A MONOLITHIC CONSTANT-FRACTION DISCRIMINATOR
USING DISTRIBUTED R-C DELAY-LINE SHAPING*

M. L. Simpson, G. R. Young, and M. Xu
Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract and Summary Submissions for:
IEEE Nuclear Science Symposium
San Francisco, CA
October 21-28, 1995

*The submitted manuscript has been authorized by a contractor of the U.S.
Government under contract No. EDAC05-84OR21400. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Government
purposes.*

*Research sponsored by the U.S. Department of Energy and performed at Oak Ridge
National Laboratory, managed by Martin Marietta Energy Systems, Inc. for the U.S.
Department of Energy under Contract No. DE-AC05-84OR21400.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A monolithic, constant-fraction discriminator (CFD) was fabricated in the Orbit Semiconductor, 1.2 μ, N-well process. This circuit uses an on-chip, distributed, R-C delay-line to realize the constant-fraction shaping. The delay-line is constructed from a narrow, 500-μ serpentine layer of polysilicon above a wide, grounded, second layer of polysilicon. This R-C delay-line generates about 1.1 ns of delay for 5 ns risetime signals with a slope degradation of only \(\pm 15\% \) and an amplitude reduction of about 6.1%. The CFD also features an automatic walk adjustment. The entire circuit, including the delay line, has a 200 μ pitch and is 950 μ long. The walk for a 5 ns risetime signal was measured as \(\pm 100 \) ps over the 100:1 dynamic range from -15 mV to -1.5 V. The CFD consumes 15 mW.
A Monolithic, Constant-Fraction Discriminator
Using Distributed R-C Delay-Line Shaping

M. L. Simpson, G. R. Young
Oak Ridge National Laboratory

M. Xu
University of Tennessee, Knoxville

There has been much recent interest in monolithic, CMOS CFDs. Binkley, Simpson and Rochelle [1] reported an early version of a CMOS CFD that used an external delay-line as a shaping element. Nowlin [2,3], Turk and Smith [4] and Binkley [5] have reported CFD shaping methods that can be integrated on a chip. Binkley [5] and Simpson et al. [6], have reported fully integrated, CMOS CFDs that use the lumped-element shaping methods referred to above. The topic of this paper is a fully integrated, CMOS CFD which uses an on-chip, distributed, R-C delay-line for the CFD shaping. This CFD is intended for use in the ≈20,000 channel, lead-scintillator calorimeter of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC).

The R-C delay-line consists of a 4.8-μ wide, serpentine strip of polysilicon above a grounded, polysilicon plate. The delay-line was analyzed using the lumped-element, U model function available in the HSPICE circuit simulator [7]. Figure 1 shows delay time Vs line length as calculated with HSPICE. Shown in figure 2 is slope degradation as a percentage of input slope for a 5 ns risetime signal. For the 5 ns risetime signals generated by the PMTs used in this application, a 500-μ line length was chosen.

The zero-crossing discriminator is composed of cascaded stages of differential input–differential output amplifiers and is similar to those discussed by Binkley [5] and Simpson et al. [6]. The offset of this discriminator is canceled by a dc feedback loop, thus eliminating the need for a walk adjustment. The threshold setting of the arming discriminator is the only required user adjustment. A channel of the CFD is contained in a 200 μ wide X 950 μ long strip which allows compact arraying for multi-channel systems. One channel of this CFD consumes about 15 mW. Figure 3 shows the measured time walk for the CFD over the 100:1 dynamic range from -15 mV to -1.5 V for 5 ns risetime signal.
References

Figure 2

Figure 3

Figure 4