Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points

PDF Version Also Available for Download.

Description

Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Sometimes, however, points are generated such that there is additional information available to the reconstruction algorithm. We present Spiraling Edge, a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between ... continued below

Physical Description

8 p.

Creation Information

Angel, Edward & Crossno, Patricia July 12, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Sometimes, however, points are generated such that there is additional information available to the reconstruction algorithm. We present Spiraling Edge, a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that is filled by the final triangle.

Physical Description

8 p.

Notes

OSTI as DE00009003

Medium: P; Size: 8 pages

Source

  • IEEE Visualization 1999, San Francisco, CA (US), 10/24/1999--10/29/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-1762C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 9003
  • Archival Resource Key: ark:/67531/metadc792795

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 12, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 11, 2017, 7:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Angel, Edward & Crossno, Patricia. Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points, article, July 12, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc792795/: accessed January 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.