6263. V O ~ . 1

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Candidate Guideline I I

G4-3 The degree of modularity for a component as a minimum should be based on
the following:

Ease of understanding, taking into account both functional and

Minimal ripple effect of changes
Cohesiveness of components

structural complexity

r The software design should encapsulate external interface components that
are separated from the application program in order to achieve the following:

Prevent ACES from propagating to other components.
Ensure protocol compatibility between the application software and

Ensure uninterrupted safety processing.
tbe external interface.

synchronous events from an external interface into a component.

i" The validation and error processing for an external interface should be
thoroughly documented in the design specification.

G4 8 The software design should thoroughly document each usage of interrupt. rz I-
(34-8 (a)The software design should define processing duration and maximum

number of occurrence constraints for external event processing (e.g..
interrupts). r
(b) The software design should define the maximum duration for which an
interrupt is disabled.

lGbl Safety components should be identified to increase the focus on support for
prevention of unnecessary interaction from nonsafety components.

Assessment of
Technical Basis:

C,ri;riin5 1 Need 1
R e s e a r c h

Y

-
Y

Y
-

-
Y

Y
-

NUREG/CR-6263, Vol. 1 ES-32

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

G4-1C

G4-11

1 Candidate Guideline

~~

(c) The software design should ensure that all communication between safety
and nonsafety components is through their defined parameters.

Safety software should rtside in protected memory and periodically perform
self-test to confirm that it has not been corrupted. The time interval between
checks should be determined based on the safety importance of the function
being performed.

G4- 1 The interfaces between safety and nonsafety components should be carefully
designed to prevent unnecessary interactions with nonsafety component
processing. 4

G4- 12

G4- 13

communicated between safety and nonsafety components.

data produced for use in safety components.

, . I

The software should perform parameter validation by checking the range of
data used in communications to ensure that its value is within the defined
domain.

The software should perform protocol validation by doing the following:
Checking whether the requested action satisfies the conditions definec
in the assertions stated for the interface.
Verifying the permission for the called component before performing
the action requested.

GL 14 (b) Communications messages should contain sufficient information to
check for the completeness, correctness, correct ordering, and timeliness of
the message data (e.g., sumchecks. sequence number timestamp).

G4- 1 (a) The software should perform a plausibility check on the data being
communicated to ensure that its value is accurate. I 1

ES-33

Assessment of
Technical Basis:

Criterion
7
31415
-
Y

-
Y

-
N

N

-

-
Y

-
Y

-
Y

Y

-
Y

-
Y

Y

-

-
Q

-
Q

-
Q

Y

-
Y

-
Y

Q

-

Research
Need

R4-6

R4- 1
R4-6

R4-6

R4-6

R5-YR4-7

NUREGICR-6263, VOI. I

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

)*. Candidate Guideline

G4-15 The software design should explicitly identify the critical data and its usage
context. Critical data is any data needed to maintain plant power operation,
maintain plant safety, permit plant maneuvering, or establish operating
limits and margin.

G4-16 The software should protect and monitor data storage.

G4-16 (a) The software design for data storage should address diversity and
redundancy.

G4-16 (b) The software design should balance symmetric operation types (e.g..
create-delete and open-close) to prevent corruption of data.

G4- 17 The software should use a defensive technique for data storage.

G4-17 (a) Each variable should be assigned a default value when it becomes
available.

G4- 17 (b) The use of techniques that allow critical data overwriting (e.g.. circular
structure) should be justified.

G4-17 (c) The software should define attributes for time tag, quality tag, and
identification tag to be used for important data.

G4- 18 The software design should include the consideration of security aspects as
part of designing for data integrity.

G4-19The software should implement access control for data storage.

G4-19 (a) The software design specification should specify the sequence of accesse!
for the set of critical data and shared data.

G4-1 (b) The software design should ensure that only authorized access to data is I 1 allowed.

NUREGICR-6263, VOI. 1 ES-34

Assessment of
Technical Basis:

Research
Need

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Assessment of
Technical Basis:

I No. I Candidate Guideline

Software Design: Error Handling ~ , ~ .,,

t + R4-6

~ I "

" Y r c ..
+ +

,, " , , .

Q R4-4

Q .R4-4

Y

Y

Y R4-4

ES-35 NUREGKR-6263. Vol. 1

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

G4-23

I*I Candidate Guideline

(c) The software design should define a central facility for reporting ACES
and capturing their contextual information.

(34-25

(34-26

I

(d) The software design should produce well-defined outputs for ACE
processing.

The occurrence of an ACE should not intempt safety processing. Protection
against critical failures should be provided through strategies for fault-
tolerant design and quality control.

A performance margin should be provided. The computer system should be
designed with a sufficient performance margin to perform as designed under
conditions of maximum stress. Those conditions include data scan, data
communication, data processing. algorithm processing, analytical
computation, control request servicing, display processing. operator request
processing, and data storage and retrieval, at a minimum. Thus the computer
system should be designed with reasonable expansion capability that would
permit an owner to add other functions in the future.

(e) The software design should ensure that any status information returned
from the called service is evaluated before the processing continues.

~ ~~ ~~ ~

IG4-2jACEs assbciated with a component should be identified.

(a) The development environment should consist of proven tools with
vendor support.

G5- 1 (b) Besides satisfying the development requirements, development tools
should comply with a standard or an industry benchmark that requires a
certification process, if such a standard or benchmark exists.

G5-2 The tools in the development environment should be tested for the intended
application area before use.

G5-2 (a) Evaluations of development tools should be based on safety requirement!
identified in safety analysis.

Assessment of
Technical Basis:

Criterion
Research

Need

Y

-
Y

Y

-

R5-5m4-7

R5-5fR4-7

NUREGICR-6263, Vol. I

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Candidate Guideline

t
(35-2 (b) Each tool should be analyzed for unique features that might directly or

indirectly introduce errors into the implementation (Le., during usage or
transfer of data).

G5-3 The development environment should consist of a minimum number of
different tools.

G5-4 The development environment should be maintained under configuration
management.

G5-5 High-level programming languages should be used to implement the softwart
design. Otherwise, the justification for the language selection should be
provided.

G5-6 The use of assembly language to implement the software design should be
limited to special cases, such as optimization.

G5-7 There should be detailed programming guidelines for each language used in
the implementation.

- < ”~ . . , I I \ I ’ ’-,, , z ,><,.~.<‘,, , . I ‘ ,,’, , ’
” .

G5-8 (a) The target environment and reusable products should be tested for the
intended application before use.

G5-8 (b) The target environment and reusable product evaluations should be based
on safety requirements identified in safety analysis.

(35-9 The target environment and reusable products should be selected from proven
products with vendor support.

G5-9 (a) There should be a plan describing the strategy and the time period for
which vendor support is obtained for the target environment and reusable
products.

G5-9 (b) The target environment and reusable products used in implementing the
software design should comply with industry interface standards, when they
exist (e.g.. POSIX [IEEE1003.1]).

ES-37

Assessment of
Technical Basis:

Criterion

3 1 4 1 5
J Research

R5- 1

R5- 1

rlone Needed

. A I

. I

R5-2
R5-3
R5-4

R5-2
R5-3
R5-4

R5-3
R5-4

R5-3
R5-4

NUREGKR-6263, Vol. 1

, I -,, --?-,-.- . . .

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

3 Candidate Guideline

G5-9 (c) If a target environment or a reusable product was not developed in
accordance with a process standard required for its development, then the
development organization should analyze and test the software to ensure thal
the product complies with product standards and provide the necessary
documentation.

G5-9 (d) For a target environment and reusable products that are COTS, the
development organization should obtain maintenance guarantees from the
vendor.

G5-IC The target environment or reusable products should be maintained "as
delivered" under configuration management.

Dependency on the target environment's services (e.g.. operating system
services) should be minimized.

G5- 12 Data structures should be evaluated to ensure the correct usage.

G5- 13 Common variables should be grouped together.

G5- 14 Installation-specific data should not be hardcoded.

G5-15 Array structures should be accessed using simple addressing mechanisms.

G5- 16 When addressing an array, its bounds should be checked.

G5-17 Each data type and subtype should have a defined range.

G5-18 The nesting of data record structures should be kept to a minimum and
presented clearly.

,~ (?
y. .<@.;. :\e.. .\~, ~.:Tsp-,\

~I ',.% .-; %. 1 *;.:.:: ~~T,h,>

I , I ' $>:.. 1 : .;-,:~y* :,;&;

~. , I I ~

Software Coding: Logic Structure . "

G5-19 The logic structure of a component should contain only one entry point and

~ ~ : ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ . ~ : ~ . ~ ~ ~ ; ,"'."'>' ':<>,,"*" . . . > ~, I ~ . ~ ; +:~~~<?: ~ "~**~.<\'?.>~x~:~ :: * .,*Y". ' " ~ , *
' , . ~ l ~ ~> ;, , , , ,,. ,

. ~ " < ,>~:. -*,*T-. , ,.
. " * . . .

one exit point.

Assessment of
Technical Basis:

Criterion
Research

Need

Q

Y

Y
-

Q

Y

Y

R5-3
R5-4

R5-3
R5-4

R5-3
R5-4

R5-5/R4-7

R5-5/R4-7

NUREGKR-6263, Vol. 1 ES-38

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

No. Candidate Guideline

Assessment of
Technical Basis:

Cr i t e r ion
Research

3 4 5 Need

G5-2C The nesting of logic structures should be kept to a minimum and presented
clearly.

G5-21 (a) Multiple complex operations should not be attempted in a single
statement.

G5-21 (b) Parentheses should be used for multiple arithmetic operations in a
statement to show the precedence order of the operations, even if not required
by the compiler's rules for evaluation of arithmetic expressions.

(GS-2lBranch and loop structure should be handled cautiously.

G5-2 (a) Backward branches should be avoided; loop statements should be used
instead. I 1

(G5-2d(b) No branch into loop structure should occur.

IG5-2l(c) No branch out of a loop should occur unless it leads to the end of the loop

IC5-2l(d) "Go to" statements should be avoided.

default branch should be reserved for failure handling.

termination condition.

6. Software V&V-Static

i6-1 V&V of the software requirements should demonstrate that the requirements
are complete. It should address functional, performance, timing and sizing,
database, security, interface, and software quality attribute requirements;
identification of safety requirements; ACES and the responses to them; and
special operating conditions.

Y

ES-39

I ~ IW-~",

. > " , , ,

R3-1lR6-1
R3-2lR6-2
R3-3lR6-3
R3-4lR6-4
R3-5lR6-5
R3-6/R6-6
R3-7lR6-7
R3-8lR6-8

:-6263, Vol. 1

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Assessment of
Technical Basis:

Criterion

Candidate Guideline

i6-2 V&V of the software requirements should demonstrate that the requirements
are unambiguous, consistent, verifiable, modifiable, traceable, and readable.
These requirement quality attributes are defined by the candidate guidelines or
SRS.

b~ ~.,+<'
~ .- , 1~ . , ~ ..t'..̂ *,,, ,,:, ~ ~~~,~ ' ~ , '~~, /.

*I 111, A., ~ > " ,,. ~ 1 , > ,, , ,

; < ~ " . .
<, . ~ - , I , ..~ ~ *. .'

, ,.,,~ loftware Y&V-Static: 'Design V&.V ~~, I . I . < X I I'; ,~:? , . 1 ,,,.. .
~> 1~ ' . ;:\- ,. ~?,.~y'2,.-~:$k,$

. -,%*,>>:::~?~$ '"i > '

i6-3 V&V of the software design should demonstrate that the design correctly
implements the software requirements. V&V should demonstrate that the
software design is complete in the following ways:

The highest level of software design satisfies the software
requirements and the software safety constraints.
Each level in the software design satisfies the requirements and safety
constraints of the next-highest level of the software design.

;6-4 V&V of the software design should demonstrate that the design is consistent

;6-5 V&V of the software design should demonstrate that the design is traceable tc
the software requirements:

Each part of the design can be traced to one or more software
requirements.
There is adequate justification for any functionality in the software
design that is not specified in the software requirements.
Parts of the design that are relied upon in any way to implement
software safety constraints are readily distinguished from parts that
are not, and there is evidence that this partitioning of the design is
correct.

;6-6 V&V of the software design should demonstrate that the software design is
testable.

R3- 1lR6-1
R3-UR6-2
R3-3lR6-3
R3-4lR6-4
R3-5lR6-5
R3-6lR6-6
R3-llR6-I
R3 - 8lR6- 8

R6-9

R6-9

R6-9

R6- IO

NUREGKR-6263, VOI. 1 ES-40

ZP-SEI

5-6XlV-LX
€ - L a
I - L X N O

S-6WV-LX
E-LX
I - L X O b

I - L X b A

0 2 - L X
6-LX
I -LX b o

oz-LX
6-LX
I - L a N b

I - L X b A

I -LX A b

02-LX
6-LX
I -LX b A

-

A -

A

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

No.

Assessment of
Technical Basis:

Criterion
Research

Candidate Guideline 3 4 5 Need

exception handling, long run times, utilization of shared resources,
workloads with periods of high demand and extreme stress, and special
timing conditions.

R7- 191R9-7
R7-20

’

R7-12

R8-11R9-4
R7-4lR9-5
R7-7/R9-6

R7- 19/R9-7

R8-11R9-4
R7-4/R9-5
R7-7lR9-6

R7- 191R9-7

ES-43 NUREGKR-6263, VOI. 1

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

jl..l Candidate GuideIine

G7-20 A simulator with failure injection capability that uses the complete software
system in its target processors should be used as an environment for system
testing.

G7-21 Software reliability growth should be measured during the software system
test. A description of the model@) used should be supplied. The description
should include a list of assumptions made in constructing the model and all
information necessary to enable verification.

G7-22 The reliability of the software should be demonstrated using a reliability
demonstration test. A description of the operational profile used should be
supplied. The description should include a list of assumptions made in
constructing the profile and all information necessary to enable verification.

G7-23 Testing should include system users, Le., operators and maintenance
personnel, to evaluate interfaces, system performance, and system response.

(G7-2dInstallation tests should be executed independently by the plant operating
staff, to the extent practical in the plant simulator and eventually in the plan I litself.

G7-25 Installation tests should include tests for the presence of all necessary files,
as well as the contents of the files; hardware devices; and all software
components (e.g., underlying executive version, firmware in displays, and
anything to which the software could be sensitive).

~~ ~~ ~~ ~ ~ ~~

G7-2 Installation tests should test response, calibration, functional operation, anc
interaction with other systems. Interfaces that were simulated during
integration or factory acceptance testing should be exercised. 4

G7-2 Installation tests should include those operations that are judged to be
difficult or inconvenient for the operating staff. I 1 I I

Assessment of

Research

Assessment of

Research

Q

-

R7-20

R7- I O
R7-11
R7-13
R7- 14
R7- 15
R7-16

R7- 10
R7-11
R7- 13
R7- 14
R7- 15
R7- 16

None Needed

R7-4/R9-5
R7- 17

R7-17

R7-4lR9-5
R7- 17

NUREGICR-6263, Vol. 1 ES-44

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Installation tests should include conditions in which periodic in-service tests
are carried out and new releases are installed. This includes regression tests,
as well as support for periodic surveillance testing of nuclear plant safety
systems described in [IEEE338].

No.

Y

Candidate Guideline

G7-29

Assessment of
Technical Basis:

Cr i t e r ion -
All installation data, including test results, should be under configuration Y
control.

3 1 4 1 5

8. Software V&V-General Considerations

requirements of [IEEEIOIZ]. including in particular the minimum
requirements for critical software in [IEEE1012] and [IEC880].

G8-3 The V&V reports should be part of the development of the safety case, Le.,
should give the reasoning that would lead one to believe that the software
correctly implements all safety-related requirements and constraints. This
reasoning should address the adequacy of the evidence provided by each V&V
effort that is reported on.

G8-4 All data from the development process, including V&V reports of failures,
anomalies, and corrective actions, should be available for inspection.

G8-5 Automatically generated source code that becomes part of the operational
system should be subject to the same degree of V&V as manually produced
code.

J Research

R7-4/R9-5
R7- 17

ES-45 NUREG/CR-6263. Vol. 1

__ . ,.:---- ______i_ , . --

Table ES-1. Candidate Guidelilies and Assessment of
Technical Basis (Continued)

G8-6

No.

A tool that is used in a V&V argument should be subject to a degree of V&V
that is appropriate to (a) the criticality of the tool ih the V&V argument and
(b) the criticality of the argument in the overall safety argument.

Candidate Guideline

G8-7

Assessment of
Technical Basis:

Criterion v

Software V&V should be performed by individuals other than those who
designed the software.

3 1 4 1 5

Research
Need

(G8-8 (The V&V process should be audited by an independent organization.

9. Software Safety Analysis

-
i9- 1

-
i9-2

-
i9-3

i9-4

-

~~~ ~~ ~~ ~ 

?nor to initiating the development of safety-critical software, a 
:omprehensive software safety plan should be developed in accordance with 
JEEEI2281. 

mere should be a single person responsible for the software safety program, 
and this individual should have sufficient organizational independence and 
authority from the development organization to ensure that the program is 
:onducted properly. 

Documentation of the results of safety analyses required for safety-critical 
jystems may be independent or integrated with other project documents. 
The set of information required from safety analyses should include the 
rollowing: 

Results of software safety requirements analysis 
Results of software safety design analysis 
Results of software safety code analysis 
Results of software safety test analysis 
Results of software safety change analysis 

~ ~~~ ~~ ~ ~~ ~ 

Each completed set of information used in or resulting from a safety analysis 
activity should be maintained under configuration control to ensure that 
:hanges are controlled, and only current data are distributed. 

- 
Q 

- 
, ’ .  

- 
Y 

RS-2 
R8-3 

28-4lR7-21 

R9- 1 

R9-3 

NUREGKR-6263. VOI. 1 ES-46 



Table ES-1. Candidate Guidelines and Assessment of 
Technical Basis (Continued) 

No. Candidate Guideline 

G9-6 The design of software essential to accomplishing the safety function should 
be analyzed to identify ACEs that could prevent the software (if implemented 
as given in the design) from meeting all software safety requirements given 
in the SRS. 

G9-7 The safety-critical code should be analyzed to identify ACEs that, when 
executed, could prevent it from meeting all wftware safety requirements 
addressed in the software design. 

G9-8 Test cases should be derived from the ACE analysis to include execution of 
rare conditions (abnormal events, extreme and boundary values, exceptions, 
long run times. etc.). utilization of shared resources, workloads with periods 
of high demand and extreme stress, and special timing conditions. 

G9-9 Software safety analysis should be performed on all changes to 
specifications, requirements, design, code, systems, equipment. test plans, 
descriptions, procedures, cases, and testing, unless it can be shown to be 
unnecessary because of the nature of the change. The starting point of the 
change analysis should be the highest level within the system that is affectei 
by the proposed change. 

G9-1C Software change analysis should show that the change does not create a 
hazard. does not impact on a previously resolved hazard, does not make a 
currently existing hazard more severe, and does not adversely affect any high 
integrity computer software component. Software change analysis should 
verify that all affected documentation accurately reflects all safety-related 
changes that have been made in the software. 

G9-11 The safety framework for a high integrity software system should be 
examined for adverse conditions arising from the overlaps between safety 
issues and security issues. 

~~ 

ES-47 

I Assessment of 
Technical Basis: 

c,ri;riin5 1 Need 1 
Research 

Y 

- 
Y 

Y 

Y 

- 
Y 

- 

Q 

- 
Q 

Q 

Q 

- 
Y 

,,1,~ 
," . A<*. , 
'~ , 

, ,: ' I' ~ . * , 1 ,'~ ~ 

, ~I ̂I > 

. . ' ,~ ; ; L , , ~.",' 

R9-2 
R9-3 

< ,,. 

R9-2 
R9-3 

R9-2 
R9-3 

R7-21 
R8- llR9-4 
R7-4lR9-5 
R7-7/R9-6 
17- 19lR9-7 

R9-2 
R9-3 

R9-2 
R9-3 

R9-2 
R9-3 

R 10-3lR9-8 

NUREGICR-6263. V O ~ .  1 



Table E$-1. Candidate Guidelines and Assessment of 
Technical Basis (Continued) 

No. 

Assessment of 
Technical Basis: 

Cr i t e r ion  
Research 

Candidate Guideline 3 4  5 Need 

10. Software Operation and Maintenance 

Software Operation . ,and Maintenance: :Software 

engineering principles. 

Q 

Y 

Y 

RIO-4 Y 

- 
Y 

GIO-4 

G10-5 

Y 

- 
Y 

Maintenance plans should identify all resources used or generated during 
software development that will be needed to provide continuing support 
during the operation and maintenance phase. They should also describe any 
procedures required for transitioning these items to the support organization, 
including the training required to familiarize new staff with the software 
system and support procedures. 

Maintenance planning should address the full range of software engineering 
activities. It should. at a minimum, address the full scope of [IEEE1219]. 

Change management procedures should explicitly address the operational 
need to be responsive to maintenance requests. Such procedures must address 
how information from the following three viewpoints is recorded and used for 
planning: operational need, engineering alternatives, and programmatic 
constraints. Separate procedures should be required for scheduled builds and 
emergency maintenance. 

Y Y 

R10-1 
R10-2 

R10-2 

NUREG/CR-6263, Vol. 1 ES-48 



Table ES-1. Candidate Guidelines and Assessment of 
Technical Basis (Continued) 

No. Candidate Guideline 

- 
G10- 

G IO-; 

_____ ~~ ~ _ _ _ _ _  ~~ ~~ ~~ 

Ince computer hardware, software, or firmware has been procured as a 
ommercial grade item, and accepted through a commercial grade dedication 
irocess, this commercial dedication should be maintained as follows: 

Changes to the computer hardware, software, or firmware cornmerciall) 
dedicated should be traceable through formal documentation. 
Changes to the computer hardware, software, or firmware commercial11 
dedicated should be evaluated in accordance with the process which 
formed the basis for the original acceptance. 
A written evaluation should be performed by the commercial dedicator 
to provide adequate confidence that all changes to the computer 
hardware, software, or firmware commercially dedicated have been 
performed in accordance with the approved design and the V&V 
process. This evaluation should include consideration of the potential 
impact of computer hardware revisions on software or firmware. 
Any changes by the original product designer to the approved design o 
V&V process should be evaluated in accordance with the design or V&\ 
steps required by standard [IEEE7-4.3.21. 
Commercial grade dedication of computer hardware, software, or 
firmware for a specific safety system application cannot be construed a 
an approval for use of the commercially dedicated item for all safety 
system applications. 

I&V of modifications to software should be performed in accordance with 
IEEE1012]. It should provide the assurance that the modification was 
orrectly designed and properly incorporated. and that no other software or 
ystem functions are adversely impacted by the modification. 

G 10-9 A plan should be developed for a systematic and documented performance 
monitoring program. Performance monitoring requirements should be 
analyzed and specified prior to the initial system design. The necessary 
supporting tools and procedures should be considered during system design. 
Software monitoring should be performed at specified internal software 
boundaries, not limited to external observations of system performance. 

G10- Performance of software should be monitored. Utilization of processing 
10 resources should be monitored and reallocated as necessary to satisfy the 

performance requirements. Known failure modes, observed failure rates, and 
any anomalous behavior should be addressed within the context of the safety 
analysis report. Software anomalies should be routinely collected and 
reported. 

ES-49 

Assessment of 
Technical Basis: 

Research 

- 
Y 

- 
Y 

- 
Y 

- 
Y 

- 
Q 

- 
Y 

%IO-3R9-I 
R10-5 

I .  
I. I 
I .  

R10-6 

NUREGICR-6263, Vol. 1 



Table ES-1. Candidate Guidelines and Assessment of 
Technical Basis (Continued) 

Assessment of 
Technical Basis: 

Criterion 

No.  Candidate Guideline 3 4 5  
Research 

Need 

11. Software Configuration Management 

I ' ~% ;~ :e. 
* l  h ' ~.I) J , ~  

standard should apply to the entire software life cycle. 

Part 2.7, 51. and [ASME-NQA-I]. 

;:~' :, . *? .< , t '  
, , ~ . ~  ,:. . ~~ ~ 1 .  I y";'.;;, 51 
" 

:Cdpfig'nrati+N $Tdii&G,&%bi 
..:: ' ,&:2,~:& - - > ~  c A<,,> 

" , :".,- :,,<.:A;; &P~,:y? oftware Configuration Managexxien&' 

i 1 1-3 SCM configuration identification should be defined and performed in 
*,- 1, 

accordance with [IEEE828] and [IEEE1042]. 
~~~~~ ~ ~ 

ill-4 The software configuration items and support or test software items to which
SCM will be applied should be identified. The software configuration items
should include both commercially purchased and custom-developed software.

; I 1-5 A configuration baseline should be defined at the completion of each major
phase of the software development. Approved changes created subsequent to
the baseline should be added to the baseline. The baseline should define the
most recently approved software configuration.

A labeling system for configuration items should be implemented that does
the following:

Uniquely identifies each configuration item.
Identifies changes to configuration items by revision.
Provides the ability to uniquely identify each configuration of the
revised software available for use.

i l l-6 A document transfer package that identifies the configuration-controlled
items required to be maintained throughout the software life cycle should be
developed. It should contain the information required for the plant owner to
maintain the software at the same level established by the software
developer.

Y

-
Y

-
Y

Y

-
Y

-
Y

-

-
Y

-
Y

qone Needed

NUREGICR-6263, Vol. 1 ES-50

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Assessment of
Technical Basis:

Criterion
Research

N o . Candidate Guideline 3 4 5 Need
L

ES-5 1 NUREGICR-6263, V O ~ . 1

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Assessment of
Technical Basis:

Criterion

N o . Candidate Guideline 3 4 5
Research

Need

G 1 1 -
13

The software engineer should maintain records of all commercially purchased
software, including the version numbers of the software used to perform
calculations and the dates they were run. In addition, the purchasing
organization should have a systematic means of informing all past code user!
of updates, of bugs that have been identified and fixed, and of planned
changes to the software.

Y

G11-
14

Y

There should be automated support for SCM, particularly for chkge control,
defect recording, and status accounting. Such automated support should be
selected and applied in accordance with [IEEE1042].

Y

12. Software Quality Assurance

identified in [10 CFR Part 50: Appendix B]. Quality Assurance Criteria for
Nuclear Power Plants and Fuel Reprocessing Plants.

purchaser's organization.

GI 2-3 The SQA plan should address all quality assurance procedures required during I 1 1 phases of the software life cycle.

G12- The tasks of quality assurance should be run generally in parallel with the
other tasks of the life cycle. 11 1 1 1 1

NUREGKR-6263. Vol. I ES-52

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

No.

Q

Q

Y

Y

Y

Q

Candidate Guideline

NoneNeeded

NoneNeeded

NoneNeeded

3 12-5

3 12-6

j12-7

i 12-8

i 12- The organizational elements responsible for each SQA task should be
jidenti fied.

A set of management policies. goals, and objectives is necessary to guide th~
implementation and application of the SQA program. Upper levels of
management should recognize that SQA is a vital part of the software
development process, and that software development, implementation,
operation. and maintenance are similar to other engineering processes
subject to quality assurance requirements. This recognition by upper
management should be translated into a commitment through policies that
set software quality goals: establish SQA functions; and authorize the
resources in terms of people, money, and equipment necessary to perform thc
tasks.

SQA personnel should possess technical experience in software
development, specification, design, and testing. Senior technical staff are
preferable to administrative project management staff. SQA personnel
should have technical currency.

The SQA organization should have a charter, with each element of the
organization defined and its responsibility outlined. The elements
responsible for SQA should be independent from those responsible for
software development.

The interfaces between the SQA organization and the software development
organization should be carefully defined.

i12-
0

I

The SQA program should provide in-depth training in the elements of
software engineering and SQA for all personnel performing activities
affecting quality. This includes training in software design and development
techniques. as well as SQA procedures.

ES-53

Assessment of
Technical Basis:

c,ri;riim5 1 Need I
Research

NUREGICR-6263, Vol. 1

Table ES-1. Candidate Guidelines and Assessment of
Technical Basis (Continued)

i12-
1

G12-
12

*I Candidate Guideline

The SQA plan should identify the documentation to be prepared during the
development, verification, use, and maintenance of the particular software
system. It should identify the organizational elements responsible for the
origination, V&V, maintenance, and control of the required documentation.
It should also identify the specific reviews, audits, and associated criteria
required for each document. It should identify the tools, techniques, and
methodologies to be followed during the audits; checks and other functions
that will ensure the integrity of the software products; required
documentation; and the management structure and methodology to be
employed.

SQA audits should evaluate the adherence to and effectiveness of the
prescribed procedures, standards, and conventions provided in SQA program
documentation. The internal procedures, the project SQA plans,
configuration management, and contractually required deliverables, from
both the physical and functional perspectives, should be audited throughout
the life cycle. The SQA audit consists of visual inspection of documents, and
nondocument products, to determine whether they meet accepted standards
and requirements.

Y Y Y

13. Software Planning and Management

G 1 3- 1 Prior to initiating the development of safety-critical software, project
management personnel should develop a comprehensive software
development and management plan for the entire life cycle. This plan, as
well as other supporting plans for the successive life-cycle phases, should be
updated as necessary and maintained under configuration control.

Assessment of

Criterion
Research

-
Y
-

Y Y

I ,,*̂

R13-1
R13-2

NUREGICR-6263, Vol. 1 ES-54

ss-sa

, [-€I8 0 A

Table ES-2. Research Needs Supporting the Regulatory Function

Number
and

Category(1)

R3-11
R6- 1

03)

R3-21
R6-2

03)

R3-41
R6-4

(A)

R3-5/
R6-5

(4

Title

Develop regulatory
review criteria based
on domain analysis
of nuclear power
plant software
systems

Determine common
notation for or
translation between
system-level
engineering and
software safety
requirements

Determine definition
and measurement of
software reliability

Determine definition
and measurement of
software
maintainability

Importance to Regulatory Function

Developing and clearly defining new software requirements that
are consistent with system requirements is one of the most
significant problem areas in software engineering. But
experience with existing requirements for nuclear power plant
safety software systems exists and can be exploited. This
research would provide common models showing the relationship
between the system and the software, common software
requirements satisfying system requirements and designs, and
common review criteria that could be used to evaluate the
specific software requirements for a new system. This research
potentially is part of the domain-specific software engineering
activity.

The translation of safety system requirements and constraints to
software requirements is not straightforward and not well
understood. Part of the difficulty is the difference in notation
between the system and software levels. This research would
provide standard notation for representing both system and
software requirements, or at least a standard mapping between
system and software requirements, that could be used to evaluate
the specific software requirements for a new system. This
research potentially is part of the domain-specific software
engineering activity.

There is currently no adequate way to measure the ultra-high
levels of software reliability required for nuclear power plant
safety systems. This research would establish a standard
definition of reliability and a method of measuring reliability for
I&C systems; the resulting criteria could be used in regulatory
review to evaluate software reliability requirements and assess
whether they have been met.

Maintainability is currently measured indirectly at best. This
research would establish a standard definition of maintainability
and a more direct method of measuring maintainability for I&C
systems; the resulting criteria could be used in regulatory review
to evaluate software maintainability requirements and assess
whether they have been met.

Overall
Priority(*

H

H

H

M

lThe first number corresponds to the section number in the main report (Volume 2). while the second is sequential within
that section. For example, R3-1 is the first research need in Section 3 of Volume 2. A research need applicable to more
than one framewrok element has multiple identification numbers, and is discussed in the section of the main report
identified by the first number. For example, [R3-1/R6-1] is discussed in Section 3 of Volume 2.

2H = High; M, = Medium, L = Low; and an asterisk (*) indicates that the priority was lowered by one priority level because
the identified research need may overlap with ongoing NRC research.

ES-57 NUREG/CR-6263, Vol. 1

Table ES-2. Research Needs Supporting the Regulatory Function (Continued)

Number
and

Category(1)

R3-81
R6-8

R3- 10

(B)

R4- 1

(A)

R4-2

(A)

Title

Develop tools to
measure test
coverage of
specifications

Identify common
safety software
performance
requirements based
on domain-specific
experience

Develop quantitative
measures for
evaluating
modularity

Define criteria for
acceptable design and
use of software
interrupts

Importance to Regulatory Function

Functional testing of a software component should be based on
that component’s software requirements specification. To
produce evidence that a set of functional tests is adequate, one
should be able to measure the degree to which a set of test cases
covers the requirements in a software requirements specification.
There is currently no automated way to do this. This research
would provide methods of and tools for measuring how well a set
of test cases covers a set of requirements. Regulatory review
could use these results to evaluate the process; that is, when test
cases are produced, they could be evaluated before the tests are
executed to determine the extent to which they cover each of the
requirements.

The software industry has experience in translating system
performance goals into software requirements specifications, but
the commonalities among requirements of similar software
systems for each of the various nuclear plant types have not been
identified and codified. If this information were captured, it could
be reused and could mature more rapidly into “proven”
requirements. This research would identify common software
requirements specifying time-dependent software behavior that
accounts for hazards and abnormal events, based on domain-
specific experience. These requirements could be used in
regulatory review to assess whether system performance and
timing constraints have been accurately represented in the
software requirements. This research potentially is part of the
domain-specific software engineering activity.

Modularity is an established way to reduce risk in the design by
separating complex problems into manageable parts, but there is
currently no established measure of modularity. This research
would develop quantitative criteria, based on accepted software
engineering principles of information hiding, for evaluating
modularity. These criteria could be used in the regulatory review
of the design to determine whether there is adequate modularity to
reduce the risk.

System design determines where interrupts are needed in the
software design, but software intempts are known to be error-
prone. This research would examine system design constraints
to determine how to minimize the need for interrupts in software
designs. The results could be used in regulatory review to
determine whether the interrupt issue has been addressed properly
and interrupts kept to a minimum.

NUREGICR-6263, Vol. 1 ES-58

Overall
Priority(2)

M

H

M

H

Table ES-2. Research Needs Supporting the Regulatory Function (Continued)

Number
and

Category(1)

R4-3

03)

R4-4

(A)

R4-5

(A)

R4-6

03)

Title
~~

Identify proven
software architectures
or designs that
satisfy system safety
principles (including
diversity and
redundancy) in
software systems

Define criteria for
acceptable design of
error handling and
performance margin

Develop criteria for
evaluating self-
monitoring designs
that use watchdog
processing on a
separate coprocessor

Identify software
architectures that use
self-monitoring
functions and other
approaches to fault
tolerance and still
satisfy performance
requirements

ImDortance to Regulatory Function

While system safety principles such as diversity and redundancy
in system design are well understood, their application to
software is not well understood, in part because it is not
straightforward. However, the premise of this research is that
safe software systems exist and can be identified as such. The
architectures or designs of these systems would be analyzed to
determine how they satisfy system safety principles. This
research would provide standard architectures and designs proven
to satisfy safety principles. These could be used to evaluate the
specific software design in a new system. This research
potentially is part of the domain-specific software engineering
activity.

Adequate error handling is one of the most important areas of
design and implementation of high integrity software systems
because this part of the software is most closely tied to safety
functions, particularly in terms of responding to abnormal
events. Regulatory review of these systems should have a way
to determine the adequacy of error handling. This research would
provide a threshold that could be used to determine the
acceptability of the error-handling design of a new system.

No criteria are available to evaluate self-monitoring designs that
use watchdog processing on a separate coprocessor to perform
flow control processing, including checking processing duration
and correctness of processing flow. This research would provide
more objective and precise criteria for evaluating the design of
this type of system to ensure that the monitoring does not
interfere with safety.

There is some risk that the additional software required to support
self-monitoring functions, as well as other approaches to fault
tolerance, could increase the risk of failures, particularly if the
monitoring functions are not adequately isolated from the
primary functions. This research would assess these risks for
high integrity software, and identify (from an experience basis)
standard software architectures that include the self-monitoring
and other fault-tolerant functions without violating the timing
constraints. This includes addressing tradeoffs among approaches
to self-monitoring, such as using the same processor for
application and monitoring functions versus using a separate
coprocessor for monitoring (as described under research need
[R4-51). This research potentially is part of the domain-specific
software engineering activity.

Overall
Priority(*)

H

H

M*

H

ES-59 NUREG/CR-6263, Vol. 1

Table ES-2. Research Needs Supporting the Regulatory Function (Continued)

Number
and

Category(1)

R5- 1

(A>

R5-3

(B)

R5-4

(B)

R6-9

(A)

T i t l e

Define evaluation
criteria for
development
environments for
producing high
integrity software

Define framework
and criteria for
certification of
reusable components

Determine feasibility
of and criteria for
using COTS
products in high
integrity software
systems

Define thresholds for
evaluating design
completeness.
consistency, and
traceability to
requirements

Importance to Regulatory Function

Part of the evaluation of the process of developing a high
integrity software system involves evaluating the adequacy of the
software environment used in the development. Even though
many publications address evaluation of individual tools for high
integrity software system development, there is no standard set of
criteria for the overall tool environment in which the software is
developed and tested. This research would provide criteria for
evaluating the adequacy of the development environment, for
example, whether the tools are sufficiently integrated.

There are safety advantages to using components that have been
successfully used in other safety systems, rather than developing
new components. However, there are also disadvantages, partly
because the development organization typically has little
knowledge of the context or pedigree of a component, which can
affect its use and its safety in the new system. Evaluation
criteria for reusable components are critical for certifying the
quality and safety of the components, but these certification
criteria are not clearly defined. This research would define an
evaluation framework and develop criteria for certification of
reusable compnents. These could be used in regulatory review
to evaluate whether code developed in another, perhaps unknown,
context is safe to use in a new high integrity system. This
research potentially is part of the domain-specific software
engineering activity.

There are problems associated with using COTS products in high
integrity software systems for which the proposed solutions are
only partial. For example, maintenance of someone else’s
software is difficult, and modifying a COTS product may
terminate its support from the vendor. This research would
provide standard rules or guidelines for using COTS products in
high integrity software systems, and identify tradeoffs from both
the technical and organizational perspectives. These could be
used to evaluate whether specific COTS products are safe to use
in a new high integrity system. This research potentially is part
of the domain-specific software engineering activity.

Part of regulatory review is evaluating the design of safety
functions. However, an auditor does not have clear criteria or
thresholds for evaluating whether the design is adequate, and
whether design guidelines have been met. This research would
support that function by providing thresholds of completeness,
consistency, and traceability to requirements that could be used as
objective criteria for determining the acceptability of the design
in these areas.

NUREGKR-6263, Vol. 1 ES-60

Overa l l
Pr ior i ty(2)

M

L*

L*

M

Table ES-2. Research Needs Supporting the Regulatory Function (Continued)

Number
and

R6- 10

R6-11

03)

R6- 12

(A)

R6- 1 3

R7- 1

(B)

R7-21
R8-11
R9-4

~ ~~

T i t l e

Develop measure of
design testability

Identify reverse
engineering support
for code V&V

Survey automated
support for code
analysis

Develop evaluation
criteria for formal
verification of source
code

Determine relative
efficiency of test
strategies and
resources required for
each

Conduct empirical
study of software
failures in high
integrity systems

_ _ _ _ _ _ ~

Importance to Regulatory Function

It is difficult to evaluate whether the candidate guideline of
producing a testable design has been met. This measure would
provide more objective means of making that determination in
the regulatory review.

It is assumed that the regulatory function will include performing
at least some key V&V activities. Reverse engineering could be
used in the regulatory review as part of static code analysis.

Under the assumption that regulatory review will include V&V
activities, this research would provide tools covering many
aspects of static code analysis.

Formal verification of source code offers potential benefit for
software quality and safety. However, there is a lack of standard
techniques for assessing the adequacy of a formal verification
effort. This research would develop evaluation criteria for
regulatory review to determine whether a formal verification of
source code in a high integrity software system has been
performed satisfactorily.

Testing experience reports are rare in the literature. Additional
research is needed on the ability of various testing strategies to
trigger failures, and the resources required as a function of
execution time, test runs, and types of failures. This research
would determine which testing strategy identifies the most
failures in the software and what resources are required to
implement each strategy. The regulatory review could use the
results of this research to evaluate the adequacy of test strategies
either before or after the tests are run.

Almost all large software projects perform disposition of and log
information about software failures, but there has been little
collection and dissemination of this information on a larger
scale. This research would provide an understanding of standard
software failure patterns and a list of common errors or failures
in existing software systems. These could be used to evaluate
whether the software for a new system has been tested for these
errors, and to demonstrate that they are not present. This
research potentially is part of the domain-specific software
engineering activity.

Overa l l
Pr ior i ty(2)

M

M

L*

L*

M

H

ES-6 1 NUREGKR-6263. Vol. 1

Table ES-2. Research Needs Supporting the Regulatory Function (Continued)

Number
and

Category(1)

R7-3

R7-6

(A)

R7-8

(B)

R7-9

(B)

R7-10

(B)

T i t l e

Determine extent of
testing required to
certify existing
software

Identify criteria for
evaluating adequacy
of path coverage in
software testing

Develop metrics for
evaluating test
effectiveness and test
progress

Develop criteria for
reviewing test plans
and specifications

Evaluate reliability
demonstration test
techniques

Importance to Regulatory Function

Certification of existing software (see research need [R5-3]) can
potentially be done through a combination of static analysis;
review of pedigree, including process and usage; and testing.
This research would explore what is required for certification
through testing, including the extent of testing with the new
system being developed. The results could be incorporated into
regulatory guidelines for assessing whether the testing of
existing software is adequate for certification in a new system.

Since it is impossible to cover ail paths in testing a software
system, it is important to determine a threshold and types of
coverage required that are possible to achieve, and at the same
time reduce to an acceptable level the risk involved in not testing
some of the paths. Although testing in general is partially
mature and understood in software engineering, criteria for path
coverage are inadequate. Regulatory review could use these
criteria to evaluate specified tests to determine whether they meet
the threshold and cover the necessary types of paths.

Data on the productivity and efficiency of testers is available, but
it is sparse. This research would provide mrtrics showing the
benefit-to-cost ratio of additional testing, which would be good
indicators of testing progress, and profiles of software test
duration, which would enable comparison of a development
project with industry convention or averages for safety
applications. These would assist the regulator in process
evaluation.

Quality attributes for test plans and specifications are not well
defined or measurable. This research would provide auditors with
guidance on the analysis of these test documents as part of
regulatory review.

It is difficult to apply reliability growth models to systems with
a low number of faults, including high integrity software
developed with good quality assurance practices. This research
would compare approaches for reliability demonstration testing
and produce guidance that could be incorporated into regulatory
review for assessing whether an adequate approach was used in a
new system.

NUREGKR-6263, Vol. 1 ES-62

Overa l l
Pr ior i tv(2)

L*

H

M

M

M

Table ES-2. Research Needs Supporting the Regulatory Function (Continued)

Tit le

Develop procedures
for reliability
prediction and
allocation

Develop adaptable
software operational
profiles for each
generic class of
safety systems and a
measure of their fit
to specific systems

Develop techniques
for estimating the
reliability of
distributed systems

Develop method for
messing high-level
language compiler
risks

~ _ _ _ _ _

Importance to Regulatory Function

Software reliability growth models rely on data generated after
the design and coding, hence have little impact on the planning
and design stages of the project. This research would develop
procedures for software reliability prediction in order to allocate
reliability to software components and evaluate designs (as is
commonly done for hardware reliability) prior to software
testing. The results of this research could be used in regulatory
review of the process to estimate reliability in the design stage of
the project.

[OECD HALDEN, 19931 concludes that none of the software
reliability growth models represent an entirely adequate fit to any
of the data sets to which they are applied. This research would
provide standard software operational profiles of data input to the
software system. These could be used in the regulatory review to
determine whether realistic test suites were used (especially
statistical testing) and to evaluate the reliability of a new system.
This research potentially is part of the domain-specific software
engineering activity.

Most software reliability growth models are based on centra!ized
architectures. Safety systems are increasingly using a distributed
software architecture, which requires more complex reliability
growth models. This research would develop models for
distributed systems with common software platforms (Le.,
operating systems, and databases) and forunique application
services executing on different hardware platforms connected by
networks. The techniques developed could be used in regulatory
review to estimate the reliability of these distributed systems.

Some risk is introduced into safety systems by commercially
available compilers. The risk is that the compiler does not
correctly translate source code into object code and therefore may
affect plant safety. Many compiler defects pose a risk to safety,
but not all. For example, a compiler may abort when
attempting to translate a particular construct; this poses a
problem for the software developer, but does not constitute a
safety problem. This research would address whether high-level
language compilers or optimizing compilers are less
deterministic and therefore higher-risk. The results of this
research would directly benefit auditors in assessing the overall
risk of using specific compilers by formulating realistic guidance
for compiler usage for high integrity software systems, including
the safety implications of changing compilers or upgrading to
new versions of the same compiler.

Overall
Priority(*

L*

H

M

M

ES-63 NUREGKR-6263, Vol. 1

Table ES-2. Research Needs Supporting the Regulatory Function (Continued)

Number
and

Category(1)

R8-41
R7-2 1

03)

R9- 1

(B)

R9-2

03)

R10-2

03)

Tit le
~~

Determine
interaction protocols
for V&V activities

Develop techniques
for creating and
evaluating software
safety plans

Identify common
software-related
ACEs or hazards
based on domain-
specific experience

Identify typical
safety-significant
software changes
during maintenance
Phase

Importance to Regulatory Function

The conventional wisdom is that software V&V must be
independent to be effective. However, there are some tradeoffs
with the degree of independence. This research would develop
interaction protocols that would provide an independent
perspective (i.e., avoid repeating the same errors as in the
development because of overfamiliarity with the approach used),
but still address the issues accurately and competently (Le., based
on sufficient knowledge and understanding of the system concept
and requirements). These protocols could be incorporated into
criteria for regulatory review of V&V activities.

There is little experience in applying standards for safety plans,
such as [IEEE1228], to software development projects, and in
monitoring project progress and activity against the plans. This
research would develop techniques necessary for creating snch a
plan, and for monitoring actual project progress against planned
progress. The results could be incorporated into safety plan
evaluation criteria for regulatory review.

The identification of ACEs that software must address currently
relies on performing, for each new system, safety analyses for
requirements, design, code, test, and change. This research would
provide a list of the minimum number of standard ACEs that
could occur and that the new software system must prevent or
mitigate. This list could be used to evaluate whether the new
software system has addressed all the items on the list. This
research potentially is part of the domain-specific software
engineering activity.

There is a lack of empirical data showing the types and quantity
of changes typically required during the operation and
maintenance phase of software systems. This research would
provide typical software changes that occur during maintenance
of high integrity software for nuclear plants. The identified set
of changes could be used in the regulatory review to determine
whether these changes have been anticipated and accounted for in
the design of the new system. This research potentially is part
of the domain-specific software engineering activity.

NUREGICR-6263, V O ~ . 1 ES-64

Overall
Prioritv(2)

L

M

H

M

Table ES-2. Research Needs Supporting the Regulatory Function (Concluded)

Tit le

Number
and

Category(1)

R 10-3/
R9-8

@I

R13-1

@)

Importance to Regulatory Function

Develop techniques
for evaluating
software
modifications and
limiting the safety
impact of
modifications

There are many circumstances under which operational software
may be modified. Criteria are needed for determining what types
of software modifications could raise safety concerns. Certain
changes to software might not involve any significant safety
issue, while others might be such that their effects could be
mitigated through a proper implementation approach and
adherence to certain practices. This research would develop
techniques for evaluating software modifications and limiting the
safety impact of those modifications. The results would be
valuable for regulatory review in support of implementing the
requirements of [10 CFR Part 50: 50.591.

1

Streamline software I The diversity of software management and development plans and
management and
development plans,
and develop criteria
for evaluating them

formats for these plans makes it an imposing task for any
organization to verify the conformance, completeness, and
accuracy of plans submitted. While the overall contents of the
plans are remarkably consistent across the standards, the
differences in format make document analysis particularly
difficult. This research would develop effective and efficient
mechanisms for extracting the relevant information and assessing
it for consistency with the software safety plan. and for ensuring
that such verification could be performed. It would also develop
a rationale for merging certain plans that are likely to create
conflicts. The results of this research would be useful in
regulatory review of software management and development
plans as part of process review.

Overall
Prioritv(2)

M

M

ES-65 NUREG/CR-6263, V O ~ . 1

Table ES-3. Ranking of High-Priority Research Needs Supporting
the Regulatory Function

Priority
Rank Number*

1 R3-11
R6- 1

2 R9-2

3 R4-3

4 R3-41
R6-4

5 R7- 14

6 R3-21
R6-2

7 R3-10

Tit le

Develop regulatory review criteria based on domain analysis of
nuclear power plant software systems (Domain)

Identify common software-related ACES or hazards based on
domain-specific experience (Domain)

Identify proven software architectures or designs that satisfy system
safety principles (including diversity and redundancy) in software
systems (Domain)

Determine definition and measurement of software reliability

Develop adaptable software operational profiles for each generic
class of safety systems and a measure of their fit to specific
systems (Domain)
Determine common notation for or translation between system-
level engineering and software safety requirements (Domain)

Identify common safety software performance requirements based
on domain-specific experience (Domain)

8

9

10

11

12

ES-67

R7-2l
R8-11 systems (Domain)
R9-4
R4-6

Conduct empirical study of software failures in high integrity

Identify software architectures that use self-monitoring functions
and other approaches to fault tolerance and still satisfy performance
requirements (Domain)

Define criteria for acceptable design of error handling and
performance margin

Define criteria for acceptable design and use of software intenupts

Identify criteria for evaluating adequacy of path coverage in software
testing

R4-4

R4-2

R7-6

NlJREG/CR-6263, Vol. 1

REFERENCES

[10 CFR Part 501

[Arango, 19941

[ASME-NQA-2a]

[Basili and Perricone, 19841

[Beltracchi, 19941

[Bennett, 19911

[Boehm, 19751

[Brooks, 19871

[Butler and Finelli, 19931

[Davis, 19901

[Dijkstra, 19891

U.S. Government, “Domestic Licensing of Production and
Utilization Facilities,” Code of Federal Regulations, Title 10,
Part 50.

G. Arango, “Domain Analysis Methods,” Software Reusability,
W. Schafer, R. Prieto-Diaz, and M. Matsumoto, editors, Ellis
Horwood, pp. 17-45), 1994.

American Society of Mechanical Engineers, Quality Assurance
Requirements of Computer Software for Nuclear Facility
Applications, Part 2.7, ASME NQA-2a-1990, May 31, 1990.

V. R. Basili and B. T. Perricone, “Software Errors and
Complexity: An Emperical Investigation,” Communications of
the ACM, Vol. 27, No. 1, pp. 42-52, January 1984.

L. Beltracchi, “NRC Research Activities,”Proceedings of the
Digital Systems Reliability and Nuclear Safety Workshop,
September 13-14.1993, conducted by the U.S. Nuclear
Regulatory Commission, in cooperation with the National
Institute of Standards and Technology, NUREG/CP-O136,
p. 39, March 1994.

P. A. Bennett, “Forwards to Safety Standards,” SofhYare
Engineering Journal, pp. 3740, March 1991.

Barry Boehm et al., “Some Experience with Automated Aids to
the Design of Large-Scale Reliable software,” ZEEE
Transactions on Software Engineering, Vol. 1, No. 1,

Frederick P. Brooks Jr., “No Silver Bullet: Essence and
Accidents of Software Engineering,” Computer, April 1987.

R i c e Butler and George Finelli, “The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
software,” ZEEE Transactions on Software Engineering,

Alan Davis, Software Requirements Analysis and Specification,
Prentice Hall, New York, 1990.

pp. 125-133, March 1975.

Vol. 19, NO. 1, pp. 3-12, January 1993.

Edsger W. Dijkstra, “A Debate on Teaching Computer
Science,” Communications of the ACM, Vol. 32, No. 12,
December 1989.

RE- 1 NUREGICR-6263, Vol. I

[DOD, 19921

POD-STD-2 167Al

[EPRI, 19921

[Fenton et al., 19941

[Fujii, 19931

[Grady, 19?,2]

[Hooper and Chester, 19911

[IAEA, 19931

WC8801

[IEEE 10 121

[IEEE7-4.3.2]

[Jones. 19911

NUREG/CR-6263. Vol. I

U.S. Department of Defense, DOD Software Reuse Initiative,
DOD Software Reuse Vision and Strategy, Technical Report
1222-04-210/40, July 1992.

U.S. Department of Defense, Defense System Sofrware
Development, DOD-STD-2167A, 1988.

Siddharth Bhatt and Laurent Chanal, Comparison of
International Standurds for Digital Safety Systems Verification
and Validation, Electric Power Research Institute,
September 9-1 1, 1992.

N. Fenton et al., “Science and Substance: A Challenge to
Software Engineers,” IEEE Sofrware, Vol. 11, No. 4,
pp. 86-95, July 1994.

R. Fujii, “How Much Software Verification and Validation is
Adequate for Nuclear Safety?,” Proceedings of the Digital
Systems Reliability and Nuclear Safety Workshop, September
13-14, 1993, conducted by the U.S. Nuclear Regulatory
Commission, in cooperation with the National Institute of
Standards and Technology, NUREG/CP-O136, p. 250,
March 1994.

Robert B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice Hall,
Englewood Cliffs, NJ, 1992.

J. W. and R. 0. Chester, Software Reuse: Guidelines and
Methods, Plenum Publishing Corporation, New York, 1991.

International Atomic Energy Agency, State of the Art Report
on Software Important to Safety in Nuclear Power Plants,
Draft, May 13, 1993; subsequently published as “Software
Important to Safety in Nuclear Power Plants,” Technical
Report Series No. 367, 1994.

International Electrotechnical Commission, Software for
Computers in the Safety Systems of Nuclear Power Stations,
IEC Standard 880,1986.

Institute of Electrical and Electronics Engineers, hc., IEEE
Standard for Software Verification and Validation Plans,
ANSUIEEE 1 0 12- 1986.

Institute of Electrical and Electronics Engineers, Inc., Standard
Criteria for Digital Computers in Safety Systems of Nuclear
Power Generating Stations, ANSUIEEE7-4.3.2- 1993;
including Correction Sheet issued December 27, 1994.

Capers Jones, Applied Software Measurement: Assuring
Productivity and Quality, McGraw Hill, New York, 1991.

RE-2

Lavine, 19901

[Leveson et al., 19911

[Littlewood and Strigini,
19921

[LLNL NUREG/CR-6101]

[MOD551

Faur, 19931

[NIST, 19931

[NIST NUREG/CR-5930]

[NUREG-04931

[OECD HALDEN, 19931

[Prieto-Diaz and Arango,
199 13

FTCA DO- 178Bl

[S AND93 -22 1 01

C. Lavine, “Risk of Computer-Controlled Systems to Human
Safety,” WESCON/90 Conference Record, Electronics
Convention Management, Los Angeles, CA, pp. 758-762,
1990.

Nancy Leveson et al., “Safety Verification of Ada Programs
Using Software Fault Trees,” IEEE Software, Vol. 8, No. 4,
pp. 48-59, July 1991.

Bev Littlewood and Lorenzo Strigini, ‘The Risks of Software,”
Scientijk American, pp. 62-75, November 1992.

J. Dennis Lawrence, Software Reliability and Safety in Nuclear
Reactor Protection Systems, Lawrence Livermore National
Laboratory, NUREG/CR-6101, June 11,1993.

British Ministry of Defense, The Procurement of Safety
Critical Somare in Defense Equipment, Interim Defense
Standard 00-55hsue 1, 1991.

P. Naur, “Understanding Turing’s Universal Machine Personal
Style in Program Description,” Computer Journal, No. 4,
pp. 351-371, 1993 (cited in [Fenton et al., 19941).

National Institute of Standards and Technology, A Framework
for the Development and Assurance of High Integrity Software,
Draft, October 7, 1993.

National Institute of Standards and Technology, High Integrity
Sofhyare Standards and Guidelines, NUREG/CR-5930,
NIST SP 500-204, September 1992.

U.S. Nuclear Regulatory Commission, A Defense-in-Depth and
Diversity Assessment of the RESAR-414 Integrated Protection
Systems, NUREG-0493, March 1979.

OECD HALDEN Reactor Project, A Lessons Learned Report
on Software Safety and Software V&V, August 24,1993.

R. Prieto-Diaz and G. Arango, Domain Analysis and Software
Systems Modeling, IEEE Computer Society Press, Los
Alamitos, CA, 1991.

Radio Technical Commission for Aeronautics (RTCA, Inc),
Sofhyare Considerations in Airborne Systems and Equipment
Certification, RTCA/DO-l78B, 1992.

T. I. Barger et al., Software-based Safety Subsystems for
Nuclear Weapons, Sandia National Laboratories,
SAND93-2210, November 1993.

RE-3 NUREGICR-6263, Vol. 1

[USNRC-BTP DRAFT]

[USNRC GL 95-02]

[USNRC-RETROFITS
DRAFT]

[USNRC SECY-91-2923

[USNRC SECY-93-0871

[USNRC S W S E C Y -
93-0871

[Zucconi, 199 13

Electric Power Research Institute, Advanced Light Water
Reactor Utility Requirements Document Passive Plant,
NP-6780, Chapter 10, “Man-Machine Interface Systems,”
Vol. 111, Rev. 4, 1993.

U.S. Nuclear Regulatory Commission, Draft, Branch Technical
Position (HICB), Digital Instrumentation and Control System
in Advanced Plants, presented at the Digital Systems
Reliability and Nuclear Safety Workshop,
September 13-14, 1993.

U.S. Nuclear Regulatory Commission, Use of NUMARCEPH
Report TR-I 02348, ‘Guideline on Licensing Digital Upgrades, ’
in Determining the Acceptability of Perfonning Analog-to-
Digital Replacements Under 10 CFR 50.59, Generic Letter
95-02, April 26, 1995.

U.S. Nuclear Regulatory Commission, Operating Reactors
Digital Retrofits, Digital System Review Procedures, Draft,
Version 1 , presented at the Digital Systems Reliability and
Nuclear Safety Workshop, September 13-14, 1993.

U.S. Nuclear Regulatory Commission, Digital Computer
Systems for Advanced Light Water Reactors, SECY-9 1-292,
Sep ember 16,1991.

U.S. Nuclear Regulatory Commission, Policy, Technical, and
Liceitsing Issues Pertaining to Evolutionary and Advanced
Light- Water Reactor (MWR) Designs, SECY-93-087,
April 2, 1993.

Staff Requirements Memorandum (SRM) on SECY-93-087,
July 21, 1993.

L. Zucconi, Software Safety and Reliability Issues in Safety-
related Systems, poster presented at the Thirteenth International
Conference on Software Engineering, 1991.

NUJEGICR-6263, Vol. 1 RE-4

US. NUCLEAR REGULATORY COMMISSION IRC FORM 335
!.a91
RCM 1102.
201,3202 BIBLIOGRAPHIC DATA SHEET

(See instructions on the reverse)

,TITLE AND SUBTITLE

High Integrity Software for Nuclear Power Plants

Candidate Guidelines, Technical Basis and Research Needs

1. REPORT NUMBER
(Anlgnsd bv NRC. Add Vol., Supp., Rw.,
end Addendum Numbers, If any.)

NUREG/CR-6263
MTR 94W0000114
V O l . 1

3. DATE REPORT PUBLISHED
MONTH YEAR ' 1995 June

S. Seth, W. Bail, D. Cleaves, H. Cohen, D. Hybertson,
C. Schaefer, A. Ta, B. Ulery

Executive Summary

. AUTHOR(S1

Technic a 1
7. PERIOD COVERED lInc/usive Dates)

4. FIN OR GRANT NUMBER

L2610
6. TYPE OF REPORT

I 9/93 - 6/95
. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Officeor Region, U.S. Nuclear Regulatory Commission, andmailingaddre*r;ifconrracfor,pmvide

name and malllng addresal

The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102

. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC. type "Same asabove",-if contracmr,provide NRC Division. Office or Region, U.S Nuclear Regulatory Commission,
and melllng address)

Division of Systems Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

0. SUPPLEMENTARY NOTES

1. ABSTRACT 1200 words or less)

The work documented in this report was performed in support of the U.S. Nuclear Regulatory
Commission to examine the technical basis for candidate guidelines that could be considered in reviewing
and evaluating high integrity computer software used in the safety systems of nuclear power plants. The
fiamework for the work consisted of the following software development and assurance activities:
requirements specification; design; coding; verification and validation, including static analysis and
dynamic testing; safety analysis; operation and maintenance; configuration management; quality
assurance; and planning and management. Each activity (fiamework element) was subdivided into
technical areas (fiamework subelements). The report describes the development of approximately
200 candidate guidelines that span the entire range of software lifecycle activities; the assessment of the
technical basis for those candidate guidelines; and the identification, categorization and prioritization of
research needs for improving the technical basis. The report has two volumes: Volume 1, Executive
Summary, includes an overview of the framework and of each framework element, the complete set of
candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and
a discussion of research needs that support the regulatory fimction; Volume 2 is the main report.

2. KEY W0RDSIDESCR:PTORS (List wods orphrases that willasslstresearchers in locating rhe repon.1

High Integrity Software
Nuclear Plant Software
Software Standards
Safety-Critical Software Standards
Nuclear Plant Safety System Software

NRC FORM 335 (2-891

13. AVAILABILITY STATEMENT

Unlimited
14. SECURITY CLASSIFICATION

(This Page)

Unclassified
(This Report)

Unclassified
15. NUMBER OF PAGES

16. PRICE

	Abstract
	NRC Summary
	Acknowledgments
	1 Introduction
	2 System Context and Framework
	3 Development of Candidate Guidelines
	Framework Elements and Candidate Guidelines
	5 Assessment of Technical Basis
	Identification Categorization and Prioritization of Research Needs
	7 Discussion of Research Needed
	High-Priority Research Needs Supporting the Regulatory Function
	References
	ES-1 Framework for System Development
	ES-2 Framework for Software Development and Assurance
	ES-3 Framework Elements and Subelements for Developing Candidate Guidelines
	ES-4 Development of Candidate Guidelines (Example: Software Design)
	Candidate Guidelines and Assessment of Technical Basis
	ES-2 Research Needs Supporting the Regulatory Function
	the Regulatory Function

