Performance and Modeling of Amorphous Silicon Photovoltaics for Building-Integrated Applications (Preprint prepared for Solar 99)

PDF Version Also Available for Download.

Description

Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, we are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted … continued below

Physical Description

vp.

Creation Information

Kroposki, B. & Hansen, R. June 7, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, we are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted directly to simulated roofing structures. This paper examines the performance of the building-integrated amorphous silicon PV system and applicability for covering residential loads. A simple model of system performance is also developed and is presented.

Physical Description

vp.

Source

  • Solar 99: Growing the Market, Portland, ME (US), 06/12/1999--06/17/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00009546
  • Report No.: NREL/CP-520-25851
  • Grant Number: AC36-99GO10337
  • Office of Scientific & Technical Information Report Number: 9546
  • Archival Resource Key: ark:/67531/metadc792948

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 7, 1998

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • March 31, 2016, 3:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 28

Interact With This Article

Here are some suggestions for what to do next.

Top Search Results

We found four places within this article that matched your search. View Now

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kroposki, B. & Hansen, R. Performance and Modeling of Amorphous Silicon Photovoltaics for Building-Integrated Applications (Preprint prepared for Solar 99), article, June 7, 1998; Golden, Colorado. (https://digital.library.unt.edu/ark:/67531/metadc792948/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen