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Quantum Phase Space Theory for the Calculation of v’j Vector Correlations 

Gregory E. Hall 
Department o f  Chemistry, Brookhaven National Laboratory, Upton, NY 1 1973-5000 

The quantum state-counting phase space theory commonly used to describe “barrierless” dissociation is recast in 
a helicity basis to calculate photofragment v-j correlations. Counting pairs of fragment states with specific angular 
momentum projection numbers on the relative velocity provides a simple connection between angular momentum 
conservation and the v’j correlation, which is not so evident in the conventional basis for phase space state counts. 
The upper bound on the orbital angular momentum, I ,  imposed by the centrifugal barrier cannot be included simply 
in the helicity basis, where I is not a good quantum number. Two approaches for a quantum calculation of the v-j 
correlation are described to address this point. An application to the photodissociation of NCCN is consistent with 
recent classical phase space calculations of Cline and Klippenstein. The observed vector correlation exceeds the 
phase space theory prediction. We take this as evidence of incomplete mixing of the K states of the linear parent 
molecule at the transition state, corresponding to an evolution of the body-tixed projection number K into the total 
helicity of the fragment pair state. The average over a thermal distribution of parent angular momentum in the 
special case ofa linear molecule does not significantlyreduce the vj correlation below that computed for total J = 0. 
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I. Introduction 

Phase space theodl] offers a simple and intuitive reference point for viewing possible dynamic effects in unimolecular and 
bimolecular reactions. For reactions with no barriers, the transition state resembles separated product states, and a detailed transition 
state rate calculation can often be replaced by an appropriate state count of the products, consistent with energy and angular momentum 
conservation. Phase space theory has been compared with varying degrees of success to measured rotational and vibrational state 
distributions, translational energy distributions, threshold photofragment excitation spectra, and absolute reaction rates.[2, 31 The 
connection between phase space theory and vector correlations is less well known. Cline and Klippenstein[4] have recently used Monte 
Carlo methods to generate a representative classical phase space ensemble from which vector correlations have been inspected. They 
present useful generalizations about the statistical expectations for photofragment v’j correlations, based on the relative moments of 
inertia of two reaction products and on the total angular momentum. 

In this work, the structure of quantum phase space theory is considered, using a traditional state-counting technique, but 
making explicit the statistical expectations for the v-j correlation. In the bipolar moment language applied 6y Dixon[5] to the Doppler 
spectroscopy of photofiagments, the leading term in the v’j correlation is p:(22), which is the ensemble average of P,($-j), where P2(x) 
= %(3x2- 1) and 8 is the unit vector along the recoil velocity of a fragment with a rotational angular momentum in the direction^ j. 
Calculation of(P2(G3) lends itselfto working in a basis for which the projection of j on the relative velocity is a good quantum number. 
A helicity basis set, first described by Jacob and Wick[6] in the context of nuclear scattering theory for particles with intrinsic spin, 
has this property, and lends an intuitive simplicity to state counting when Legendre moments of the helicity are the desired observables. 

11. Theory 

The statistical phase space theory is applied to the breakup of a molecular complex with a specific energy E, and total angular 
momentum J. The probability of producing fiagment I in electronic and vibrational state vi and rotational statej, is given by the number 
of such states, N(v, j,; E, J)  normalized by the total number of accessible states N(E,,J): 
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Klippenstein[4] has provided a compact notation for the evaluation of the state counts for two nonlinear fragments: 

(2) N ( E , 4  = 

where j ,  and k, are the angular momenta and their body-fixed projections for 
fragment I, I is the orbital angular momentum, j is the net angular 
momentum of j ,  +j, and q, is a space-fixed projection of total angular 
momentum, J. The Heaviside function, 8, ensures counting only states that 
conserve energy, including the I-dependent energy at the centrifugal barrier, 
E,;. Angular momentum conservation is represented by a pair of triangle 
inequalities restricting the values o f j  and I for givenj,, j,, and J. The 
energy at the top of the centrifugal barrier is written as 1 

1(1+ 1) h2 3i2 [ 6 ~ C l ’ ~  ] E / . ( ( )  = 2 ( 3 )  

where C is the coefficient of the spherically averaged, r6 dependent, 
attractive interaction potential and p is the reduced mass of the two 
hgments. This is appropriate at low kinetic energies, when the centrifugal 
bamer is at large enough fragment separation to ignore the contributions of 
chemical bonding and irepulsion to the total interaction potential. 

Figure 2. State count for a pair of diatomic 
fragments for fixed total J, j ,  and j2. 

Figure 1 Conventional state count for A+BC at fixed 
total J comes from the number of intenorj I lattice In the original 

formulation[ 11 for points. 
breakup of a triatomic 
complex, ABC- A + BC, the only angular momenta involved are 1 for the orbital 
angular momentum, j for the diatomic rotation, ana J for the total angular 
momentum. The state counts in this case are graphically depicted as the number of 
lattice points on thej I plane. Figure 1 shows a typicalj I plane for fixed J.  Three 
diagonal linear boundaries arise from angular momentum conservation, while the 
vertical line atj,”,, represents the total energy going into the rotation of BC. The 
dashed curved boundary arises from energy conservation including the centrifugal 
barrier’s upper bound on 1. 

The generalization to fi-agmentation of a four-atom complex into a pair of 
diatomic hgments has been treated by Dagdigian, et al. [ 71 and by W ittig, et al. [ 81. 
The state counts are only slightly more complex, as indicated in Eq. (2). Now the 
counting can be graphically represented in Fig. 2 as lattice points on a j  I plane, 
where j is the resultant ofj, +j2, and the plot is for fixed values of J, j ,  and j,. The 
upper and lower bounds on j are indicated as vertical dashed lines. Since the kinetic 
energyis the same for all the states counted in this figure, the upper bound on I is a 
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horizontal line, independent of j .  The upper bound on 1 derived from the centrifugal barrier may or may not be more restrictive than 
the angular momentum restrictions alone. 

A calculation of the vector correlation of fragment velocity and rotational angular momentum is awkward in this basis, implicit 
in Eq. 2, conventionally used in a phase space counting. Indeed, Cline and Klippenstein have resorted to a Monte Carlo calculation 
of classical phase space to address the identical question.[3] A helicity basis, as described by Jacob and Wick[6] lends itself to a direct 
quantum evaluation of the v-j correlation, since the projections of fiagment angular momenta on the recoil axis are good quantum 
numbers in this basis. The 1 andjquantum numbers are abandoned in favor of helicity quantum numbers, A,, denoting the projections 
of angular momentum on the center-of-mass relative velocity. Along this unique axis, the orbital angular momentum necessarily has 
zero projection. A complete set ofquantum numbers specifjrlng the same breakup to two fragment states includes total J and its space- 
fixed projection number M, the magnitudes oftwo fragment angular momenta,j, andj,, and the two fkagment helicities, A,  and A2, The 
total helicity, A = A, - A, is independent of the orbital angular momentum. If we neglect, for the moment, the upper bound on 1 due 
to the centrihgal barrier, we can define N‘(E,,J) ;r N (EJ) as upper bound on the true phase space state count obtained by dropping 
the centrifugal energy term, E,$. 

This same sum can be evaluated in the helicity basis: 

The triangle inequalities involving I andj have been replaced by upper and lower bounds on the total helicity A. It is to be understood 
that the summations over projection numbers hi and k; are bounded by *-- . It can be verified that the corresponding state count is 
identical in this helicity basis and in the conventional basis. A few simple examples are shown in the next section. From here on, 
I will drop reference to body-fixed projection numbers ki, and specialize the discussion to diatomic fragments. 

The conventional I j states can be expanded in the helicity basis for each fixedj, and j ,  The elements of the transformation 
matrix are given by Jacob and Wick[6]: 

The first Clebsch-Gordon coefficient treats the coupling ofj, and j ,  in specific helicity states to give a net angular momentumj and total 
helicity h,-h,; the second reflects the fact that only the m, = 0 component of the orbital angular momentum need be considered when 
couplingj and I in the helicity frame. The transformation is unitary, and gives us immediately, if inefficiently, a method to calculate 
the quantum phase space prediction for the v.j correlation for a fragment in statej,. The prescription follows: count the states in the 
1 j basis according to Eq. 2, and transform each 1 j state into its mixed helicity components according to Eq. 6. Accumulate the 
probability distribution of h, in a histogram, p(h,) ,  for each I j state included in the conventional phase space state count. When all 
1.j states have been included in the sum, the desired v-j correlation is simply the second Legendre moment of the normalized p(h,  ) 
distribution: 



While straightfonvard, this procedure includes calculating many Clebsch-Gordon coeficients for each 1 j state in the count of N(E.4. 
The calculation can be made much more compact, avoiding most of the transformations, by approaching the problem directly in the 
helicity basis for a first approximation. We can instead compute @(A,) directly from the count of A ,  A2 states for a given selected state 
of fragment 1: j ,  and vi, normalized by the appropriate total count for that state, N ’ (  v,, j,; E, J ) .  

As an example of the equivalence of the state counting, consider 
a single dissociation channel of a parent molecule with total angular 
momentum J=2 into a pair of fragments with rotational angular momenta 

j to give resultant ,j, which in this case can take on values of 0, 1, or 2 

oforbital angular momenta I that satisfy the triangle inequality A(J jJ ) .  The 
nine possible j I states are enumerated in the table at the right. Each of 

j,= 1 and,j2= I .  The conventional state count proceeds by combining j ,  and 

according the triangle inequality ~( j j , J~) .  For each j ,  there will be a range 

This calculation involves only integer counting, gives a qualitatively useful first approximation to the v-j correlation, and can be 
corrected exactly with many fewer transformations than the one-step method described above. It can be seen that only negative v-j 
correlations can arise in this way, since the constraints on A are always in the form of an upper bound on the absolute magnitude. The 
correction to match the exact phase space theory involves finding those 1 j states allowed by angular momentum conservation but 
rejected by energy conservation at the centrifugal barrier, transforming only those to the helicity basis and removing their contribution 
ftom $(A,) to computle PO,). The states in question are analogous to those shown in Fig. 1 within the trapezoid defined by angular 
momentum conservation, but at higher 1 and j than the curved boundary. Particularly for low J, the number of such states excluded 
by the centrifugal barrier will generally be much smaller than the number not excluded. 

j l  states for J=2, jr=j2=l 

J 1 count 

0 2 1 

1 1,2,3 3 

2 0 ,  1,.2,3,4 5 

111. Illustration by !simple Example 

count 

-l,O, 1 3 

- 1  ,o,  I 3 

The same dissociation channel can be characterized by the helicity 
states of fragments I and 2, denoted by A, and A*. The angular momentum 
constraints are now embodied in the inequalities I A I  1 sj,, 1 & I S A ,  and 
1 A l - A 2 \  <J. In each case the inequality arises from a projection number 
bounded by the magnitude of the associated angular momentum. A 
enumeration ofthe A I  A, states consistent with the same J, j , ,  and j ,  is shown 
at the left. Again, we have nine A I  A2 states, each with total J=2 and five 
possible values of M. In this helicity representation, it is clear that all 
permitted values of A,  are equally likely in the phase space count, and the 
ratio 3:3:3 for A l = - l : O : l  corresponds to no VJ correlation, as can be 
verified by evaluating the sum in equation 7. 



If the total angular momentum in this simple case is reduced to 
J=l,  the seven allowedj 1 states are shown in the table at the right. In this 
representation, it is hard to see that there is now a non-vanishing vj, 

the two states missing, compared to the uncorrelated case above for J = 2, 
have total helicity A, - A, = *2, which is not possible when the total J is 1. 

P2(vj,) is - 1/14. These illustrations show the identity of state counts in the 

bound on 1 

j l  states for J=l, j,=j,=l 

correlation, although the count of AI  A, states in the table below shows that 

The relative probabilities of A, are now 2:3:2 and the expectation value of 

conventional h Z) basis and in the helicity IA, &) basis when the upper 

J 

0 1 1 

1 0, 192 3 

2 1,293 3 

1 count 

&I2 states for J=1, j,=j,=l 1 
1 2  count I 

comes fiom 
a n g u l a r  
momentum conservation and not energy conservation at the centrifugal 
barrier. 

As a final example, suppose that for the kinetic energy of this 
product channel, the orbital angular momentum could not exceed 2, so that 
the single Z=3 state needs to be removed from the phase space count. That 
is, N ' =  7, but N = 6,This 0 state 12,3) can be expanded as a sum of 
I A ,  A*) states according to Eq. 6. In this case, explicit evaluation of the 
Clebsch-Gordon coefficients shows that thisj I state has contributions from 
all seven helicity components with the following amplitudes, a,: 

i 

The probability of measuring A, = - 1 : 0 : 1 in the j 1 state 123) is related to the corresponding squared amplitudes, which occur in 
the ratio of 115 : 315 : 115. The normalizedp '(Al) was 217 : 317 : 217 from the previous example including all seven I states. The 
corrected, but unnormalized helicity distribution for particle 1 is then p(Al) = 2- 1/5 : 3-315 : 2- 115, which results in a weaker vj 
correlation of - 1/20 for the six states, compared to - 1/14 when all I states are included. This is qualitatively expected, as the states 
with the largest 1 will generally impose a stronger constraint on the remaining angular momenta. 

IV. Application to NCCN Photodissociation at 193 nm 

Vector correlations have been measured in this laboratory for selected states of the CN photofragments fiom the 193 nm 
dissociation of NCCN.[9] Cline and Klippenstein have recently performed Monte Carlo evaluations of classical phase space integrals 
to estimate the statistical state-resolved v j  correlations relevant to this system.[4] The full results of thehelicity-based phase space 
calculations will be presented later[ IO]. For now, the results of the approximate version of the present quantum phase space theory, 
which ignores centrihgal barriers, can be compared with Klippenstein's calculations in Table I at the end of this article. For these 
calculations, p'( A,) was computed for selected states j J ,  with v, = 0 and I ,  averaged over coincident j,, treating v2 = 0 and 1 separately, 
for various NCCN total J. The helicity state counts were made assuming an available energy of 4700 cm-I to compare to the 
calculations ofcline and Klippenstein. These state counting calculations took about 3 seconds on a Pentium PC. The v j  correlations, 
%22), calculated with this approximate method agree very well with the classical Monte Carlo method, particularly at low J ,  as one 
might expect. Both the trends and the magnitudes of the v.j correlations with total J and with the fragmentj are reproduced correctly, 
except the small positive correlation calculated by Cline and Klippenstein at high total J and high fragmentj, which is not reproduced 
in the present approximate calculations. This difference occurs for those channels where the centrifugal barrier should have the 
strongest effect. In general, the neglect of the centrilggal barrier does not appear to cause a serious problem in the estimation of vector 
correlations. The absolute state count and the rotational distributions will show more serious deviations due to the neglect of the 
centrifugal barrier. The corrected calculations, including the transformation into the helicity basis of the centrifugally forbidden states 
are deferred to a later article.[ IO]  A comparison of the v, = 1 calculations are not shown here, but display similar agreement with the 
Cline and Klippenstein results. 



Table 1. Calculated vector correlations a22) for v = 0, j, selected CN fragments from NCCN: comparison of Monte Carlo classical 
phase space theory (CI’ST)B with helicity state count (HSC) 

coincident CN v = 0 

jCN= 17 j,, = 30 j,, = 35 j,, = 40 
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a CPST calculations and thermal averages are the work of Cline and Klippenstein[4]; HSC is this work 
A dash indicates an energetically inaccessible state 



The key result is that the observed vector correlation is about twice as large as the thermally averaged, statistical expectation, 
as noted by Cline and Klippenstein.[4] It seems very likely that this is a consequence of an additional constraint on the dissociation 
ofthe linear molecule, NCCN. In computing the state distribution, the total helicity of the two fragments is allowed to range between 
+J and - J of the parent molecule. In the axial recoil limit, where the radial velocity of the fragments far exceeds their tangential 
velocity, the combined helicity of the two fragments is closely identified with the projection of total J around the axis of the linear 
molecule, which necessarily vanishes. The spectroscopically populated levels of the predissociating NCCN A 'Eu- and B 'A,- states 
are reached by vibronically- induced transitions characterized by a single unit of vibrational angular momentum, K=l . If this 
body- fixed projection number is not mixed in the internal conversion to the ground state or in the separation of CN products, we should 
expect the total helicity to stay small, even in a thermal sample of NCCN with large values of total J. For this special case of linear 
molecule dissociation, the angular momentum conservation constraint in the helicity basis are even simpler than shown in Eq. 5 as the 
value of A, - A is restricted to zero, rather than merely being bounded by f J: 

The vector correlations including this constraint are identical to those obtained for total J = 0, even in a room temperature sample. The 
J = 0 rows of Table I are in nearly quantitative agreement with the experimentally determined vj correlation parameters, lending 
support to this notion of K restriction in a linear molecule leading to enhanced vj correlation. 

Further questions remain about the true available energy, the possible role of an exit barrier in the dissociation, kinetic shifts 
in the threshold for detecting CN fragments, and the relationship between the available energy, the state distributions, and the vector 
correlations. New experimental work and the extension of the theory sketched here are both in progress.[ IO] We are optimistic about 
resolving the speed-dependent vj correlation in our next generation of Doppler spectroscopy experiments, which is related to the 
coincident j ,  -dependent helicity distribution. 
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