Failure Analysis of Worn Surface Micromachined Microengines

PDF Version Also Available for Download.

Description

Failure analysis (FA) tools have been applied to analyze failing polysilicon microengines. These devices were stressed to failure under accelerated conditions in both oxidizing and non-oxidizing environments. The dominant failure mechanism of these microengines was identified as wear of rubbing surfaces. This often results in either seized microengines or microengines with broken pin joints. Analysis of these failed polysilicon devices found that wear debris was produced in both oxidizing and non-oxidizing environments. By varying the relative percent humidity (%RH), they observed an increase in the amount of wear debris with decreasing humidity. Plan view imaging using scanning electron microscopy revealed ... continued below

Physical Description

10 p.

Creation Information

Walraven, Jeremy A.; Headley, Thomas J.; Campbell, Ann N. & Tanner, Danelle M. July 21, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Failure analysis (FA) tools have been applied to analyze failing polysilicon microengines. These devices were stressed to failure under accelerated conditions in both oxidizing and non-oxidizing environments. The dominant failure mechanism of these microengines was identified as wear of rubbing surfaces. This often results in either seized microengines or microengines with broken pin joints. Analysis of these failed polysilicon devices found that wear debris was produced in both oxidizing and non-oxidizing environments. By varying the relative percent humidity (%RH), they observed an increase in the amount of wear debris with decreasing humidity. Plan view imaging using scanning electron microscopy revealed build-up of wear debris on the surface of microengines. Focused ion beam (FIB) cross sections revealed the location and build-up of wear debris on the surface of microengines. Focused ion beam (FIB) cross sections revealed the location and build-up of wear debris within the microengine. Seized regions were also observed in the pin joint area using FIB processing. By using transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), they were able to identify wear debris produced in low (1.8% RH), medium and high (39% RH) humidities.

Physical Description

10 p.

Notes

OSTI as DE00009591

Medium: P; Size: 10 pages

Source

  • SPIE Micromachining and Microfabrication, Santa Clara, CA (US), 09/20/1999--09/22/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-1849C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 9591
  • Archival Resource Key: ark:/67531/metadc793106

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 21, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 6, 2017, 6:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Walraven, Jeremy A.; Headley, Thomas J.; Campbell, Ann N. & Tanner, Danelle M. Failure Analysis of Worn Surface Micromachined Microengines, article, July 21, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc793106/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.