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Abstract 

Automatic differentiation is a technique for computing the derivatives of functions described by computer 
programs. ADIFOR implements automatic differentiation by transforming a collection of FORTRAN 77 
subroutines that compute a function f into new FORTRAN 77 suborutines that compute the derivaties of 
the outputs o f f  with respect to a specified set of inputs o f f .  This guide describes step by step how to use 
version 2.0 of ADIFOR to generate derivative code. Familiarity with UNIX and FORTRAN 77 is assumed. 
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Chapter 1 

For ADIFOR 1.0 Users 

Users of ADIFOR 1.0 wishing to migrate to ADIFOR 2.0 should read at least the following sections of this 
manual: 

Section 2.1 describes the csh environment variables that you must set to invoke ADIFOR 2.0. 

Section 2.4 succinctly presents all of the steps required to process a code with ADIFOR 2.0 and compile 

Chapter 3 describes the new options processing mechanism used by ADIFOR 2.0, and describes the new 

and link a derivative-computing executable. 

format of compositions. 
Appendix D describes important changes in naming conventions between ADIFOR 1.0 and ADIFOR 2.0. 

After reading these sections, and trying out ADIFOR 2.0 for the first time, we strongly suggest that you 
additionally read at least the following sections of the manual: 

Chapter 5 documents the known deficiencies in our support for FORTRAN 77. The number of deficiencies 

Chapter 8 provides a list of problems that users of ADIFOR 2.0 may encounter. 

Chapter 9 defines all of the options to ADIFOR 2.0 and presents their default values. 

is greatly reduced from that in ADIFOR 1.0. 

Appendix B describes the new exception handling mechanism of ADIFOR 2.0. 

Appendix C describes the SparsLinC library, which provides support for sparse derivative computations 
within ADIFOR 2.0. 
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Chapter 2 

Some Preliminaries 

Automatic differentiation is a technique for computing the derivatives of functions described by computer 
programs. See [13, 181 for an introduction to automatic differentiation. ADIFOR implements automatic 
differentiation by transforming a collection of FORTRAN 77 subroutines that compute a function f into 
new FORTRAN 77 subroutines that compute the derivatives of the outputs of f with respect to a specified 
set of inputs o f f .  This paper describes step by step how to use version 2.0 of ADIFOR to generate derivative 
code. Familiarity with UNIX’ and FORTRAN 77 is assumed. 

We strongly suggest that you, before reading this manual, have a look at the overview paper of ADI- 
FOR 2.0 [4]. It provides an overview of the philosophy of ADIFOR, references of successful applications 
of ADIFOR, and a perspective of how automatic differentiation relates to other approaches for computing 
derivatives. 

The ADIFOR 2.0 system consists of the ADIFOR 2.0 preprocessor, the ADIntrinsics template expander 
and library, and the SparsLinC library. The Adiforl. Ocommand invokes both the ADIFOR 2.0 preprocessor 
and the ADIntrinsics template expander. Figure 2.1 presents a block diagram of the ADIFOR 2.0 process. 
The process consists of three key steps: 

1. Apply ADIFOR 2.0 to your FORTRAN 77 program to produce augmented code for the computation 
of derivatives. ADIFOR 2.0 invokes the ADIntrinsics template expander directly. 

2. Construct a derivative driver code that invokes the derivative code generated by ADIFOR 2.0 and 
makes use of the computed derivatives. 

3. Compile the FORTRAN 77 code generated by ADIFOR 2.0 and your derivative driver code, and link 
these with the derivative support packages, i.e., the ADIntrinsics exception handling package (see 
Appendix B), and (optionally) the SparsLinC sparse derivative package (see Appendix C). 

The first step of this process can be performed on Sparc’s running SunOS 4.1.3, SunOS 5.3 (Solaris), and 
IBM RS 6000’s running version 3.2.5 of AIX, though the FORTRAN 77 code generated by the ADIFOR 2.0 
preprocessor should be able to be executed on any machine on which you have a FORTRAN 77 compiler. 
We currently provide the necessary libraries for the second step precompiled for SunOS 4.1.3, SunOS 5.3, 
and IBM RS 6000’s running version 3.2.5 of AIX, as well. Source code for the libraries is also provided in 
case you need to compile them to execute on other architectures. A “C” compiler is required to compile the 
SparsLinC library. 

2.1 Configuration 
To execute ADIFOR 2.0, set the environment variable ADHOME to be the directory in which ADIFOR 2.0 
is installed on your machine, the variable ADARCH to “sun4” (for a Sparc running SunOS 4.1.3 or SunOS 
5.3) or “rs6000” (for an RS 6000 running AIX 3.2.5), and the variable AD-OS to “SunOS-4.x” (for a Sparc 

UNIX is a trademark of AT&T. 
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Figure 2.1. Block Diagram of the ADIFOR Process 
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setenv AD-HOME /usr/local/ADIFOR2.0 
setenv PATH $AD-HOME/bin:$PATH 
setenv MANPATH $AD-HOME/man:$MANPATX 
setenv AD-ARCH sun4 
setenv AD-OS SunOS-4. x 

Figure 2.2. Portion of .cshrc File 

running SunOS 4.1.3) or “SunOS-5.x” (for a Sparc running SunOS 5.3) or “AIX” (for an RS 6000 running 
AIX 3.2.5). 

The directories “$ADHOME/bin” and “$ADHOME/man” should be added to your execution and manual 
paths, respectively. (The notation $X represents the value of the environment variable X.) We suggest 
modifying your “.cshrc” file to define ADHOME and to modify your execution and manual paths. Figure 2.2 
shows a fragment of a ‘‘.cshrc” file that has been modified assuming that the ADIFOR 2.0 executables and 
libraries have been installed into the directory /usr/local/ADIFOR2.0 on a Sparc running SunOS 4.1.3. The 
rest of this manual assumes that you have set ADHOME and modified your execution path and manual path 
as just described. 

The directory $ADHOME contains the following subdirectories: 

0 bin: Contains Adifor2.0, the ADIFOR 2.0 preprocessor, and purse, the ADIntrinsics template ex- 
pander. The template expander is responsible for expanding generic exception-handling macros in- 
troduced by ADIFOR 2.0 into the appropriate FORTRAN 77 code. The purse executable is a p e r l  
script, and we have provided p e r l  in case it is unavailable on your system. 

o templates: Contains the definition of the exception handling macros used by purse. 
0 docs: Contains postscript versions of relevant working notes and papers, including this manual. 
0 examples: Contains examples of programs processed with ADIFOR 2.0. 

0 man: Contains the man page for ADIFOR 2.0, purse, pe r l ,  ADIntrinsics, and SparsLinC. 
0 SPC: Contains the source for the ADIntrinsics and SparsLinC libraries. 
0 lib: Contains the precompiled versions of the ADIntrinsics and SparsLinC libraries. 

You may want to consider compressing the files in the src and docs directories to save disk space. 

2.2 How ADIFOR 2.0 Transforms a Program 
In this section, we describe the mechanism used by ADIFOR 2.0 to transform your FORTRAN 77 code into 
code that computes derivatives of dependent variables with respect to independent variables. The mechanism 
has three key subtasks: code canonicalization, variable nomination, and code generation. Understanding 
these three tasks will help you better understand the derivative code that ADIFOR 2.0 generates. We briefly 
describe these subtasks in the next sections. 

2.2.1 Code Canonicaliaation 
In the code canonicalization phase, the FORTRAN 77 code is rewritten into a standard form. For example, 
expressions appearing as arguments to function or subroutine calls and function calls appearing within 
conditional tests are hoisted into assignments to new temporary variables. Statement functions are expanded 
into in-line code. This phase also breaks up long right-hand sides of assignment statements into smaller pieces, 
and rewrites them such that all variables appearing on the right-hand side of an assignment statement are of 
the same type. The latter transformation is needed for the code to be able to link in the SparsLinC library 
(see Appendix C). 

4 
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2.2.2 Variable Nomination 
ADIFOR 2.0 must decide which variables need to have “directional gradient objects” or “gradient objects” 
associated with them. ADIFOR 2.0 associates a gradient object with every variable whose value may depend 
on the value of a variable considered “independent” with respect to differentiation, and whose value impacts 
a variable considered “dependent” with respect to differentiation. Such a variable is called active. Variables 
that do not require derivative information are called passive. 

ADIFOR 2.0 employs interprocedural analysis techniques to determine which variables in your code 
are active. First, ADIFOR 2.0 derives a ”local interaction graph” for each subroutine. This is a bipartite 
graph where nodes representing input parameters or variables in common blocks are connected with nodes 
representing output parameters or variables in common blocks whose values they influence. 

Next, an interprocedural analysis is performed, which determines, in essence, all possible program paths 
through which an independent variable can affect a dependent one and identifies intermediate variables that 
are involved along such a path. This analysis involves computing a transitive closure of the whole program 
graph composed from the local interaction graphs. In the presence of common blocks, equivalences, and 
arbitrary control structures, this is a nontrivial and computationally intensive process. 

2.2.3 Code Generation 
After active variables have been nominated, derivative code is generated for each assignment statement 
containing an active variable, and gradient objects are allocated. For assignment statements containing a 
FORTRAN 77 intrinsic, a template is generated that will later be instantiated by the ADIntrinsics system. 

2.3 Functionality of ADIFOR 2.0-generated Code 
Consider a function func with an n-vector x as independent and an m-vector y as dependent variables. That 
is, we have 

subroutine fmc(n ,x ,m,y )  
integer n ,  m 
r e a l  x ( n ) ,  y(m) 

end 
... 

ADIFOR 2.0 inserts a gradient object g i  for x and g-y for y (as well as gradient objects for all other 
active variables in func) and replaces each assignment statement involving an active variable with a few 
assignment statements and a vector loop from 1 to g-p-. The interface of the code it generates is then 

... 
end 

So, for example, g x ( :  , i )  is the gradient object corresponding to x ( i ) .  If g-func is invoked with an 
integer g-p- and values for x and g-x, then it computes y and 

While somewhat inconvenient, the fact that the gradient dimension is the first dimension in the gradient 
objects cannot be avoided if we want to be able to deal with assumed-size arrays (e.g., declared as r e a l  
X < * , ) .  

5 
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program main 
real x, y 
read *, x 
c a l l  squareroot (x, y) 
p r i n t  *, y 
end 

Figure 2.3. A Very Simple Program (main.f) 

We now illustrate the flexibility inherent in the ADIFOR 2.0-generated code. First, recall the definition 
of the Jacobian of func. 

Second, let S = gJT. We refer to S as the ‘‘seed matrix.” The equation defining g-y above states that the 
ADIFOR 2.0-generated code computes ( J  * S)T, where the number of columns p of S corresponds to the 
FORTRAN 77 variable g-p- in the generated code. Since most of the work of the derivative code is performed 
in the gradient loops (which range from 1 to g-p-), the size of p has a direct impact on the runtime and 
storage requirements for running the derivative code. 
Properly initializing S, we can then obtain: 

Full Jacobian: Choosing S as the n x n identity matrix, we compute the transpose of the full Jacobian 
J .  The complexity of the resulting derivative code is O(n) times that of the original function. 

Jacobian-Vector Product: Choosing S = d E R”, we compute the transpose of the Jacobian-vector 
product Jd in a time that is a small multiple of the function evaluation time. Since 

f n n c ( x  + hd)  - f u n c ( x )  
h Jd = lim 7 

h-0 

this interface allows us to compute directional derivatives along arbitrary directions. 
Selecting Derivatives: Choosing 5’ = [es, .  . . , elo, e13], where ei  is the ith canonical unit vector, i.e., an 

n-vector of all zeros except for an entry of 1 in the ith position, we compute the transpose of the 5th 
through loth, and 13th columns of J .  

See Appendix A for extensive information on seed matrix initialization. 

2.4 A Quick Example 
We demonstrate the use of ADIFOR 2.0, using its default configurations, with the very simple program 
shown in Figures 2.3 and 2.4. Procedure squareroot assigns the square root of the value of variable x 
to variable y. We now show, with only limited explanation, the sequence of steps required to construct 
a procedure that computes the derivative of squareroot at a user-specified value of x. A more detailed 
description of the ADIFOR 2.0 process and of the various options available in ADIFOR 2.0 is presented in 
Chapter 4. 

1. Construct a composition simple. cmp that lists the names of all of the FORTRAN 77 source files that 
constitute the example program. Figure 2.5 shows the composition we construct. 

2. Construct a script file simgle.adf that tells ADIFOR 2.0 to differentiate the procedure named 
squareroot with the independent variable x and the dependent variable y, Le., to generate code 
to compute the derivative Sl where y is computed from x by procedure squareroot.  The script file 
is shown in Figure 2.6. 

6 
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subroutine squareroot (x, y) 
real x, y 
y = sqrth) 
end 

Figure 2.4. A Very Simple Program (squarero0t.f) 

main. f 
squarero0t.f 

Figure 2.5. Script File (script.cmp) for Simple Example 

~~ ~ 

AD-TOP = squareroot 
AD-PHAX = 1 
AD-IVARS = x 
AD-DVARS = y 
AD-PROG = simple.cmp 

Figure 2.6. Script File (script.adf) for Simple Example 

subroutine g-squareroot(g-p-, x, g-x, Idg-x, y, g-y. Idg-y) 
real x, y 
integer g-pmax- 
parameter (g-pmax- = 1) 
integer g-i-, g-p-, 1dg-y. 1dg-x 
real rl-p, r2-v, g-y(ldg-y), g-x(ldg-x) 
if (g-p- .gt. g-pmax-) then 
print *, 'Parameter g-p- is greater than g-pmax-' 
stop 

endif 
r2-v -- sqrt(x) 
if ( x .gt. O.OeO 1 then 

rl-p = 1.0e0 / (2.0e0 * 1-2-v) 
else 

call ehufSV (9, x, r2-v, rl-p, 'g-squareroot.f', 32) 
endif 
do g-i- = 1, g-p- 

enddo 
y = r2-v 

g-y(g-i-> = rl-p * g-x(g-i-) 

c ----- --- 
end 

Figure 2.7. Derivative Code (g-squareroot . f) 
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program driver 
real x,y 
real g,x(l), g-y(l) 

real *, x 
g-x = 1.0 
call g-squareroot(1, x, g-x, 1, y, g-y, 1) 

print *, y 
print *, g-y 
end 

Figure 2.8. Derivative Code Driver (driver. f )  for the Very Simple Example 

f77 -c driver.€ 
€77 -c g-squarer0ot.f 
€77 -0 driver driver.0 g-squareroot.0 \ 

$AD,HOME/lib/ReqADIntrinsics-$AD-ARCH.0 \ 
$AD-HOMEE/lib/libADIntrinsics-$ADJFtCH.a 

Figure 2.9. Commands to Compile and  Link Derivative Code Executable 

3. Create, in the outputfiles subdirectory, the procedure g-squareroot, as shown in Figure 2.7, by 
executing the command 

Adifor2.0 ADSCRIPT=simple.adf. 

Note that an exception handler is invoked when sqrt is invoked with a zero argument, as the derivative 
of J is undefined. 

4. Create the derivative code driver driver.€ as shown in Figure 2.8. The driver invokes g-squareroot 
with a user-specified value of x to compute the value of y and 2. 

5. Compile and link driver. f, gsquareroot .f and the ADIntrinsics exception handling archive using 
the commands shown in Figure 2.9 to build the desired derivative computing executable. 

2.5 A Roadmap 
The rest of this manual is organized as follows: 

Chapter 3 describes how to set up the inputs to the ADIFOR 2.0 preprocessor to enable it to generate 
derivative code. The input to ADIFOR 2.0 takes the form of option bindings that are specified on 
the command line or in startup files, and compositions, lists of FORTRAN 77 files that constitute the 
program that contains the function to be differentiated. 

Chapter 4 is devoted to a step-by-step description of how to process a code by using ADIFOR 2.0 and an 
explanation of how ADIFOR 2.0-generated code should be incorporated into a program. 

Chapter 5 documents the known deficiencies in ADIFOR 2.0’s support for FORTRAN 77. For each defi- 
ciency, a workaround is presented. 

Chapter 6 explains how to apply ADIFOR 2.0 in cases where the “function to be differentiated” does not 
have the form expected by ADIFOR 2.0. 

Chapter 7 covers some of the pitfalls associated with automatic differentiation of FORTRAN 77 programs. 
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Chapter 8 provides a list of problems that users of ADIFOR 2.0 may encounter. 

Chapter 9 defines all of the options to ADIFOR 2.0 and presents their default values. 
Appendix A describes seed matrix initialization, a powerful concept that provides users of ADIFOR 2.0 

significant control over the computation performed by the generated derivative code, and allows one 
to compute arbitrary directional derivatives. 

Appendix B describes the ADIntrinsics template expander and library. ADIntrinsics provides user-customizable 
handling of exceptions within ADIFOR 2.0. 

Appendix C describes the SparsLinC library, which provides support for sparse derivative computations 
within ADIFOR 2.0. 

Appendix D describes changes in naming conventions between ADIFOR 2.0 and ADIFOR 1.0 and is 
intended to be read only by users of ADIFOR 1.0. 
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Chapter 3 

Specifying Input €or ADIFOR 2.0 

In order to apply ADIFOR 2.0 to a set of FORTRAN 77 procedures to generate derivative code, it is 
necessary to tell ADIFOR 2.0 several key pieces of information: 

1. The names of the files containing the FORTRAN 77 source code to be processed. The names of the 
procedures are provided to ADIFOR 2.0 in a file referred to as a composition. ADIFOR 2.0 must be 
told the name of the file containing the composition. 

2. The name of the ‘%op routine,” that routine whose invocation causes the function to be evaluated. 
ADIFOR 2.0 determines the names of all of the routines that may be transitively invoked by the top 
routine by examining the source code. 

3. The names of the independent and dependent variables. The ADIFOR %@generated code computes 
the derivatives of the dependent variables with respect to the independent ones. 

4. Values of numerous other options to ADIFOR 2.0 that control how vector operations in the ADIFOR- 
generated code are implemented, what level of exception reporting for nondifferentiable FORTRAN 77 
intrinsics is performed, and to what extent the code should be customized for particular execution 
environments. 

The names of the composition file, the top routine, and the independent and dependent variables, and 
values for the various options, are provided to ADIFOR 2.0 in the form of bindings, as described in the 
next section. Section 3.2 describes the format of compositions. Section 3.3 describes source files that are 
acceptable for processing with ADIFOR 2.0 and describes some common deviations from the FORTRAN 77 
standard that cause problems. 

3.1 Option Processing in ADIFOR 2.0 
This section describes ADIFOR 2.0’s option-processing mechanism. Information is provided to ADIFOR 2.0 
as bindings. Bindings have the form 

OPTION = VALUE, 
or 

OPTION = VALUE1,. . . , VALUEN. 
The second form is used in defining list-valued options. Bindings may be provided as command line ar- 
guments and, additionally, as lines in a “script” file. Bindings specified as command line arguments to 
ADIFOR 2.0 may contain whitespace, consisting of a sequence of spaces and tabs, if they are quoted. 

A script file is a sequence of lines. Blank lines are ignored. Each nonblank line contains a binding having 
either of the two forms shown above. All characters on a line after the comment character ‘#’ are ignored. 
There is no formal requirement for the name of the script file, but our informal convention is to use the .adf 
extension. Bindings defined in script files may always use whitespace liberally. 
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~ AD-PROG = rosenbrock. cmp 
AD-TOP = func 
AD-IVARS = x 
AD-DVARS = y 
A D - P M X  = 2 # x has 2 elements 
AD-OUTPUT-DIR = . 

Figure 3.1. Example Script File (rosenbrock.adf) 

All ADIFOR 2.0 options begin with an “AD-” prefix. Values of options are typically the names of files 
(AD-PROG), the names of procedures in the program (AD-TOP), lists of names of variables in the program 
(AD-IVARS and A D D V A R S ) ,  integers (AD-PMAX), Boolean values (ADDUMP-CALLGRAPH), and switches ( A D I L A V O R  
and AD-EXCEPTION-FLAVOR). For Boolean-valued options, f a l s e  and 0 are considered to be equivalent, as are 
t r u e  and 1. Section 9 documents ad of the ADIFOR 2.0 options. 

ADIFOR 2.0 processes bindings on its command line in the order that they are listed. As bindings are 
processed, new bindings always override values defined by a previous binding for the same option. The option 
A D S C R I P T  is used to specify the name of a script file. Whenever a binding for A D S C R I P T  is encountered, the 
file identified as the value of A D S C R I P T  is opened, and the bindings in the file processed in order. 

Relative path names specified as command line arguments to ADIFOR 2.0 are taken as relative to the 
directory in which ADIFOR 2.0 was executed. Relative path names specified in bindings specified in a script 
file are taken as relative to the directory containing the script file. 

Now consider a sequence of examples using the script file rosenbrock.adf shown in Figure 3.1. 

0 Example 1 

A d i f o r 2 . 0  AD-PROG=rosenbrock.uap AD-TOP=func  \ 
AD-DVARS-y AD-IVARS=x AD_PMAX=2 AD-OUTPUT-DIRE. 

This command defines AD-PROG to be the filename “rosenbrock.cmp”, AD-TOP to be name of the proce- 
dure “func”, AD-IVARS to be the (single item) list “x”, AD-DVARS to be the (single item) list “y”, and 
AD-PMAX to be the integer value 2. ADIFOR will place derivative files in the current directory (which 
in UNIX is usually denoted by a dot). 

0 Example 2 

A d i f o r 2 . 0  AD-SCRIPT=rosenbrock.adf 

This command defines exactly the same values for the same set of options. 
0 Example 3 

A d i f o r 2 . 0  AD-SCRIPT=rosenbrock.adf AD_PMAX=5 

This command defines the exactly the same set of values for the same set of options, except for option 
AD-PMAX whose value is overridden with the integer value 5 .  

3.2 Compositions 
Compositions list the names of ad of the source files to be processed by ADIFOR 2.0. A composition is a 
list of pathnames to source files with zero, one, or more pathnames per line. All characters on a line after 
the comment character ‘#’ are ignored. Multiple pathnames on the same line are delimited by commas and 
whitespace, where whitespace is any sequence of spaces or tabs. Relative pathnames are taken to be relative 
to the directory containing the composition. 
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The name of the composition must end with a “.cmp” extension. The name of each source file must 
end with a “.f” suffix. Each source file listed in a composition may contain the source for one or more 
FORTRAN 77 routines. 

Since ADIFOR 2.0 uses interprocedural analysis to  reduce the cost of computing derivatives, a compo- 
sition must describe a complete and consistent program. To be complete, a program must not have missing 
entry points, i.e., the program must link without undefined external references. To be consistent, all proce- 
dure interfaces in the program must agree as to the number of arguments and the types of the arguments 
being passed. Many programs in use today have inconsistent interfaces. Fixing the inconsistencies may take 
significant effort, but is usually an enlightening process. 

In addition to being complete and consistent, your program must not be recursive. ADIFOR 2.0 will 
complain if it encounters a recursive program and will print out the names of each of the routines that are 
recursive. Recursion in FORTRAN 77 programs is usually, but not always, an indication of some underlying 
error. 

When ADIFOR 2.0 generates derivative code for a file somedir/foo.f, it places the generated source 
code into a file g3oo.f in the subdirectory identified by the option AD-OUTPUTDIR of the directory in 
which ADIFOR 2.0 was executed. Therefore, no two pathnames listed in a composition may have the 
same basename, where the basename of somedir/f oo . f is taken to be f oo . f. ADIFOR 2.0 will complain if 
multiple files in your program have the same basename. 

In reality, it is necessary to submit to ADIFOR 2.0 only the portion of the program that defines the 
function to be differentiated. This usually requires that you create a dummy main procedure that invokes 
the routines to be differentiated (see Chapter 4). 

3.3 Acceptable FORTRAN 77 Source Files 
ADIFOR 2.0 recognizes standard FORTRAN 77 syntax extended with DO-ENDDO, IMPLICIT NONE, DOUBLE 
COMF’PEEX, and INCLUDE. Variable names need not be limited to six characters. If a program uses non- 
standard extensions, ADIFOR 2.0 will probably .not accept them. In particular, ADIFOR 2.0 will not 
accept nonstandard intrinsic or type conversion functions, such as arsin0, arcos0, and df loat 0. These 
should be replaced with standard functions like asin0, acos0, and dble0. In any case, for portability 
reasons, it is probably a good idea anyway to make sure that all code is standard-conforming. Also not 
accepted are system calls such as etime0. In most cases, such calk do not affect function evaluation and 
may be removed, commented out, or replaced with a syntactically correct but nonfunctional subroutine, 
prior to processing with ADIFOR 2.0. 

We strongly urge you to make sure that all of the files in your composition compile correctly and adhere to 
the FORTRAN 77 standard before submitting them to ADIFOR 2.0 for processing. ADIFOR will complain 
about syntax errors, but its error messages are likely to be more cryptic. ADIFOR 2.0 will also complain 
about problems in your source code that the typical FORTRAN 77 compiler will fail to identify, specifically, 
inconsistencies between callsites and the procedures they invoke, and inconsistencies between common block 
declarations across procedures. 

For example, in the following program fragment an integer*4 array of length 3 is passed to a subroutine 
whose arguments were declared to be of type character*l2. 
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program main 
integer*4 x(3) 

call func(x) 

end 

... 

... 

subroutine func(c) 
character*12 c 

end 
e . .  

The following program fragment declares common blocks to be of different length in different program 
units. 

program main 

call funci 
call func2 

end 

subroutine funcl 
common /cmn/ ~(10) 

end 

subroutine func2 
common /cmn/ ~ ( 2 0 )  

end 

... 

... 

... 

The FORTRAN 77 language definition requires that each common block, other than the blank common 
block //, must have the same size in each procedure in which it is declared. Another violation of the 
FORTRAN 77 standard is the fact that the common block is not declared in the main program (from which 
both subroutines are called. While this is usually not an issue, because of the nature in which global variables 
are implemented, unexpected things could happen if a compiler exploited the liberty of the standard. 
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Chapter 4 

A Tutorial Example 

We demonstrate the use of ADIFOR 2.0 using the simple program shown in Figures 4.1 and 4.2. It 
shows a simple Newton iteration being used to minimize Rosenbrock’s function. The routines DLANGE and 
DGESV from the LAPACK package [l] are used to compute the norm of y and to solve the linear system 
2 s  = -y. Our goal will be to replace the subroutine fprime, which approximates 2 by using central 
divided differences, with an ADIFOR-generated derivative code. This complete example is provided in 
$ADHOME/examples/newt on. 

Rosenbrock’s function is used only for illustrative purposes. I t  is not indicative of the power of ADIFOR, 
which has processed programs up to 60,000 lines in length, albeit using 280 Mb of virtual memory in the 
process. 

Step 1: Create a Composition File 

Figure 4.3 presents composition rosenbrock.cmp for the example, assuming that newton, func, and 
fprime have been stored into the files newton. f ,  func.  f ,  and fprime. f ,  and that code for dlange and dgesv 
and all of the routines that they invoke has been located. 

As mentioned in Section 3.2, it is only really necessary to provide ADIFOR 2.0 with the source code that 
defines the function to be differentiated. Figure 4.4 presents a dummy main program that directly invokes 
procedure func. Note, in particular, that no variables have to be initialized in the dummy main program, 
since we have no plans to execute this code. Figure 4.5 presents the composition rosenbrock-func-only.cmp 
that includes this dummy main program. 

Step 2: Determine Values for ADIFOR 2.0 Options 

To compute a Jacobian for the Newton example, you must provide ADIFOR 2.0 with values for the 
following options: 

ADSROG: The value of AD-PBOG is the name of the “composition” to be processed. The name of the com- 
position is communicated to ADIFOR 2.0 by specifying AD-PROG=composit ion-name on the command 
line. 
In this example, A D S R O G  will be set to rosenbrock. cmp or rosenbrock-func-only . cmp. 

AD-TOP: The value of AD-TOP is the name of the procedure that contains the function to be differentiated. 
That procedure may then, transitively, invoke a set of other procedures. We refer to the procedure 
that is invoked to evaluate the function as the top-level routine or TOP. The name of the procedure 
TOP is communicated to ADIFOR 2.0 by using the command line option AD-TOP=procedure-name. 
In Section 6 we will describe how to handle codes where the function to be differentiated does not 
conveniently correspond to a procedure invocation. 
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PROGRAM NEWTON 
DOUBLE P R E C I S I O N  DUMMY,TOL, DLANGE 
INTEGER I N F O ,  N ,  I P I V ( 2 )  
DOUBLE P R E C I S I O N  X ( 2 )  , Y ( 2 )  , Y P R I H E ( 2 , 2 )  
EXTERNAL DGESV, FPRIME,  FUNC, DLANGE 
TOL = 1 . O E - I 2  
WRITE (*,FMT=*) ’Input 2-element s t a r t i n g  vector ’ 
READ (*,FMT=*) X ( 1 )  , X ( 2 )  
CALL FUNC(X,Y)  

CALL FPRIME(X,Y,YPRIME) 
Y ( 1 )  = - Y ( 1 )  
Y ( 2 )  = - Y ( 2 )  
CALL DGESV(2,1,YPRIME,2,IPIV,Y,2,INFO) 
X ( 1 )  = X ( 1 )  + Y ( 1 )  
X ( 2 )  = X ( 2 )  + Y ( 2 )  
CALL FUNC(X,Y)  
WRITE (*,FMT=lOOO) ’Current Function Value: ’ , Y ( 1 )  , Y ( 2 )  
GO TO 10 

20 CONTINUE 
WRITE (*,FMT=lOOO) ’Minimum is approximately: ’ , X ( 1 )  , X ( 2 )  

END 

10 I F  (DLANGE(’1’,2,1,Y,2,DUMMY).LT.TOL) GO TO 20 

1000 FORMAT (a , lx ,2  ( d 1 5 . 8 . 2 ~ ) )  

Figure 4.1. A Simple Implementation of Newton’s Method 

In this example, the function to be differentiated corresponds to the subroutine func, so we will set 
AD-TOP to be func. 

AD-IVARS and ADDVARS:  The values of AD-IVARS and ADDVARS are comma-separated lists of independent 
(input) and dependent (output) variables of TOP, respectively. AD-OVARS is a synonym for ADDVARS.  
A variable may be designated as independent, dependent, or both (if it is overwritten during the 
execution of AD-TOP). 
There is no way to nominate individual elements of a FORTRAN 77 array as being independent 
and dependent, although it is possible to specify at run time that only derivatives with respect to 
a particular set of elements should be computed (see Appendix A). Variables in the AD-IVARS and 
ADDVARS lists must have type real, double precision, complex or double complex. The independent 
and dependent variables must be formal parameters of TOP, or global variables declared within 
TOP. Again, in Section 6 we will describe how to handle codes in which the variables that logically 
correspond to the independent and dependent variables are neither formal parameters nor global 
variables in TOP. 
In this example, in order to compute the derivatives of y with respect to x ,  we will set ADDVARS to y 
and AD-IVARS to x. 

ADJMAX: The value of AD-PMAX is the upper bound on the number of independent variables for which deriva- 
tives can be computed simultaneously. It is necessary to specify this upper bound because FOR- 
TRAN 77 does not provide a standard mechanism for dynamic memory allocation. It is introduced 
as the first dimension of each of the gradient objects declared by ADIFOR 2.0. The value of ADPMAX 
is communicated by using the option AD-PMAX=int eger-value. 
In the Newton example, we choose to set ADSMAX to 2, since x is an array with 2 elements and we 
would like to compute derivatives with respect to x ( l )  and x(2). In general, in the invocation of 
the routines generated by ADIFOR 2.0, we can use any value of g-p- that is not larger than ADSMAX. 
This issue is explained in more depth in Appendix A. We also note that if subroutines using the same 
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SUBROUTINE FWNC (X , Y 1 
DOUBLE PRECISION X(2) ,Y(2) 

Y(1) = 10.0* ,(X(2)-X(l)*X(l)) 
Y(2) = 1.0 - X(1) 
RETURN 
END 

SUBROUTINE FPRIlE(X ,Y ,YPRIMF.E) 

: approximates derivatives of Func by central differences. 

. . Array Arguments . . 
DOUBLE PRECISION X(2) ,Y(2) ,YPRIME(2,2) .. Local Scalars .. 
DOUBLE PRECISION H 
.. Local Arrays .. 
DOUBLE PRECISION XH(2) ,YM(2) ,YP(2) 
.. External Subroutines .. 
EXTERNAL FUNC 

IF (X(1) .EQ.0.0) THEN 

ELSE 

END IF 
XH(1) = X(1) - H 
XH(2) = X(2) 
CALL FUNC (XH ,YM) 
XH(1) = X(1) + H 
XH(2) = X(2) 
CALL FUNC (XH , YP) 
YPRIME(1,l) = (YP(l)-YM(l))/ (2.0*H) 
YPRIHE(2,l) = (YP(2)-YM(2))/ (2.0*H) 

.. 
H = 1.0e-7 

H = X(1)*1.0e-7 

IF (X(2) .Eq.O.O) THEN 

ELSE 

END IF 
XH(1) = X(1) 
XH(2) = X(2) - H 
CALL FUNC (XH , YM) 
XH(1) = X(1) 
XH(2) = X(2) + H 
CALL FUNC (XH , YP) 
YPRIME(1,2) = (YP(l)-Yl¶(l))/ (2.0*H) 
YPRIME(2,2) = (YP(2)-YM(2))/ (2.0*H) 

H = 1.0e-7 

H = X(2)*1.0e-7 

RETURN 
END 

Figure 4.2. Rosenbrock’s Function and Divided-Difference Approximations of the Jacobian 
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newt0n.f 
func 0 f 
f primae. f 

# LAPACK routines 
d1ange.f dgesv.f 1same.f d1assq.f 
xerb1a.f dgetrf.f dgetrs.f i1aenv.f 
dgetf2.f d1aswp.f 

# BLAS routines 
dtrsm.f dgemm.f idamax.f dsaap.f dsca1.f dger.f 

Figure 4.3. Composition for Newton’s Method Example (rosenbrock.cmp) 

PROGRAM MAIN 
DOUBLE PRECISION X(2)  , Y ( 2 )  
CALL FUNC (X,  Y 1 
END 

Figure 4.4. Dummy Main for Newton’s Method Example (dummy.f) 

dummy. f 
func. f 

Figure 4.5. Composition for Newton’s Method Example (rosenbrock-func-only.cmp) 
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common blocks are processed separately with ADIFOR 2.0, it is essential to use the same value of 
AD-PMAX in both cases, as otherwise the gradient object common blocks are declared inconsistently. 

AD-OUTPUTDIR: The value of AD-OUTPUTDIR specifies the name of the directory in which ADIFOR 2.0 places 
the generated derivative code. 
In the Newton example, we have chosen to set AD-OUTPUTDIR to be “.” so that the generated code 
will be placed back into the directory in which ADIFOR 2.0 is executed. 

Step 3: Invoke ADIFOR 2.0 

When executed with the command: 

Adifor2.0 AD-PROG=rosenbrock.cmp AD-TOP=func \ 
AD-DVARS-y AD-IVARS=x AD-PMAX-2 AD-OUTPUT-DIR=. 

ADIFOR 2.0 creates the subdirectory AD-cache, which contains internal information created by ADIFOR 2.0. 
Source files generated by ADIFOR 2.0 are placed in the working directory. If AD-OUTPUTDIR had been 
unspecified, then the default value of o u t p u t f i l e s  would have caused the generated files to be placed into 
the subdirectory o u t p u t f i l e s .  ADIFOR 2.0 emits the augmented code for procedure func into the file 
gfunc.f ,  whose source is shown in Figure 4.6. Note that usually an assignment statement in the original 
code has been replaced by a few assignment statements and a vector loop of length g-p-. When g-p- is 
moderate, or the gradient objects always dense vectors, this is an efficient representation of this vector 
operation. The SparsLinC library (see Appendix C) provides an alternative approach for expressing this 
vector operation when the gradient objects are mostly sparse vectors. 

Exactly the same processing process will be performed by executing the command 

Adifor2.0 AD-SCRIPTTosenbrock.adf 

by using the script file that was shown in Figure 3.1. 

step 4: Incorporate ADIFOR-generated Subroutine 

Incorporating the ADIFOR-generated subroutine into a program to compute derivatives requires the 
following three steps: 

1. Allocate the gradient objects in the calling module. The user should carefully check the 
ADIFOR-generated code to determine which variables in common blocks and which arguments to the 
top-level routine have been found to be active. For our small example, the declarations are 

double prec is ion  g_x(PMAX,2), g,y(PMAX,2) 

where PMX is an integer constant (FORTRAN 77 PARAMETER) whose value is greater than or equal to 
the value of AD-PMILX. In this case, we choose to set PMAX to 2. 

2. Initialize the seed matrix. In order to compute the Jacobian of the function defined by func, the 
gradient object for the independent variable x should be initialized to a 2 x 2 identity matrix. This 
initialization amounts to saying that the derivative of each independent variable with respect to itself 
is 1.0. 

3. Call the ADIFOR-generated top-level subroutine. The ADIFOR-generated subroutine com- 
putes both the function value and the value of the derivatives. So, in our example, we can replace the 
calls to func and fprime by a single call to g-func. 
In the call to the ADIFOR-generated top-level subroutine, the parameter g-p- should be set equal to 
the length of the gradient objects, and a l l  of the ldg- variables should be set equal to the leading 
dimension with which the corresponding gradient objects (g- variables) were actually declared. Thus, 
for our simple example, the call would look like 
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subroutine g-func(g-p-, x ,  g-x, ldg-x, y, g-y, 1dg-y) 
double prec is ion  ~ ( 2 1 ,  y(2) 

i n t ege r  g-pmax- 

parameter (g-pmax- = 2) 
i n t ege r  g-i-, g-p-, ldg-y, ldg-x 
double prec is ion  d5-b, d2-b, g-y(ldg-y, 21, g-x(Idg-x, 2) 
i n t r i n s i c  dble  

C 

C 

C 
C 

if (g-pmax- . g t .  g-p-1 then 
p r i n t  *, ’Parameter g-pmax- is g rea t e r  than g-p-’ 
s top  

endif 
d2-b = dble(lO.O) 
d5-b 
do g-i- = 1, g-p- 

g-y(g-i-. 1) = d5-b * g-x(g,i-, 1) + d2-b * g-x(g-i-. 2) 
enddo 
y(1) = dble(lO.O) * ( ~ ( 2 )  - x(1) * ~ ( 1 ) )  

-d2-b * ~ ( 1 )  + (-d2-b) * ~ ( 1 )  

C ---- - --- 
do g-i- = 1, g-p- 

g-y(g-i-, 2) = -g-x(g-i-, 1) 
enddo 
~ ( 2 )  = 1.0d0 - ~ ( 1 )  

c ------ - - 
end 

r e tu rn  

Figure 4.6. The ADIFOR-generated Code for Subroutine func 
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PROGRAM ADNEWTON .. Parameters .. 
INTEGER PMAX 
PARAMETER (PMAX=2) .. Local Scalars .. 
DOUBLE PRECISION DUMMY,TEMP,TOL 
INTEGER INFO .. Local Arrays .. 
DOUBLE PRECISION G_X(PMAX,2) ,G_Y(PMAX,2) ,X(2) ,Y(2) 
INTEGER IPIV(2) 
. . External Functions . . 
DOUBLE PRECISION DLANGE 
EXTERNAL DLANGE 

TOL = 1.OE-12 
WRITE (*,FMT=*) ’Input 2-element starting vector ’ 
READ (*,FMT=*) X(1) ,X(2) 

.. 

CALL FUNC(X,Y) 

10 IF (DLANGE(’l’,2,1,Y,2,DUl4MY).LT.TOL) GO TO 20 

t compute function and Jacobian at current iterate 

G-X(l,l) = 1.0 
G-X(1,2) = 0.0 
G-X(2,1) = 0.0 
G-X(2,2) = 1.0 
CALL G-FUNC(~,X,G-X,PMI~X,Y,G_Y;PMAX) 

: transpose g-y 

TEMP = G-Y(2,1) 
G,Y(2,1) = G_Y(1,2) 
G-Y(1,2) = TEMP 

t solve J * s = - f and update x = x + s 

t compute new function value 

CALL FWNC(X,Y) 
WRITE (*,FWT=lOOO) ’Current Function Value: ’ ,Y(l) ,Y(2) 
GO TO 10 

20 CONTINUE 
WRITE (*,FMT=1000) ’Root is approximately: ’ ,X(1) ,X(2) 

END 
1000 FORMAT (a,Ix,2 (d15.8,2x)) 

Figure 4.7. The Driver for the Newton Program Using ADIFOR-generated Code 
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For our example, the new driver is shown in Figure 4.7.l As mentioned above, since ADIFOR-generated 
derivative code computes the transpose of the Jacobian, we must retranspose g-y before passing it to dgesv. 
Together with the subroutine func and the subroutine shown in Figure 4.6, the new program replaces the 
program shown in Figure 4.1. 

Step 5:  Compile and Link 
After a suitable driver has been developed, the ADIFOR-generated code, the driver, and any other 

modules necessary to form a complete program should be compiled. 

f77 -c adnevt0n.f 

f77 -c d1ange.f 
f77 -c dgesv.f 
f77 -c ... 

f77 -c g-func.f 

The compiled modules should then be linked together with the ADIntrinsics package to generate a 
working executable. 

f77 -0 adnevton adnevton.0 g-func.0 d1ange.o dgesv.0 ... \ 
$AD-HOME/lib/ReqADIntrinsics-$AD-ARCH.o \ 
$AD-HOME/lib/libADIntrinsics-$AD-ARCH.a 

The module ReqADIntrinsics-$AD-ARCH.0 and archive libADIntrinsics-$AD-ARCH.a implement the 
ADIFOR 2.0 exception handling mechanism. See Appendix B for more information on the ADIntrinsics 
template expander and library. 

Some comments were removed to fit the program on one page. 
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Chapter 5 

Known Deficiencies 

In this section we describe several deficiencies in ADIFOR 2.0’s support of full FORTRAN 77. In each case, 
it is relatively easy to “work around” each of these deficiencies. ADIFOR 2.0 flags each of these as being 
“not supported” any time that they are encountered. 

5.1 Intrinsics Passed as Procedure Parameters 
ADIFOR 2.0 prohibits intrinsics, such as D S I N  and DCOS, from being passed as procedure parameters as 
shown in the standard-conforming FORTRAN 77 code: 

subroutine bad(x0, x l )  
double precis ion x0, XI 
externa l  in tegra te  
i n t r i n s i c  ds in  

c a l l  integrate(dsin,xO, x l )  
end 

This deficiency can easily be circumvented by introducing a wrapper function for each intrinsic, which is 
to be passed as a procedure parameter, and by then passing that wrapper routine as the procedure parameter 
instead of the intrinsic. For example, the following code performs the same computation as the code shown 
above by using a wrapper function MYDSIN for intrinsic D S I N :  

subroutine good(x0, x l )  
double precis ion x0, x l  
external  i n t e g r a t e ,  mydsin 
c a l l  integrate(mydsin, x0, xi) 
end 

funct ion mydsin (x) 
double precis ion x 
i n t r i n s i c  ds in  
mydsin = dsin(x)  
end 
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5.2 Intrinsics Overridden by External Functions 
ADIFOR 2.0 prohibits external routines from overriding intrinsic functions as shown in the standard- 
conforming FORTRAN 77 code: 

subroutine bad(x,y) 
ex te rna l  cos 
double p rec i s ion  x,  y ,  cos 

C c a l l  user defined funct ion with name "cos" 
y = cos(x0) 
end 

funct ion cos(x) 

end 
... 

Again, this deficiency can easily be circumvented by renaming the external function so that it does not 
collide with the name of any intrinsic function, as follows: 

subroutine good(x,y) 
ex te rna l  mycos 
double precis ion x, y. mycos 
y = mycos(x0) 
end 

funct ion mycos(x) 

end 
... 

5.3 1 / 0  Statements That Contain Function Invocations 
ADIFOR 2.0 prohibits 1/0 statements, READ, WRITE, and PRINT, from invoking functions and statement 
functions as shown in the standard-conforming FORTRAN 77 code: 

subroutine bad(y) 
double p rec i s ion  ~ ( 1 0 )  
in t ege r  f 
ex t e rna l  f 
read (3, 5 0 )  x, y ( f (x ) )  

end 
50 format ( . . . I  

Modifying code that invokes functions from within 1/0 statements is very easy, but may change the 
meaning of the 1/0 statements in ways that require other 1/0 statements in the program to be changed as 
well. For example, the function call in the READ statement above can be removed from an 1/0 statement by 
rewriting the code as follows: 
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subroutine okay(y) 
double prec is ion y(10) 
integer f ,  i 
external f 
read (3, 50) x 
i = f (x)  
read (3, 51) y ( i )  

50 format (. . .) 
51 format ( . . . I  

end 

Notice, however, that in the original code, the two elements that are read may come from the same line 
of the input file, while in the new code, the two elements must come from different lines of the input file. 
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Chapter 6 

Advanced Topics 

Normally, ADIFOR 2.0 assumes that independent variables are passed into the top-level routine TOP, and 
dependent variables are passed back out to the procedure that invoked TOP. Furthermore, it is assumed 
that the values of the independent variables will be assigned before TOP is invoked. “Passing” is either 
via procedure parameters or via global variables in common blocks. So, the normal ADIFOR 2.0 interface 
cannot compute derivatives of the following: 

0 variables that are declared and computed in the main program, 
e variables that are declared locally in the top-level routine or variables declared in a routine transitively 

0 variables that are assigned values during evaluation of AD-TOP and then overwritten, and 
0 variables that are initialized by a READ statement. 

This section describes some workarounds for these situations. 

invoked by the top-level routine, 

6.1 Computation Is Not Encapsulated in Procedure 
Consider the following example: 

program main 
read(*,*) x(1) 
t= r e s u l t  of some computation involving x(1) 
read(*,*) x(2) 
y= r e s u l t  of some computation involving x(1) and x(2) 
end 

To extract a procedure suitable for using ADIFOR 2.0 to generate code for and &, you should 
rearrange the computation so that both x(1) and x(2) are initialized first, then invoke a new procedure 
that computes y from x(1) and x(2) and then returns the value of y as follows: 
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program main 
read(*,*) x(i) 
read(*,*) x(2) 
y = compute(x(1). ~(2)) 
end 

function compute(x1, x2) 
y = result of some computation involving xi and x2 
end 

6.2 Variables Other Than Parameters and Globals in AD-TOP 

Consider the following program: 

program main 
call f oo (x, y) 
end 

subroutine foo(x,y) 
a = x+i 
y = x*x 
b = x/2 
end 

If we want the derivative of y with respect to variable x, the code is appropriate as is. But, if we want 
the derivatives of 

0 y with respect to variable a, 
0 b with respect to variable x, or 

b with respect to variable a, 

we run into a problem. Specifically, we cannot nominate a local variable of subroutine foo as dependent or 
independent, since it is not visible outside of f oo. To avoid this problem, we make all Yinteresting” variables 
in subroutine foo visible through parameter passing or common blocks. For example, program MAIN could 
be rearranged to: 

program main 
call foo(x,y,a,b) 
end 

subroutine foo(x,y,a,b) 
a = x+i 
y = x*x 
b = x/2 
end 

or, alternatively, 
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program main 
call f oo (x ,  y) 
end 

subroutine foo(x,y) 
common /globals/a,b 
a = x + l  
y = x*x 
b = x/2 
end 

An alternative to this workaround is the buddy system discussed below. 

6.3 Variables That Are Overwritten 
Consider the following program: 

program main 
call foo(x,y)  
end 

subroutine foo(x,y) 
10 y = x*x 
20 y = y * x  

end 

Say we want to compute the derivatives with respect to x of variable y at both the statement with label 
10 and the statement with label 20. Nominating variable y as the dependent variable, will generate code 
that computes only the derivative of y at the statement with label 20. 

In order to avoid this problem, we can expand y into an array and modify the code to the code that 
follows: 

program main 
real y(2) 
call foo(x,y) 
end 

subroutine f oo (x , y) 
real y(2) 
y ( l )  = x * x 
y(2) = y(1)  * x 

10 
20 

end 

6.4 Variables Involved in 1 / 0  Statements 
Sometimes the values of independent variables are read or computed within the active subtree (that is, 
within the subtree of procedures below the top-level subroutine). This procedure does not pose a problem, 
as long as the independent variables are parameters or global variables in AD-TOP, and 1/0 functions are 
handled properly. Unfortunately, we cannot automate the proper handling of 1/0 functions involving active 
variables because, in general, we have no way to trace the flow of data values that are read or written to 
files. 
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Without this information, we have no way of knowing whether the gradient object for a variable that is 
involved in a READ statement should be set to 0.0 or initialized by reading in derivative values from the file 
system. Similarly, we have no way of knowing whether we should write the values of the gradient objects 
for variables involved in a WRITE statement to the file system. Therefore, ADIFOR 2.0 currently just echoes 
1/0 statements like READ and WRITE without introducing code to initialize or propagate the derivatives of 
variables involved in the 1/0 statement. Because of the problems that this approach may cause, ADIFOR 2.0 
generates a warning message whenever it processes a source file that contains an 1/0 statement involving 
an active variable. The warning message is printed out to s t d e r r  as the code is processed, and embedded 
as a comment just before the suspect 1/0 statement. 

Fortunately, in most of the cases that we have encountered, it is possible to use a scheme based on 
“buddy variables” to modify the original function code in a manner that makes it possible for ADIFOR 2.0 
to generate correct derivative code in the presence of 1/0 of active variables. As an example, consider trying 
to process the following code to compute the derivative of e at the statement with label 20 with respect to 
h at the statement with label 10: 

program main 
r e a l  lambda 
read *, lambda 
c a l l  f oo (lambda) 
end 

subroutine f oo (lambda) 
r e a l  lambda, e ,  h 

e = h * lambda 

end 

10 read *, h 

20 wri te  *, e 

One approach to modifying this code would be to extract the READ statements in f oo into main, and to 
convert variables e and h into parameters to foo. As an alternative, consider modifying the original code 
into the following code: 

10 

20 

program main 
r e a l  lambda, hbuddy, ebuddy 
common /buddyvar/ hbuddy, ebuddy 

read *’ lambda 
c a l l  f oo (lambda) 
end 

subroutine f oo(1ambda) 
r e a l  lambda, e ,  h ,  hbuddy, ebuddy 
common /buddyvar/ hbuddy, ebuddy 

h = O  
read *, h 
h = h + hbuddy 
e = h * lambda 

ebuddy = e 
write  *, e 
end 

and then nominating hbuddy as the independent variable, and ebuddy as the dependent variable. Initializa- 
tion of hbuddy to 0.0, and ghbuddy to 1.0, in the derivative driver for g-foo then results in g-ebuddy being 
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assigned the derivative of e with respect to h. Notice that nominating hbuddy and ebuddy as the independent 
and dependent variables forces variables h and e to be active. Since h is assigned the value 0.0 prior to the 
read statement, g h  will be assigned the value 0.0. Therefore, since ghbuddy is initialized to 1.0, g h  will 
be assigned the value 1.0 just after the READ, as required to compute the derivative of e with respect to h. 
Finally, the value of the computed derivative can be returned via the global variable g-ebuddy. 

The scheme that we just described has three key components. The first component forces variables in 
1/0 statements that depend on the independent variables and that are used to compute dependent variables 
to be identified as active variables. The second component forces the derivatives of variables appearing in 
READ statements to be initialized properly. Finally, the third component makes it possible to retrieve the 
values of the derivatives for variables that appear in WRITE statements. 
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Chapter 7 

Pitfalls of Differentiating 
FORTRAN 77 

Some operations that are allowed in FORTRAN 77 do not have any (or, at least not the expected) mathe- 
matical meaning with respect to differentiation. Among these are: 

0 Derivatives of integers and characters 

The derivative of an integer or character is meaningless. As a consequence, if an integer is assigned a 
value from an active variable the integer variable does not become active. Thus, the gradient objects 
of any variables that depend on these integers may not have the expected values. The same holds true 
for characters. 

0 Equivalencing of variables of different -types 

The process of equivalencing variables that have different types such as in the following code fragment 

real r(10) 
double prec is ion  d(5) 
complex z(5) 
equivalence(r,d) 
equivalence(r,z) 

has no real mathematical meaning. Thus, if a program performs this operation, ADIFOR 2.0 will 
generate the corresponding equivalences for the gradient objects of the equivalenced variables, but 
they (and any gradient objects which depend on them) may have meaningless values. Note that this 
form of equivalencing is nonportable anyway, since its results depend heavily on the floating-point 
represent ation. 

0 Introducing points of nondifferentiability 

Sometimes, for the sake of improving efficiency, a program tests the value of a variable to see whether 
a function is being evaluated at  a special point in space, and then computes the value of the function 
based on that knowledge. For example, the following piece of code computes y = x4. 

i f  ( (x  .eq. O.OdO) .or .  (x .eq. 1.0d0)) then 

else 
y = x  

t = x*x 
y = t*t 

endif 
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If automatic differentiation is used to compute 2, then the value of gl,=o will be 1.0 (because the 
statement y = 2 implies that 2 = $ = 1) rather than the expected 0.0. Similarly, the value of 
$Is=l will be 1.0 rather than 4.0. This “anomaly” stems from the fact that automatic differentiation 
differentiates the statements executed in the course of program execution. This issue, as well as other 
subtle pitfalls, is discussed in [ll]. 
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Chapter 8 

Potential Problems 

Users may encounter several problems while trying to process programs with ADIFOR 2.0. We provide a 
brief explanation of each and possible solutions. 

e ADIFOR 2.0 may complain about errors in the original FORTRAN 77 source code 
As discussed in Section 3.3, ADIFOR 2.0 may report that errors are present in your FORTRAN 77 
program that typical FORTRAN 77 compilers will not detect. Inconsistencies in subroutine interfaces 
and common blocks are the most frequently reported errors (see Section 3.3). 

Sun changed the interface to the internal 1/0 routines provided in libF77.a between versions SCI.0 
and SC2.0 of the f77 compilation system. The version of the ADIntrinsics library that we provide has 
been compiled using version SC2.0. Unresolved references for entries beginning with three underscores, 
such as --do-l-in, -dol-out, -eisle, -sl-sle, and -flushio, will be reported if you attempt 
to compile your source files with version SC1.0 and link against the libraries we provide. If you do not 
have access to version SC2.0, it may be necessary for you to recompile the ADIntrinsics library with 
version SCl.0. 

e ADIFOR 2.0-generated code fails to link on a Sparc 

e ADIFOR 2.0 may generate subscripted variables with more than 7 dimensions 
If the source code being differentiated contains active variables that are declared as arrays with 7 
dimensions, then ADIFOR 2.0, when generating dense derivative code, will insert gradient objects 
with 8 dimensions. FORTRAN 77 limits the number of dimensions for arrays to 7. It is unlikely that 
you will run into this problem, but if you do, then check your compiler to see whether it has an option 
that will extend its limits. 

0 ADIFOR 2.0 may generate variable names longer than 6 characters 
ADIFOR 2.0 generates names for new variables that may be more than 6 characters long. FOR- 
TRAN 77 limits the number of characters in a name to 6, but all compilers we have worked with 
extend this limit. If you do, then check your 
compiler to see whether it has an option that will extend its limits. 

e ADIFOR 2.0 generates BO-ENDDO loop statements instead of introducing a labeled CONTINUE 
statement to end each loop 
The DO-ENDDO statement is not standard FORTRAN 77, but is accepted by all compilers that we have 
encountered. 

e Unneeded labels and CONTINUE statements appear in the ADIFOR-generated subroutines 
In addition to creating new labels and CONTINUE statements, ADIFOR preserves those present in the 
original programs. There are two reasons for this functionality. The first reason is to ensure that any 
references to these labels (by a computed GOTO, for example) in the original program remain properly 
defined. Labels are also preserved to facilitate cross-referencing between the original and ADIFOR- 
generated code. If a certain algorithm is present near a particular label in the original program, it will 
be at the same location in the ADIFOR-generated code. 

It is unlikely that you will run into this problem. 
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e By default, ADIFOR 2.0 inserts variables whose names contain ‘-’ characters 
Some compilers may not permit ‘-’ characters to appear in variable names. This problem can be 
avoided by setting the option ADSEP to a character other than ‘-’. 
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Chapter 9 

ADIFOR 2.0 Options 

This section provides short descriptions of each of the ADIFOR 2.0 options. Default values for options are 
presented within square brackets. Options that can be defined with a list of values are identified with a "+" 
superscript. 

9.1 Mandatory Options 
ADDVARS" 
List of names of the FORTRAN 77 variables that contain the dependent variables of the function to 
be differentiated. Synonym for ADDVARS.  

0 AD-IVARS" 
List of names of the FORTRAN 77 variables that contain the independent variables of the function 
to be differentiated. 
AD-WARS* 
AD-OVARS is a synonym for ADDVARS.  At least one of AD-OVARS and A D D V A R S  must be defined. 

0 A D T H A X  (MANDATORY if AD-FLAVOR is dense (default)) 
Maximum number of independent variables of the function to be differentiated. The value of this 
option is compiled into each of the ADIFOR 2.0-generated dense derivative code files and is used as 
the first dimension of gradient objects for local and global variables. 

0 AD-PROG 
Name of composition file. 

0 AD-TOP 
Name of the top-level routine, the routine whose invocation is responsible for evaluating the function 
that is to be differentiated. 

9.2 Other Options 
0 ADALLSAVED [O]  

If set to t rue ,  then ADIFOR 2.0 will treat all local and global variables in your program as being 
static variables, Le., as if they had been listed in SAVE statements. Many FORTRAN 77 compilers 
treat all local and global storage a s  being static, which means that variables always retain their value 
between invocations of procedures. If your code assumes that all storage will be treated as static 
storage by your compiler, then you must set ADALLSAVED to true to generate correct derivative code. 
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AD-CACHE [AD-cache] 
Name of directory in which ADIFOR 2.0 stores information about your program as analysis is per- 
formed. Permits incremental reanalysis of your code after changes to the source code or changes in 
options. 

0 ADDUMP-CALLGRAPH [false] 

ADEXCEPTIONSLAVOR [verbose] 

If set to true, causes ADIFOR 2.0 to print out a callgraph for the program. 

May be set to terse, verbose, counting, or performance to control level of exception handler error 
reporting. See Appendix B for more information. 
A D I L A V O R  [dense] 
ADIFOR 2.0 generates dense derivative code (Le., expressing gradient objects loops as normal FOR- 
TRAN 77 loops) if AD-FLAVOR is set to dense, and sparse derivative code (i.e., calls to the SparsLinC 
library) if it is set to sparse. 

0 AD-OUTPUTDIR [ou tpu t f i l e s / ]  

0 ADJREFIX [g] 
Directory into which ADIFOR 2.0 places the augmented source code files. 

Character that serves as initial character of gradient object names and derivative computing procedure 
names. For example, by default, the gradient object for foo is g-foo. 

0 ADSCALARGRADIENTS [false] 
If set to true and ADSLAVOR is “dense”, then ADIFOR 2.0 ADIFOR 2.0 will generate code that 
assumes that g-pmw- is 1. Executing this code provides an efficient means of generating J * o, where 
J is the Jacobian of the function being differentiated, and v is a vector. 

ADSCRIPT 
Name of file containing additional definitions of bindings. 
ADSEP [-] 
Character that it used to  separate components of ADIFOR 2.0 generated names. If ADSEP is changed 
to ’V, then the gradient object for foo will be named g$foo. 
ADSUPPRESSLDG [false] 
If set to t r u e  and AD-FLAVOR is “dense”, then ADIFOR 2.0 will generate code that assumes that all 
gradient objects are allocated with first dimensions set to g-pmax- Leading dimension arguments will 
not be passed as parameters throughout derivative code. Use of this option may allow the generated 
code to be vectorized efficiently. 
ADSWPRESS-NUM-COLS [false] 
If set to true and AD-FLAVORis “densen, then ADIFOR 2.0 will generate code that assumes that g-p- is 
g-pmw, and hence does not pass g-p- as a parameter throughout derivative code. Use of this option 
,may allow the generated code to be vectorized efficiently. 

Specifies a directory in which to search for ADIntrinsic template files. Only a single additional directory 
may be specified. See Appendix B for more information. 

AD-TWLATEDIR 
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Appendix A 

Seed Matrix Initialization 

A. 1 Introduction 
This appendix focuses on the proper and efficient use of ADIFOR-generated codes through detailed exami- 
nation of seed matrix initialization for the following cases: 

0 Dense Jacobian, one independent, one dependent variable 
e Dense Jacobian, multiple independent, multiple dependent variables 
0 Sparse Jacobian, one independent, one dependent variable 
0 Sparse Jacobian, two independent variables, one dependent variable 
0 Partially separable functions 

In most of these cases, a “variable” denotes an- array; thus, we shall be dealing with vector-valued func- 
tions. 

Note: The examples presented in Appendix A correspond to seed matrix initialization for the default 
or “nonsparse” flavor of ADIFOR 2.0 (see AD-FLAVOR in Chapter 9). The differences between the sparse 
and nonsparse ADIFOR 2.0-generated codes, which are discussed in Appendix C, impose differences in the 
mechanics of seed matrix initialization in each case (see Section C.4.4 for details). Nonetheless, the general 
seeding ideas presented here for the nonsparse case apply equally as well to the sparse case. 

A.2 Case 1: Dense Jacobian, one independent, one depen- 
dent variable 

Our first example is adapted from Problem C2 in the STDTST set of test problems for stiff ODE solvers [lo] 
and was brought to our attention by George Corliss of Marquette University. The routine F C N 2  computes 
the right-hand side of a system of ordinary differential equations y’ = yp = f(z, y) by calling a subordinate 
routine FCN: 
C F i l e :  F C N 2 . f  

SUBROUTINE F C N 2 ( M , X , Y  ,YP)  
INTEGER N 
DOUBLE P R E C I S I O N  X ,  Y ( M ) ,  YP(M) 
INTEGER I D ,  I Y T  
DOUBLE P R E C I S I O N  Y ( 2 0 )  
COMMON /STCOM5/W, IWT, N ,  I D  

CALL F C N ( X , Y , Y P )  
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RETURN 
END 

C File: FCN.f 

SUBROUTINE FCN(X,Y,YP) 

C 
C 
C 
C 
C 
C 
C 

20 
40 

C 

50 

660 
680 

ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE 
DIFFERENTIAL EQUATION: 

THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE 
DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*) 
IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLED 
BY THE FLAG IUT). 

DY/DX = F(X,Y) . 

DOUBLE PRECISION X, Y(20), YP(20) 
INTEGER ID, IWT, N 
DOUBLE PRECISION W (20) 
COMMON /STCOMS/W, IWT, N, ID 
DOUBLE PRECISION SUM, CPARM(4), YTEMP(20) 
INTEGER I, IID 
DATA CPARM/l.D-1, 1.D0, 1.D1, 2.D1/ 

IF (IUT.LT.0) GO TO 40 
DO 20 I = 1, N 

YTEMP(1) = Y(I) 
Y(I) = Y(I)*W(I) 

CONTINUE 
IID = MOD(ID.10) 

ADAPTED FROM PROBLEM C2 
YP(1) = -Y(1) + 2.DO 
SUM = Y(l)*Y(I) 
DO 50 I = 2, N 

YP(1) = -lO.ODO*I*Y(I) + CPARM(IID-I)*(2**I)*SUM 
SUM = SUM + Y(I)*Y(I) 

CONTINUE 

IF (IWT.LT.0) GO TO 680 
DO 660 I = 1, N 

YP(1) = YP(I)/W(I) 
Y(I) = YTEMP(1) 

CONTINUE 
CONTINUE 
RETURN 
END 

Most software for the numerical solution of stiff systems of ODES requires the user to supply a subroutine 
for the Jacobian of f with respect to y. Such a subroutine can easily be generated by ADIFOR. For the 
purposes of automatic differentiation, the vector Y is the independent variable, and the vector YP is the 
dependent variable. Then ADIFOR produces 

C 
C ADIFOR: runtime gradient index 

subroutine g,fcn2(g,p-, m, x, y, g-y, ldg-y, yp, g-yp, ldg-yp) 

integer g-p- 
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C 

C 

C 

ADIFOR: translation time gradient index 
integer g-pmax- 
parameter (g-pmax- = 20) 
ADIFOR: gradient iteration index 
integer g-i- 

C 
C 

C 
C 

C 

C 

C 

C 
C 

integer ldg-y 
integer ldg-yp 
integer n 
double precision x, y(d, yp(m) 
integer id, iwt 
double precision ~(20) 
common /stcom5/ w, iwt, n, id 

ADIFOR: gradient declarations 
double precision g-y(ldg-y, m), g-yp(ldg-yp, m) 
if (g-p- .gt. g-pmax-) then 
print *, “Parameter g-p is greater than g-pmax.” 
stop 

endif 

return 
call g-fcn(g-p-, x, Y, g-y, ldg-y, yp, g-yp, W-YP) 

end 

ADIFOR: runtime gradient index 
integer g-p- 
ADIFOR: translation time gradient index 
integer g-pmax- 
parameter (g-pmax- = 20) 
ADIFOR: gradient iteration index 
integer g-i- 

integer ldg-y 
integer ldg-yp 
ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE 
DIFFERENTIAL EQUATION: 
DY/DX = F(X,Y) . 
THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE 
DIFFERENTIAL EqUATION IS SCALED BY THE WEIGHT VECTOR W(*) 
IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLED 
BY THE FLAG IWT). 
double precision x, y(20), yp(20) 
integer id, iwt, n 
double precision w(20) 
common /stcom5/ w, iwt, n, id 
double precision sum, cparm(41, ytemp(20) 
integer i, iid 
data cparm /l.d-1, l.dO, l.dl, 2.dl/ 

ADIFOR: gradient declarations 
double precision g-y(ldg,y, 201, g-yp(ldg-yp, 20) 
double precision g-sum(g-pmax-) , g,ytemp(g-pmax-, 20) 
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C 

C 

20 
99999 
40 
C 
C 

C 

C 

C 

i f  (g-p- . g t .  g-pmax-) then 
p r i n t  *, "Parameter g-p is grea te r  than g-pmax." 
s t o p  

endif 
i f  ( i u t  .It. 0) then 

endif 
do 99999, i = 1, n 

goto 40 

ytemp(i) = y ( i >  
do g-i- = 1, g-p- 

g-ytemp(g-i-, i) = g-y(g-i-, i) 
enddo 
ytemp(i) = y ( i )  

do g-i- = 1, g-p- 

enddo 
y ( i >  = y ( i )  * u ( i >  
continue 

y ( i )  = y ( i )  * w ( i )  

g-y(g-i-, i) = rrW * g-y(g-i-, i) 

continue 
i i d  = mod(id, 10) 
ADAPTED FROM PROBLEM C2 
yp(1) = -y( l )  + 2.d0 
do g-i- = 1, g-p- 

enddo 
yp(1) = -y( l )  + 2.d0 

g-yp(g-i-, 1) = -g-y(g-i-, 1) 

sum = y(1) * y(1) 
do g-i- = 1, g-p- 

enddo 

do 99998, i = 2, n 

g-sum(g-i-) = y ( i )  * g-y(g-i-, 1) + y(1)  * g-y(g-i-, 1) 

sum = y(1) * y(1) 

yp( i )  = -10.0d0 * i * y ( i )  + cparm(iid - 1) * (2 ** i) * sum 
g-yp(g-i-, i) = cparm(iid - 1) * (2 ** i) * g-sum(g-i-) + -1 

do g L  = 1, g-p, 

*O.OdO * i * g-y(g,i-, i) 
enddo 
yp(i)  = -10.0d0 * i * y ( i )  + cparm(iid - 1) * (2  ** i )  * sum 
sum = sum + y ( i )  * y ( i )  

g-sum(g-i-) = g-sum(g-i-) + y ( i )  * g-y(g-i-, i) + y ( i )  * g-y 
do g-i- = 1, g-p- 

*(g-i-, i) 
enddo 
sum = sum + y ( i )  * y ( i )  

50 continue 
99998 continue 

C 

i f  ( i u t  .It. 0) then 

endif 
do 99997, i = 1, n 

goto 680 

yp( i )  = yp( i )  / a ( i )  

g-yp(g-i-, i) = (1  / u ( i ) )  * g-yp(g-i-, i) 
do g-i- = 1, g-p- 

enddo 
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C 
yp(i)  = yp( i )  1 u ( i )  

y ( i )  = ytemp(i) 
do g-i, = 1 ,  g-p- 

g-y(g-i-, i) = g-ytemp(g-i-. i) 
enddo 
y ( i )  = ytemp(i) 

660 continue 
99997 continue 
680 continue 

end 
return 

The derivative objects g-y and g-yp are declared as matrices with 20 columns (since both y and yp were 
declared as vectors of length 20) and leading dimension ldg-y and ldg-yp, respectively. The parameter g-p 
denotes the actual length of the gradient objects in a call to g fcn2 .  Since Fortran 77 does not allow dynamic 
memory allocation, derivative objects for local variables are statically allocated with leading dimension 
pmax, whose value was selected by the user during the invocation of ADIFOR. A variable and its associated 
derivative object are treated in the same fashion; that is, if x is a function parameter, so is g-x. Derivative 
objects corresponding to locally declared variables or variables in common blocks axe declared locally or in 
common blocks as well. 

Subroutine g f c n 2  relates to the Jacobian 

as follows: Given input values for g-p-, m ,  x, y, g-y, ldg-y, and ldg-yp, the routine g f c n 2  computes 
both yp and g-yp, where 

The superscript T denotes matrix transposition. The user must allocate g-yp and g-y with leading dimensions 
ldg-yp and ldg-y that are at least gp-. While the implicit transposition may seem awkward at first, this is 
the only way to handle assumed-size arrays (like real a(*)) in subroutine calls. 

Assume that m and g-p are 20 and that ldg-yp and ldg-y are at least 20. Then we can compute the 
derivative matrix Jyp simply by initializing g-y to the identity: 

T T  
g-yp ( 1 : g-p-, 1 : m) = ~ (Jy,(g-y(l : g-p-, 1 :m) )) . 

************** 
* Approach 1 * 
************** 

DO 10 I = 1, M 
DO 5 J = 1, M 

G-Y(I,J) = O.OD 
5 CONTINUE 

G-Y(I.1) = 1.ODO 
10 CONTINUE 

c a l l  g,fcn2(20, m, x ,  y,  g-y, Idg-y, yp, g-yp, ldg-yp) 

On exit from g f c n 2 ,  the variable g-yp contains the transpose of the Jacobian J y p .  Note that for this program 
to work, g f c n 2  must have been generated with AD-PMX at least 20. 

Alternatively, we could have computed the Jacobian one column at a time: 

************** 
* Approach 2 * 
************** 

DO 10 I = 1 ,  M 
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* 
* 
* 

5 

* 
* 
* 
* 
* 
* 

15 

i n i t i a l i z e  f i r s t  rov of G-Y t o  i - t h  un i t  vector  

DO 5 J = 1, M 

CONTINUE 
G-Y(l,I) = 1.ODO 

call  ADIFOR-generated der iva t ive  code 

call  g_fcn2(1, m, x, y, g-y, Idg-y, YP, g-yp, 1dg-n )  

s t o r e  i t h  column of t h e  Jacobian i n  i t h  roo of Jactrans 

DO 15 J = 1 , M  

CONTINUE 

G - Y ( l , J )  = O.OD 

JACTRANS(1,J) = G-YP(l , J )  

a r ray  

10 CONTIm 

Even though g-yp(i, j )  as computed in Approach 1 equals jactrans(i, j )  computed in Approach 2, 
the second method is significantly less efficient. This inefficiency arises from the fact that the value of yp 
itself is computed once in the first approach, but m times in the second approach. Thus, it is usually best to 
compute as large a slice of the Jacobian as memory restrictions will allow. However, in this case, A D J M A X  = 
1 is sufficient, and, as a result, the memory requirements of the ADIFOR-generated code can be expected 
to be more modest, roughly 1/20th of the memory requirements of the previous code. In this fashion, the 
ADIFOR interface provides a mechanism for accomodating memory/runtime tradeoffs. An example of a 
parallel “derivative stripmining” technique based on this approach is presented in [SI. 

A.3 Case 2: Dense Jacobian, multiple independent and 
multiple dependent variables 

The second example involves a code that models adiabatic flow [19], a commonly used module in chemical 
engineering. This code models the separation of a pressurized mixture of hydrocarbons into liquid and vapor 
components in a distillation column, where pressure (and, as a result, temperature) decrease. This example 
was communicated to us by Larry Biegler of Carnegie-Mellon University. 

In its original version, the top-level subroutine 

subrout ine a i f l ( k f )  
in teger  kf 

has only one argument. All other information is passed in common blocks. For demonstration purposes, we 
changed the interface slightly to 

subroutine aifl(kf,feed,pressure,liquid,vapor) 
in teger  kf 
real feed(*) ,  pressure(*) ,  l iqu id(*) ,  vapor(*) 

copying the values passed in those arguments into the proper common blocks in a i f  1. As our first example, 
assume that we are interested in and ’. In this case, ADIFOR generates 

‘Actually, it is sufficient to compute one or the other, since, because of conservationlaws, + equals 
the identity matrix. 
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subroutine g-aifl(g-p-, k f ,  feed,  g-feed, ldg-feed, pressure,  
$ l i q u i d ,  g- l iquid,  ldg-l iquid,  
$ vapor, g-vapor , ldg-vapor) 

in teger  g-p-, k f ,  ldg-feed, ldg-liquid,  ldg-vapor 
r e a l  feed(*),  g-feed(ldg-feed,*), pressure(*) ,  

$ l iqu id(*) ,  g-liquid(ldg,liquid,*) , 
$ vapor(*), g-vapor(ldg-vapor,*) 

In our example, the feed was a mixture of the hydrocarbons N-butane, N-pentane, 1-butene, cis-2-butene, 
trans-Pbutene, and propylene, so the length off eed, l iqu id ,  and vapor was six, with f ead(1) corresponding 
to the N-butane feed, and so on. If we set g-p-=6 and initialize g-feed to a 6 x 6 identity matrix, then on 
exit g l i q u i d ( i ,  j) contains 

a (component j in liquid) 

which predicts by what amount the liquid portion of substance j will change if the feed of component i 
changes. 

Suppose that we also wish to treat the pressure at the various inlets as being independent, and (because 
of the conservation law) decide not to declare ”vapor” as being dependent, ADIFOR generates 

(component i in feed) ’ 

subroutine g-aifl(g-p-, k f ,  feed,  g-feed, ldg-feed, 
$ pressure,  g-pressure, ldg-pressure, 
$ l i q u i d ,  g-l iquid,  ldg-l iquid,  vapor) 

The initialization is a little more complicated this time. Assuming that we have 3 feeds (so pressure has 
three elements), the total number of independent variables is 6 + 3 = 9. g-liquid measures the sensitivity 
of the 6 substances with respect to changes in the 9 independent variables. Thus, 

a liquid a liquid 
a pressure ’ a feed Jliquid = 

is a 6 x 9 matrix. ADIFOR computes 

If we wish to compute the whole Jacobian J, then 

g f e e d T  
g-pressureT 

must be initialized to a 9 x 9 identity matrix. Thus, g-feedT must contain the first six rows of a 9 x 9 
identity matrix (since there are six variables in the feed), and g-pressureT must contain the last three rows 
of a 9 x 9 identity matrix. This configuration is achieved by initializing 

g f e e d  = 

/ 1 0  0 0 0 0 
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  

‘ 0 0 0 0 0 0  
0 0 0 0 0 0  

~ 0 0 0 0 0 0  

, and g-pressure = 

0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
1 0 0  
0 1 0  
0 0 1  
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A.4 Case 3: Sparse Jacobian, one independent, one depen- 
dent variable 

From the previous discussion, ADIFOR may seem to be well suited for computing dense Jacobian matrices, 
but rather expensive for sparse Jacobians. A primary reason is that the forward mode of automatic differen- 
tiation upon which ADIFOR is mainly based (see [4]) requires roughly g-p- operations for every assignment 
statement in the original function. Thus, if we compute a Jacobian J with n columns by setting g-p- = n, 
its computation will require roughly n times as many operations as the original function evaluation, inde- 
pendent of whether J is dense or sparse. However, it is well known [8, 121 that the number of function 
evaluations that are required to compute an approximation to the Jacobian by finite differences can be much 
less than n if J is sparse. Fortunately, the same idea can be applied to greatly reduce the running time 
of ADIFOR-generated derivative code as well. This section suggests a technique for exploiting sparsity in 
derivative computions if the sparsity pattern i s  known a priori. Appendix C describes the the SparsLinC 
library, which, in conjunction with ADIFOR 2.0, allows exploitation of sparsity without a priori knowledge, 
and even computes the sparsity pattern of the Jacobian as a byproduct of the derivative computation. 

The idea is best understood with an example. Assume that we have a function 

F =  [ i )  : x E R 4 - y ~ R 5  

f5 

whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown): 

That is, the function f1 depends only on X I ,  fi depends only on 21 and x4, and so on. The key idea in 
sparse finite difference approximations is to identify structurally orthogonalcolumns j i  of J- that is, columns 
whose inner product is zero, independent of the value of 2. In our example, columns 1 and 2 are structurally 
orthogonal, and so are columns 3 and 4. This means that the set of functions that depend nontrivially on 
X I ,  and the set of functions that depend nontrivially on xz are disjoint. 

To exploit this structure, recall that ADIFOR (ignoring transposes) computes J . S, where S is a matrix 
with g-p- columns. For our example, setting S = 1 4 x 4  will give us J at roughly four times the cost of 
evaluating F, but if we exploit the structural orthogonality and set 

the running time for the ADIFOR code is roughly halved. Note that the ADIFOR-generated code remains 
unchanged. 

As a more realistic example, we consider the swirling flow problem, part of the MINPACK-2 test problem 
collection [2], which was made available to us by Jorge Mor6 of Argonne National Laboratory. Here we 
solve a nonlinear system of equations F ( z )  = 0 for F : R" + R". The swirling flow code has the form 

subroutine dsuirl3(nxmax,x,fvec,fjac,ldfjac,job,eps,nint) 
in teger  nxmax, l d f j a c ,  job,  n i n t  
double prec is ion  x(*),  fvec(*) , f j a c ( l d f j a c , * ) ,  eps 

Like all codes in the MINPACK-2 test collection, it is set up to compute the function values (in fvec) and, 
if desired, the analytic first-order derivatives (in f jac)  as well. The vectors x and fvec are of size nxmax = 
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14*nint. For example, for n i n t  = 4, the Jacobian of F is of size nxmax = 56 and has the structure shown 
in Figure A.1. 

Figure A.l. Structure of the swirling flow Jacobian, n = 56 

The derivative subroutine produced by ADIFOR is 

subroutine g-dsvrl3 (g-p-, nxmax, X ,  g,x, ldg-x, 
$ 
$ 

f vec , g-f vec , ldg-x, 
f j a c ,  l d f j a c ,  1, eps,  n i n t )  

If we initialize g_x to a 56 x 56 identity matrix, and let g-p-=56, and if l d g i  is at least 56, then on exit 
from g-dswrl3, g f v e c  will contain the transpose of E, stored as a dense matrix. As it turns out, less 
than 7 % of the total operations performed with gradient objects in the ADIFOR code involve nonzeros. On 
the other hand, by using a graph-coloring algorithm designed to identify structurally orthogonal columns 
(we used the one described in [7]), we can determine that this Jacobian can be grouped into 14 sets of 
structurally orthogonal columns, independent of the size of the problem. In our example, columns 1, 16, 
31, and 51 were in the first group; columns 2, 17, 37, and 43 were in the second group; and so on. We can 
take advantage of this fact by initializing the first column of g_xT such that it has 1.0 in rows 1, 16, 31, and 
51; by initializing the second column of g X T  such that it has 1.0 in rows 2, 17, 37, and 43; and so on. The 
structure of g_xT thus initialized is shown in Figure A.2 together with the resulting compressed Jacobian 
g-fvecT. Note that instead of g-p-= 56 we now can get by with g-p-= 14, a sizeable reduction in cost. 

Assuming that c o l o r ( i )  is the “color” of column i of the Jacobian and that nocolors is the number of 
colors (in our example we had 14 colors), the following code fragment properly initializes g-x, calls g-dsurl3 
to compute the compressed Jacobian, and then extracts the Jacobian. 

n = 14*nint 
do i = 1, n 

do j = 1, nocolors 

enddo 
g,x(color( i ) , i )  = 1 

g-x ( j , i )  = 0 

enddo 

cal l  g-dswrl3 (nocolors, nxmax, xI g-x, pmax, 
+ fvec, g-fvee, pmax, 
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Figure A.2. Left: Structure of ( g x ) T  Right: Structure of (g_fvec)T 
I 

+ fjac, ldfjac, 1, eps, nint) 
c 
C dsvrl3. 

job = 1 indicates that only the function value is to be computed in 

c 
C and FALSE othervise. 

nonzero(j,i) is TRUE if the (j,i) entry in the Jacobian is nonzero, 

do i = 1, n 

if (nonzero (j , i) ) then 

else 

endif 

do j = I, n 

jac(j ,i) = g-fvec(color(i), j) 

jac(j,i) = 0.0 

enddo 
enddo 

Experimental results using this approach on a suite of problems from the MINPACK test set collection 
are presented in [3]. 

A.5 Case 4: Sparse Jacobian, two independent variables, 
one dependent variable 

The coating thickness problem, conveyed to us by Janet Rogers of the National Institute of Standards and 
Technology, presents many alternatives for using ADIFOR-generated subroutines. The code for this problem 
is (in abbreviated form) shown below: 

SUBROUTINE fun(n,m,np,nq, 
+ beta,xplusd,ldxpd, 
+ f .ldf) 

c Subroutine Arguments 
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C =E> n 
C ==> 1 
C ==> np 
C ==> nq 
C ==> beta 
C ==> xplusd 
C ==> ldxpd 
C <== f 

C ==> ldf 

number of observations 
number of columns in independent variable 
number of parameters 
number of responses per observation 
current values of parameters 
current value of independent variable, i.e., x + delta 
leading dimension of xplusd 
predicted function values 
leading dimension of f 

c Variable Declarations 
INTEGER i,j,k,ldf,ldxpd,m,n,np,nq,numpars 
INTEGER ia, ib 
DOUBLE PRECISION beta(np) ,f (ldf ,nq) .xplusd(ldxpd,m) 

double precision par(20) ,fn(2) 

do 10 k=l,np 
par(k) = beta(k) 

10 continue 

do 100 i=l,n 
do 20 j=l,m 

par(np+j) = xplusd(i,j) 
20 continue 

c compute function values (fn) given parameters (par) 
call fnc(par,fn) 

100 continue 
return 
end 

subroutine fnc(x,fn) 
integer m,np,nq 
parameter (np=8,m=2,nq=2) 
integer i 
double precision x(np+m) ,fn(nq) 
double precision betahp) ,xplusd(m) 

do 10 i=l,np 
beta(i) = x(i) 

10 continue 
do 20 i=l,m 

xplusd(i) = x(np+i) 
20 continue 

c compute first of multi-response observations 

fn(1) = beta(1) 
+ bet a (2 *xplusd (1 + 
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2 0  
3 0  
4 0  
0 5  
0 6 ’  
0 7  
0 8  
9 10 

April 29, 1995 

+ 
+ 

+ beta (3  ) *xplusd (2) 
+ beta(4) *xplusd (1 *xplusd (2) 

c compute second of multi-response observations 

fn(2) = beta(5) 
+ 
+ 
+ + beta(8)*xplusd(l)*xpl~~d(2) 

+ beta ( 6 )  *xplusd ( 1 ) 
+ beta (7 *xplusd (2) 

return 
end 

The special format of this code is due to its embedding in the ODRPACK software for orthogonal distance 
regression. We are interested in the derivatives off with respect to the variables beta and xplusd. We shall 
explore various ways to do this in some detail. 

A.5.1 Approach 1 - Generate derivatives only for fnc 
The easiest approach is to generate the derivative code only for fnc, since it is clear from the code that 
f (i,1:2) depends only on beta(1:np) and xplusd(i,l:m). ADIFOR then produces 

subroutine g-f nc (g-p- , x , g-x, ldg-x, fn, g-fn, Idg-fn) 
integer m, np, nq 
parameter( np = 8, m = 2, nq 
double precision x(np+m) , fn(nq) , g-x(ldg-x,np+m) 

2) 
g-fn(ldg-fn,nq) 

If inside fun we replace the call to fnc with a call to g-fnc, always initializing g-x to a 10 x 10 identity 
matrix before the call, then 

g-fn(k, j) = af(i’j) k = 1 , .  . . 8 , j  = 1’2. a beta(k) ’ 
and 

IC = 9, lO g-fn(k,j) = a f(i, j) 
a xplusd( i, k - np) ’ 

Closer inspection reveals that the 10 x 2 array gfn always has the following structure (numbers are used 
to uniquely identify nonzero elements): 

In other words, fn(i,l? depends only on beta(l:4), and fn(i,2) depends only on beta(5:8). Hence, we 
can compute a compressed version of gfn at reduced cost by merging rows 1 and 5, 2 and 6, 3 and 7, and 5 
and 8 of g-fn. Keeping in mind that gfn is the tmnspose of the Jacobian, this is an especially simple case 
of the compression strategy outlined in the preceding section. This is achieved by initializing 
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which results in 

g-x = 
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' 1  0 0 0 1 0  0 0 0 0 
0 1 0 0 0 1 0 0 0 0  
0 0 1 0 0 0 1 0 0 0  
0 0 0 1 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 1  

9 10 
11 12 

g-fn = 

All the nonzero values of the Jacobian are now computed at roughly 60% of the cost of the previous approach. 
On a SPARC-compatible Solbourne 5E/900 with a clock resolution of 0.01 seconds, executing fun took 

0.01 seconds, computing derivative values using g-fnc without compression took 0.06 seconds, and exploiting 
the structure of g f n  through the initialization of glc shown above reduced that time to 0.03 seconds. 

A.5.2 Approach 2 - Generate derivatives for fun 
An alternative method of applying ADIFOR is to process subroutine fun. ADIFOR detects the interpro- 
cedural data dependence between fun and fnc  and therefore generates g f u n  as well as g-fnc, with g-fnc 
called properly within g-fun. We obtain 

subroutine g-f un(g,p- ,n,m,np ,nq, beta,g_beta,ldg_beta, 

in teger  g-p-, n ,  m ,  np, nq, ldg-beta,ldg-xplusd,ldx~d,~dg-f~ldf 
double prec is ion  betacnp) , g-beta(ldg,beta,np) , 

$ xplusd(ldxpd,m) , g-xplusd(ldg_xplusd,ldxpd7m), 
$ f ( ldf  ,nq) g-f (ldg-f , ldf  ,nq) 

$ xplusd,g~xplusd,ldg_xplu~d,ldxpd,f,g~f,ldg,f~~df) 

Now we have three-dimensional derivative objects, which somewhat complicates the initialization of g-xplusd 
and the interpretation of the results in g f .  However, this is not too difficult if we keep in mind that we 
wish to initialize 

g-bet aT ( g-xplusdT ) 
to an identity matrix. The number of elements in xplusd is n*m, and the number of elements in be ta  is np. 
For the coating thickness problem, n=63, m=2, and np=8. Hence, the identity matrix should be 134 x 134. 
This is also the value we shall use for g-p-. Initialization of g-beta follows the scheme outlined in Section A.3; 
that is, the first 8 rows should be an 8 x 8 identity matrix, and the remaining 126 rows should be initialized 
to zero. How to initialize g-xplusd is less readily apparent, for it is not immediately obvious how to form 
a 126 x 126 identity matrix from a three-dimensional structure. However, if one looks at the way Fortran 
stores two-dimensional structures in memory, a simple scheme for storing the Jacobian develops. In Fortran, 
element ( j ,  i) in an n x na array is stored as if it were element n * ( z  - 1) + j of a one-dimensional array. 
Thus,'we can apply this technique to map the 126 columns of the Jacobian that should be initialized to the 
identity onto g-xplusd. Specifically, element (np + k, j ,  i )  is initialized to 1 if and only if k = 63 * ( z  - 1 )  + j .  
The following code segment accomplishes this initialization. 

c n=63, mS2, np=8 
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g-beta = 
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0 1  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
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0 
0 
0 
0 
0 
0 
0 
0 

g-p- = np + m*n 
do 44 i = I, np 

do 144 j = 1, g-p- 
g ,beta( j , i )  = 0.0 

144 continue 

44 continue 
g-be ta( i , i )  = 1.0 

do 45 i = 1, m 
do 145 j = 1, n 

do 245 k = I ,  g-p- 
g,xplusd(k,j ,i) = 0.0 

245 continue 

145 continue 
45 continue 

g-xplusd(np+((i-l)*n)+j,j,i) = 1.0 

- - 

When initialized in this manner, ADIFOR computes 

0 
0 
0 
0 
0 
0 
0 
1 

T 

gf= (Jf = (&5-)) . 
However, the performance of this approach is poor, since we totally ignore the sparsity structure of the 
Jacobian. As a result, the computation of Jf takes 0.77 seconds on a Solbourne 5E/900. A better way 
to find the Jacobian of f using g-fun is to take note of the structures used by fun. From this, it becomes 
obvious that a is nonzero only when i = k. As a consequence, we may change the 

g-p = np + m*n 

g-xplusd(np+ ( (i-1) *n) +j , j , i) = 1.0 
. . .  

to the much simpler 

g-p = np + m 
. . .  
g-xplusd(np+i, j , i) = 1.0 

with the understanding that g-f (np+i, j ,k) (i = I . .m) represents -1. This is equivalent to initializing 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

0 0  
0 0  
0 0  
1 0  
0 1  
0 0  
0 0  
0 0  
0 0  
0 0  

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

, and g-xplusd[n] 

This implementation is much more efficient than that described in the preceding paragraph and more closely 
mimics the behavior of the original subroutine fun. As a consequence, the time required to execute g-fun 
using this initialization is 0.07 seconds. 
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As discussed in Section A.5.1, only half of the derivatives of f with respect to be ta  are nonzero. Specif- 
ically, f i  is nonzero for j = 1..4 and zero for j = 5..8, while e is zero for j = 1..4 and nonzero for 
j = 5..8. This information can be used to further compress the Jacobian. The initialization 

' l J  , and grplusd[n]= 1; ;J 
0 0 0 0 0 0 0 0  I 0 0 0 0 0 0 0 0  

g-beta = 
\ I 0 1 0 0 0 1 0 0  

1 0 0 0 1 0 0 0  1 0 0 0 1 0 0 0  0 0  
0 1 0 0 0 1 0 0  

0 0 0 1 0  0 0 ' l ]  , and grplusd[n]= 

0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  [ a  ;j 

compresses the Jacobian into only 6 columns. Columns 1 through 4 represent the nonzero derivatives of 
f with respect to beta,  while columns 5 and 6 correspond to the derivatives of f [i, jl with respect to 
xplusdCi ,1. .21, as above. This initialization may be accomplished with the following code fragment. 

c ~ 6 3 ,  m=2, np=8 
halfnp = 4 
g-p- = 4 + 
do 44 i = 1, halfnp 

do 144 j = 1, g-p- 
g-be ta( j , i )  = 0 . 0  
g,beta(j , i+halfnp) = 0 .0  

144 continue 
g,beta( i , i )  = 1.0 
g,beta(i , i+halfnp) = 1.0 

44 continue 
do 45 i = 1, m 

do 145 j = 1, n 
do 245 k = 1, g-p, 

g-xplusd(k, j , i )  = 0 . 0  
245 continue 

145 continue 
45 continue 

g-xplusd(halfnp+i,j , i)  = 1.0 

This approach is efficient, capable of computing all derivatives in 0.03 seconds. However, it has the disad- 
vantage that the initialization routine might have to be changed if fnc or np is altered. 

A.6 Computing Gradients of Partially Separable Functions 
A particular class of functions that arises often in optimization contexts is that of the so-called partially 
separable functions 19, 14, 15, 16, 171. That is, we have a function f : Rn -+ R that can be expressed as 

n f  

a= 1 

Usually each f, depends on only a few (say, n i )  of the z's, and one can take advantage of this fact in 
computing the (sparse) Hessian o f f .  

As was pointed out to us by Andreas Griewank, now at the University of Dresden, this structure can be 
used advantageously in computing the (usually dense) gradient V f of f .  

Assume that the code for computation of f looks as follows: 

subroutine f (n ,x , fva l )  
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integer n 
real x(n), fval, temp 
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fval = 0 

call fl(n,x,temp) 
fval = fval + temp 

...... 
call fnb(n,x, temp) 
fval = fval + temp 

return 
end 

If we submit f to ADIFOR, it generates 

To compute Of, the first (and only) row of the Jacobian of f ,  we set g-p- = n and initialize g-x to a n x n 
identity matrix. Hence, the cost of computing Vf is of the order of n times the function evaluation. 

As an alternative, we realize that with f : R" 4 Rnb defined as 

we have the identities 
T f(z) = e T g ( z ) ,  and hence Vf(z) = e J g ,  

where e is the vector of all ones, and Jg is the Jacobian of g. We can get the gradient o f f  by computing Jg 
and adding up its rows. The corresponding code fragment for computing f is 

subroutine f (n , x , f Val) 
integer n 
real x(n) 

integer nf, i 
parameter (nf = <whatever>) 
real gval(nf) 

call g(n,x,gval) 

fval = 0 
do i = 1,nb 

enddo 
fval = fval + gval(i) 

return 
end 

It may not appear that we have gained anything, since Jg is nf x n. If we initialize g-x in 
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to an n x n identity matrix, then the computation of Jg still takes about n times as long as the computation 
of 9 (01 f). 

The key observation is that the Jacobian J ,  is likely to be sparse, since 

and each of the fi’s depends only on ni of the z’s. By using the graph coloring techniques described in 
Section A.4, we can compute Jg at a cost that is proportional to the number of columns in the compressed 
Jg, and then add up its (sparse) rows. As a result, we can compute Of a t  a cost that is potentially much 
less than n times the evaluation of f. Alternatively, we can employ the SparsLinC library (see Appendix 
C), which will exploit sparsity even if the Jacobian contains a few dense rows (in this case, its chromatic 
number is n, and nothing has been gained). 
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ADIntrinsics 1.0: Exception 
Handling Support for ADIFOR 
2.0 

B. l  Introduction 

B.l . l  What Is an Exception? 
In ADIFOR parlance, an “exception” is an event that occurs when an elementary function is evaluated at 
a point where the function result is defined, but the derivative is not. For instance, the square root of zero 
is zero, but the derivative of the square root function at zero is not defined. 

For most functions, there are several reasonable interpretations of what should be done when an exception 
occurs. ADIFOR 2.0 is programmed to choose one of those, but only a human can decide whether this choice 
is the correct one for any given instance. When an exception occurs, you should examine your code to make 
sure that ADIFOR 2.0 has done something reasonable in your case. 

A discussion for different approaches for handling exceptions as well as the choice of default values for 
exceptional situations is discussed in [5 ] .  

B.1.2 What Code Is Needed? 
If you are not interested in customizing the exception handler in your program, you need only make sure that 
you call the routine ehrpt  (for exception handler report) to report any exceptions that may have occurred. 
This call should occur after all of the ADIFOR 2.0-generated code has run. A good place for it is right after 
your top-level subroutine. 

program main 
E . .  -1 
call ADIFOR,GENERATED,CODE 0 
c.. .I 
c a l l  EHRPT 
return 
end 

In addition, one file and one library must be added to your link step. These are 

1. the file $AD-HOME/lib/ReqADIntrinsics-$AD-ARCH. 0 ,  and 
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2. the library $AD-HOME/lib/libADIntrinsics-$AD-ARCH .a. 

A sample link line may appear as follows: 

f77  -0 executable sub.0 main.0 \ 
$AD-HOME/lib/ReqADIntrhsics-$AD-mCH. o \ 
-L$AD-HOME/lib -1ADIntrinsics-$AD-ARCH 

B .2 Redirecting Exception Handler Output 
To direct the exception handler output to a different unit, open the unit in your driver program, and then 
call ehsup with two parameters: -1, and then the unit number. The driver is also responsible for closing this 
unit before the program terminates. Failure to do so may result in a loss of output that has been buffered 
but not written to the file. 

call  ehsup (-1, UNIT-NUMBER) 

A segment of the user code might resemble this fragment. 

open (UNIT=13, FILE=’adifor-errors.out’) 
call  ehsup (-1, 13) 
I.. .  Useful Work . , . I  
c l o s e  (13) 

B.3 Purse and Exception Handler Templates 
To provide a flexible means of customization of the exception handling mechanism in ADIFOR 2.0, we have 
split derivative code generation into two components - ADIFOR 2.0 generates code containing invocations 
of “templates,” which are then expanded into explicit Fortran code by the purse postprocessor. To users, 
these two components look like a single step, since ADIFOR 2.0 invokes purse directly. 

By default, purse expands templates based on the set of template definitions stored in files in the 
directory $AD-HOMWtemplates. If necessary, users can create new templates or modify default ones as 
necessary. In order to modify default templates, all that is necessary is to place the modified template into a 
directory (say ‘new-templates’, or the current directory, ‘.’). ADIFOR 2.0 must then be instructed where to 
find the new template file by setting the AD-TEIPLATEDIR option to be the name of the directory containing 
the new template file. 

The user can customize the exception handling in several different ways: 

1. By directing ADIFOR 2.0 to use the verbose, counting, terse, or performance exception handling mode 

2. By setting the exception handling mode on a fine-grained level. 
3. By ignoring exceptions in a particular region of code. 

4. By changing the values returned by the exception handler. 

5. By overriding the template expansion for a particular intrinsic with a user’s own template, locally. 

6. By overriding the template expansion for a particular intrinsic with the user’s own template, globally. 

Each of the mechanisms is now described. 

for error reporting. 
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B.3.1 Exception Handler Modes 
The exception handler operates in four modes: verbose, counting, terse, and performance. In verbose mode, 
every time an exceptional condition occurs, a message is written to the program’s error unit (unit number 
zero, which usually outputs to the screen) indicating the function, the arguments to the function, and the 
file name and line number containing this function evaluation. This information allows one to track down 
exactly where the exception is occurring and decide whether it is generating appropriate results. Counting, 
terse, and performance modes provide a decreasing amount of information about exceptions that occur. 

Counting mode maintains a running total of each type of exception that occurs, as shown in Figure B . l .  

Except ionb)  occurred evaluat ing ABS : 100 t imes.  
Exception(s) occurred evaluat ing POWER: df/dx : 5 times. 
Exception(s) occurred evaluat ing ACOS f i r s t  d e r i v  : 17 t i m e s .  

Figure B.l. Counting Mode Error Report 

Terse mode indicates whether any exceptions of a given type occurred. This mode may be useful for 
vectorizing compilers, where the recurrence required for counting may inhibit vectorization. A sample terse 
mode output is given in Figure B.2. 

Except ionh)  occurred evaluat ing ABS 
Exception(s) occurred evaluat ing POWER: df/dx 
Exception(s) occurred evaluat ing ACOS f i r s t  der iv  

Figure B.2. Terse Mode Error Report 

Performance mode contains no exception checking at all. One should only use performance mode after 
running the code with another mode and being sure that no exceptions occur. Performance mode assumes 
that no exceptions occur, and may not give correct derivative information if they do occur. No report is 
made, since no exceptions are tracked. 

variable to one of: performance, t e r s e ,  counting, or verbose. 
The exception handling mode may be chosen at  the time ADIFOR 2.0 is run by setting the AD-EXCEPTION-FLAVOR 

B.3.2 Fine-Grained Control of Exception Handler Modes 
Fine-grained control over exception handler modes is achieved by embedding directives in the user’s code. 
These directives are reasonably simple to use, but a brief explanation of their syntax and some warnings 
about their use is appropriate. 

Note: These directives have a reasonably intuitive syntax: 

any comment character (C, c, or *) may be used to begin the comment line; 
0 spaces cannot appear in the middle of a keyword, but may appear around parentheses and 

commas; 
0 the directives can appear in upper or lower case, as can the keywords (arguments) given; 

and 

0 zero or more whitespace characters may appear between the comment character and the 
beginning of the directive, but no spurious “garbage” should appear in the line, even after 
column 72. 
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Warning: Directives affect only the parts of the program that are literally after them. In 
particular, a directive cannot change the mode in which an invoked procedure runs. The example 
below shows incorrect usage of the AD-EXCEPTION-LEVEL directive. 

C 

This is an incorrect use of the AD-EXCEPTION-LEVEL directive. 
it has no effect on the subroutine “slow-func“. 

AD-EXCEPTION-LEVEL(PERF0RPIANCE) 
call slow-func 
AD-EXCEPTION-LEVEL (DEFAULT) 

The verbosity level can be dynamically set with the AD-EXCEPTION-LEVEE0 directive. Valid levels are 
verbose, counting, terse, performance, and “default,” which restores the exception level to the one with which 
ADIFOR 2.0 was run. For example, to guarantee verbose exception reporting around a certain region, the 
user might use the following code: 

C AD-EXCEPTION-LEVEL(VERB0SE) 

e AD-EXCEPTION-LEVEL(DEFAULT) 
C.. . Interesting Code Here . . .I 

Warning: Terse mode is incompatible with both counting mode and verbose mode. Do not 
switch from verbose or counting mode to terse mode anywhere in your program. Doing so will 
cause the summary information reported to be incorrect. , 

B.3.3 Ignoring Exceptions in a Region 
To ignore exceptions in a region, bracket the region with the directives AD-EXCEPTION-BEGIN-IGMORE and 
AD-EXCEPTION-END-IGNORE. “Ignoring” exceptions simply means that no exceptional information is printed 
out; it  does not mean that the exception handler is disabled. Disabling the exception handler (that is, using 
performance mode) is not an option, because at .exceptional points the performance mode may return a 
value different than that returned by the exception handler. 

C 

C 

AD-EXCEPTION-BEGIN-IGNORE() 
[. . . Exceptions to be Ignored Here . . .] 
AD-EXCEPTION-END-IGNORE( ) 

Warning: These directives do not nest. This means that any AD-EXCEPTION-END-IGNORE cancels 
all previous AD-EXCEPTION-BEGIN-IGNORE commands, regardless of how many preceded the end 
ignore. 

Here is an example showing how the ignore directives do not nest. 

AD-EXCEPTION-BEGIN-IGNORE0 
[... Exceptions are Ignored Here ... 1 
AD-EXCEPTION-BEGIN-IGNORE (1 
[. . . Exceptions are Ignored Here . . .I 
AD-EXCEPTION-END-IGNORE0 
[. . e Exceptions are REPORTED Here . , .I 
AD-EXCEPTION-END-IGNORE() 
c . . .  Exceptions Continue to be Reported Here ... 1 

Note: Currently, the “ignore” mode is implemented by placing the exception handler in counting 
mode for the given region. 
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B.3.4 Setting Exceptional Values 
It is possible to override the default values for the exceptions. This overriding is precision-specific, so it is 
done through a routine ehsup*, where * is one of s, d, c, or z ,  for single, double precision, complex, or 
double complex, respectively. 

To override an exceptional value, one needs to know two facts: the integer that represents the intrinsic 
for which the exception is occurring, and the integer “offset” of the exceptional condition whose return value 
is to be altered. The integer representing the intrinsic can be found in Table B.l. Almost all intrinsics have 
only a single exceptional condition, and therefore have an offset of one. Those that do not follow this rule 
are discussed below. 

Before discussing multiple exceptional conditions, let us examine a brief example of setting an exceptional 
value. Suppose one wishes to change the exceptional value of ABS at zero (for both real and double precision) 
so that the partial derivative of ABS(x) with respect to x at zero is one. First, one would look in Table B.l 
to find that the integer representing ABS is 3. ABS has only one exceptional value, so the offset used to set 
d(ABS(z))/dz is one. Having figured out all of this information, one would use the following two calls to set 
the desired partials of ABS. 

C 

C 

Set  s i n g l e  prec is ion  p a r t i a l  of abs 
ca l l  ehsups (3,1,1. O e O )  
Se t  double prec is ion  p a r t i a l  of abs 
c a l l  ehsupd (3,l,I.OdO) 

The SQRT4CABS “function” is a dummy intrinsic generated by ADIFOR 2.0 to handle the complex ABS 
function. Let z = z + iy. The complex ABS(z) function is rewritten as 

abs(z) = SQRT4CABS(z2 + y2) 

By default, SQRT4CABS has the same exceptional behaviour as SqRT. 

Multiple Exceptional Values 
As mentioned above, not all functions have only one exceptional value. The following functions have more 
than one possible exception: SQRT, ASIB, ACOS, and POWER (POWERBASE, POWEREXP, POWERBOTH). For the first 
three, SqRT, ASIN, and ACOS, the user can set both the first and second derivatives at  the exceptional point. 
An offset of one is used for the first derivative and two for the second derivative. The POWER operator is 
more complicated, so it is explained in the next section. 

Multiple Exceptional Values: The POWER Operator 
The POWER operator for real arithmetic has two exceptional conditions, as listed below. 

1. f: for z = 0, 0 < y < 1, and 

2. fi for z < 0, or z = 0 and y = 0. 

The first condition may be set using either POWERBOTH with an offset of one, or POWERBASE with an offset of 
one. The second may be set by using POWERBOTH with an offset of two, or POWEREXP with an offset of one. 

The POWER operator for complex arithmetic has two different exceptional conditions. These are 

1. an exception occurred at  O o ,  or 
2. an exception occurred at  0’ with Re(y) < 0. 

These values are returned for all derivatives (both first and second) at the point where the exception occurred. 
The values can be set using any one of POWERBOTH, POWERBASE, or POWEREXP; they are offset one and two, 
respectively. 
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Intrinsic I Numerical Value 
AINT 1 
ANINT 
DNINT 
ABS 
MOD 
SIGN 
DIM 
MAX 
MIN 
SQRT 
POWERBASE 
POWEREXP 
POW ERBOTH 
ASIN 
ACOS 
SQRT4CABS 

2 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Table B. 1. Intrinsic Functions 

B.3.5 Overriding a Specific Instance of a Template 
The experienced user may wish to replace a given instance of an intrinsic’s exception handling template with 
their own. To do so, provide the name of the intrinsic to be overriden and the name of the new exception 
handling template to be used. For example: 

C AD,EXCEPTION~OVERRIDE,IITRINTRINSIC~BEGIN(SIN ,MYSIN) 
[. . .AD Code.. -1 
C AD,EXCEPTION,OVERRIDE_IEITRINSIC-END(SIN) 

You can either bracket the code to be overriden with BEGIN and END directives as above, or use a special 
“ONCE” directive to indicate that the overriding should only happen to the next matching intrinsic encoun- 
tered. 

C 

In addition to using this directive, you must create an exception handler template file for the new 
intrinsic, and use the AD-TEMPLATEDIR option to ADIFOR 2.0 to tell it to search the named directory before 
searching the default directory. See the next section for more information about writing templates. 

B.3.6 Replacing All Instances of a Template 
To replace all instances of a given template with another, create a template file with the same name as the 
one to be overridden and use the AD-TEMPLATEDIR option to ADIFOR 2.0 to tell it to search the named 
directory before searching the default directory. See B.4 for more information writing templates. 

B .4 Writing Templates 
Writing a template is a relatively simple process; it may well be worth your while to write a template in 
order to change the behavior of the exception handler at some point. 
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B.4.1 Filenames of the Template Files 
Each intrinsic has one or two template files: <intrinsic>. Tand (if the intrinsic supports complex arguments) 
c<INTRINSIC>.T. The *.T files contain the template for real and double precision, and the c* .T files contain 
the template for complex and double complex code. Note that many routines are meaningful only in real 
arithmetic and do not have complex counterparts. 

B.4.2 Format of the Template Files 
Each of these files wil l  be written in a very specific way so that the code will be readable to a human but 
simple for purse to modify. The code should be legal Fortran 77: it must be indented to column 7, and any 
directives should be expressed in comments. The function inputs will be denoted by x and y in the code, 
and the function result will be denoted by z. First derivatives with respect to x and y will be fx and fy, 
respectively. Second derivatives will be fxx, fxy, and fyy. No other variables can be used in the code, since 
it will be embedded in an unknown context. 

As an example, this is the template derivative code file for the square root function for real numbers. 
Note that it is correctly indented, legal (looking) Fortran 77. 

C PERFORMANCE-FVAL 
z = sqrt(x) 
if ( x .gt. 0.0 then 

C PERFORMANCE-FIRST 

C PERFORMANCE-SECOND 
‘ fx = 1.0 / (2.0 * z) 

fxx = fx / (2.0 * XI 
cal l  EXCEPTION-HANDLER 

else 

endif 

Most of the details should be obvious from this example. To generate performance mode code (with no 
error checking), we merely insert the statements that are preceded by a comment with the string “PER- 
FORMANCE” in it. The phony call to “EXCEPTION-HANDLER” is transformed into the appropriate 
exception handler call by purse. 

In a few rare cases, we actually want to generate different code for first- and second-order derivatives, 
to avoid recomputation of some quantities. In this case, we use the C preprocessor-style #ifdef FIRST, 
#if def SECOND, and #if def PERFORMANCE directives. (The #else directive will switch between the cases, as 
one would expect.) Since the file is not really processed with the C preprocessor, most of the niceties have 
been omitted as the following warning makes clear. An example of a complicated template file using these 
features is included in Appendix B.5. 

Warning: These C preprocessor style directive cannot be nested, and the only things that are 
permissible to check are FVAL, FIRST, SECOND, and PERFORMANCE. 

Note: Everything within an #ifdef PERFORMANCE branch is emitted in performance mode. The 
#else branch is emitted in an ordinary mode. If one tests #ifndef PERFORMANCE, the #else 
branch (if any) is emitted in performance mode. 

It is clear that we can generate second-order derivative code merely by copying the given code and 
making a few substitutions. To generate first-order derivative code, we omit all lines containing the strings 
fxx, fxy, or fyy. To generate function values, we put ourselves in performance mode and omit all first- and 
second-order partials. 

B.4.3 Typing Issues 
To help compilers get the correct type for numerical constants, such as 1.0, that appear in the template 
code, we allow a “macro” TYPE to appear in the code. I t  will expand to give the correct precision to the 
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number it contains. For example, given the code below, 

April 29, 1995 

f x  = TYPE(1.0) / ( x*x + y*y 

for a double-precision expansion, we output 

f x  = 1.OdO / (x*x + y*y) 

Whitespace is allowed after the TYPE and before and after the argument. For safety, we do not expand a 
lowercase type, but abort with an error. No parentheses are allowed in the parameter, but none should 
appear in a number in any case. 

Note: No complex T Y P E 0  parameters are permitted at this time. When a TYPE macro is 
expanded in a complex context, it becomes a complex number whose real part is the value given 
and whose imaginary part is zero. Also note that it is not possible to “fake” a complex number 
not of this form by writing 

(TYPE(l.O), TYPE(7.0)) 

because if this is expanded in a complex context, it will become: 

((1.0, 0.01, ( 7 . 0 ,  0 . 0 ) )  

B .5 Examples of Complicated Template Files 
Figure B.3 shows an example of a template file that produces different code for first and second derivatives. 

Figure B.4 shows an example of a template file with C preprocessor style directive that control when 
performance-mode code should be output. Recall that if a line is not preceded by a comment containing the 
string PERFORMANCE, and it is not in the “true” branch of a PERFORMANCEifdef, it is not emitted in performance 
mode. This means that if we were to move the Pifdef] so that it just enclosed the exception handler call, 
every other line would need to be preceded by a comment containing the string “PERFORMANCE. An 
example of this style is given in Figure B.5. 
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C PERFORMANCE 
z = acos(x) 

t i f d e f  FIRST 

C PERFORMANCE 

e l s e  

endif 
#endif /* FIRST */ 

i f  ( abs(x) . I t .  TYPE(1.0) ) then 

f x  = TYPE(-l.O) / sqrt  ((TYPE(l.O)-x)*(TYPE(l.O)+x)) 

c a l l  EXCEPTION-HANDLER 

t i f d e f  SECOND 

C 
C PERFORMANCE 

C PERFORMANCE 

C PERFORMANCE 

e l s e  

endif 

if ( abs(x) . I t .  TYPE(l.O) ) then 
Use fxx as  scratch space! 

fxx  (TYPE(1.0) - X) * (TYPE(1.0) + X )  

f x  = TYPE(-l.O) / sqrt ( fxx)  

fxx = x * f x  / fxx 

c a l l  EXCEPTION-HANDLER 

tendif /* SECOND */ 

Figure B.3. Template File with Cases for First, Second Derivatives 
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C PERFORMANCE 
z 3 abs(x) 

C PERFORMANCE 
fxx = TYPE(O.0) 

#ifdef PERFORMANCE 
i f  (x . g t .  TYPE(O.0)) then 

e l s e  i f  (x .It. TYPE(O.0)) then 

e l s e  

f x  = TYPE(1.0) 

f x  = TYPE(-1.0) 

C This is the  current  NoLimit defaul t  
fx = TYPE(O.0) 

C s top  ’ADIFOR Exception: x = 0 i n  abs (x ) . ’  
endif 

i f  (x . g t .  TYPE(O.0)) then 

e l s e  i f  (x .It. TYPE(O.0)) then 

e l s e  

endif 

#e lse  

f x  = TYPE(1.0) 

f x  = TYPE(-l.O) 

c a l l  EXCEPTION-HANDLER 

#endif 

C 

C 

C 

April 29, 1995 

Figure B.4. Template File with Performance-Mode Controlling Directives 

PERFORMANCE 
z = abs(x) 

PERFORMANCE 
fxx = TYPE(O.0) 

PERFORMANCE 
i f  (x . g t .  TYPE(O.0)) then 
PERFORMANCE 

f x  = TYPE(l.O) 
PERFORMANCE 
e l s e  i f  (x .It. TYPE(O.0)) then 
PERFORMANCE 

PERFORMANCE 
e l s e  

f x  TYPE(-l.O) 

#ifdef PERFORMANCE 
C This is the  current  N o L i m i t  defau l t  

C s top  ’ADIFOR Exception: x = 0 i n  abs(x) . ’  
#e lse  

f x  = TYPE(O.0) 

c a l l  EXCEPTION-HANDLER 
tendif  

Figure B.5. Template File with Performance-Mode Controlling Directives, Alternative Style 
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Appendix C 

Sparse Derivative Support for 
ADIFOR 2.0 through the 
SparsLinC 1.0 Library 

C.l  Introduction 
SparsLinC 1.0 (Sparse Linear Combinations) is a library of C routines that provide an implementation of 
the “vector linear combination”: 

k 

W = C ( l i * V i r  
. r -1  

employing sparse data structures. Here w and the v i  are vectors, the a i  are scalar 
referred to as the arity. This operation is the fundamental computational kernel for 
differentiation. 

multipliers, and k is 
first-order automatic 

SparsLinC utilizes dynamic data structures to represent only the nonzero information contained in each 
vector and performs the vector linear combinations on these sparse representations of the vectors. By doing 
so, it avoids storing zero values and performing computation with zeros, at  the cost of introducing some 
overhead associated with maintaining sparse data structures. 

One way of representing a sparse vector with nnz nonzeros in Fortran is by means of two arrays, each of 
length nnz, one an integer array containing the indices of the nonzero entries, and the other a floating-point 
array of appropriate precision, containing the corresponding values. So, for example, the 7-vector 

(11.0, 0, 33.0, 44.0, 0, 0, 77.0) 

would be represented by 

Index Array: 1 1 I 3 1  4 1  7 1  

We will refer to this 2- 

Value Array: I 11.0 I 33.0 I 44.0 I 77.0 I 
rray representation of the vector as the Fortran Sparse Format. The co - .  

responding nonsparse representation, which we will call the Fortran Nonsparse Format, would be a 
floating-point array of length 7, containing zeros in entries 2, 5, and 6. Lastly, there is the SparsLinC 
Sparse Format, which is the internal SparsLinC representation of the vector. 

In addition to reducing the space required to store derivative values and the time required to compute 
derivatives, SparsLinC is also useful for uncovering the sparsity features of a problem. For example, the 
detection of the sparsity pattern of Jacobians is of interest in a number of computations. The computation 
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of the Jacobian using SparsLinC yields the sparsity pattern of the Jacobian as a natural consequence of the 
work it does in computing the Jacobian, and thus provides all the information needed for a sparse equation 
solving routine, for example. We anticipate that this feature of SparsLinC will be further strengthened in 
future releases with the addition of diagnostic capabilities about the “sparsity behavior” of a computation. 

From the user’s point of view, using SparsLinC is very simple. Much of the task of interfacing ADI- 
FOR 2.0-generated code and SparsLinC is done automatically and is transparent to the user. Section C.5.1 
describes how to invoke ADIFOR 2.0 to generate derivative code that uses the SparsLinC library. Such code 
will be referred to as “sparse derivative code.” We will refer to derivative code generated by ADIFOR 2.0 
in the default case (i.e., with do-loop implementation of vector linear combinations, rather than calls to 
SparsLinC routines) as “nonsparse derivative code.” 

Section C.2 provides some background information necessary to understand the use of SparsLinC with 
ADIFOR 2.0. Section C.3 defines the notion of sparsity and discusses computational scenarios where sparsity 
exists and can be exploited by SparsLinC for faster, less memory-intensive code. In the tutorial example 
given in Chapter 4, Step 4 describes, for the nonsparse (default) case, how to incorporate the ADIFOR 2.0- 
generated derivative code in the derivative code driver. Section C.4 outlines how this is done in the sparse 
derivative code driver by calling the appropriate SparsLinC Access Routines. These routines are the 
subset of SparsLinC routines that allow the user to set up and configure SparsLinC, pass data to it, and 
extract results and performance measures from it. Section (3.5 describes how to build a sparse derivative 
code by using ADIFOR 2.0 and SparsLinC. Section C.6 contains detailed description of the SparsLinC access 
routines. 

c . 2  Background 
In ADIFOR 2.0, an active variable is one that lies on a dependency path from the independent to the 
dependent variables (the independents and dependents themselves are also considered to be active). Active 
variables are the ones for which we compute directional derivatives with respect to a set of (not necessarily 
normalized) directions specified via the seed matrix. In the simplest case, each unit direction is defined by 
one of the independent variables, which is equivalent to setting the seed matrix to be the identity. 

We define the term directional gradient vector to be the set of directional derivatives of any scalar 
active variable with respect to all directions specified in the seed matrix. The term scalar active variable 
here refers both to active variables declared as scalars in the user’s Fortran source code and to the individual 
elements of active variables that are declared as arrays. The directional gradient vectors appear as vector 
operands in the vector linear combinations equation (C.l). 

c .3 Where Is SparsLinC Useful? 
The main rationale for the development of SparsLinC is to make derivative computation run faster and use 
less memory. But not every problem will result in faster code if SparsLinC is used. The potential gain 
depends, to a large extent, on the inherent sparsity present in any particular derivative computation. 

C.3.1 Definition of Sparsity 
In a nonsparse representation, a directional gradient vector V would be declared as an array of length p, 
where p is the number of directions (Le., the number of columns in the seed matrix).’ We denote the number 
of nonzeros in V at a given point t during the execution by V,.,,,. The percentage of zero entries or sparsity 
of V, is defined as 

(C.4  
V,.nnz 

&.sparsity := (1 - -) * 100%. 
P 

‘For the sake Qf clarification, we note that p denotes the same quantity as the Fortran variable g-p-, used elsewhere 
in this document. 
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A good measure for the overall sparsity present in a derivative computation is the median of the 
sparsities of all directional gradient vectors during the entire execution of the derivative code. 

A necessary (but not sufficient) condition for SparsLinC to improve the runtime performance of derivative 
computation is that the number of directions with respect to which we wish to compute derivatives be 
“large”. This is perhaps an obvious, but nonetheless significant, point, since if the number of directions 
is small, directional gradient vectors will be short and any strategy to exploit sparsity will be defeated by 
the overhead associated with implementing that strategy. The determination of what is considered a large 
sparse problem is to a great extent dependent upon the nature of the problem; however, in our experience, 
the threshold at which our strategy becomes effective is 20-30 directions. 

Another important issue concerning sparsity in derivative computations is that the sparsity of the final 
result (the nonzero structure of the final directional gradient vectors of the dependents) is only a lower 
bound on the sparsity of the intermediate directional gradient vectors; that is, the overall sparsity of the 
problem may be (and often is very) much higher than that of the final derivative result. In general, sparsity 
diminishes as the computation proceeds, because for all vector linear combinations, the nonzero index set of 
the resulting left-hand-side vector is the union of index sets of the right-hand-side vectors.’ As a consequence, 
in many problems, there may be a lot of “hidden” sparsity that can be exploited by using SparsLinC. 

C.3.2 Sparse Derivative Problem Types 
The numerical computation of gradients and Jacobians is an important step in the solution of many non- 
linear problems, such as constrained optimization, mesh computations, and the solution of systems of stiff 
differential and algebraic equations. In many instances, these problems require derivative computations that 
have inherent sparsity. Two examples are gradients of partially separable functions and sparse Jacobians. 

A function is partially separable if it can be represented as 

i = l  

where m is the number of partitions, and where each component function, f i ( z ) ,  is typically a function of 
just a few of the elements of x ,  implying that each of the corresponding directional gradient vectors, Vfi(z), 
will be sparse, even though the aggregate f depends on all of x ,  leading to a dense final gradient of(.). Any 
f with a sparse Hessian belongs to this class of problem [14], regardless of whether the partially separable 
structure is expressed explicitly in the code. 

For many Jacobian computations, the final Jacobian is itself sparse, implying that there is much sparsity 
to be exploited in the intermediate computations. As discussed above, every intermediate directional gradient 
vector is at least as sparse as (and often much sparser than) the final Jacobian. 

C.4 Usage of SparsLinC Access Routines 
This section outlines the SparsLinC access routines and their use in the derivative code driver. These routines 
allow the user to set up and configure SparsLinC, pass data to it, and extract results and performance 
measures from it. 

C.4.1 About SparsLinC 1.0 Routines and Their Names 
SparsLinC provides multiprecision arithmetic support, meaning that the underlying vectors can be repre- 
sented in REAL, DOUBLE P R E C I S I O N ,  COMPLEX, or DOUBLE COMPLEX precision. The routines involving a vector 
or vectors have a prefix letter designating the “precision” of the operation. For each precision-dependent 

‘This discussion precludes the possibility of the occurrence of numerical zeros resulting from exact cancellation 
(e.g., a + (-a)) and zero multipliers. In our experience, exact cancellation rarely occurs in derivative computation, 
and currently, SparsLinC does not check for it (i.e., numerically zero vector entries are treated like nonzero entries). 
SparsLinC does, however, check for zero multipliers, and vectors with zero multipliers are not referenced. 
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SparsLinC routine, all instantiations of the routine have the same interface, meaning that they have the 
same arguments, in the same order, and with identical declarations except for the types of the vectors and 
multipliers (as an example, see the declaration of VALVEC in the definition of the [S,D,C ,ZlSPSD routines in 
Section C.6). 

Here is a summary of the naming conventions we have adopted for SparsLinC routines: 

0 The first letter will be an “S”, ”D”, “C”, uZ”, or “X” indicating, respectively, whether the routine 
manipdates vectors in REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMF‘LEXpredon or whether it 
is a nonnumeric utility routine. 

0 The second and third letters will be “SP”, to denote that the routine is in the Sparse library. 
a The last two or three letters will be an abbreviation of the task performed by the routine. 

We use the shorthand, “[S,D,C,Z] name” to refer to all four precision instantiations of a routine name. 

C.4.2 Declaration of Sparse Variables 
In Section C.2 we introduced the concept of directional gradient vectors. In the case of the nonsparse invo- 
cation of ADIFOR 2.0, these vectors are implemented as Fortran arrays. In the following examples in this 
and subsequent sections (C.4.2 - C.5.2), assume that x is the independent variable (Le., a l l  1000 entries of x 
are independent variables), f is the dependent variable, and u is an active variable we need to access in the 
derivative code driver: 

In the nonsparse case, the derivative code generated by ADIFOR 2.0 (assuming the ADIFOR 2.0 options 
AD-PREFIX and ADSEP have the default bindings of “g” and ‘‘-” ~ respectively) will contain the following 
declarations: 

REAL g-x(g-pmax,,lOOO), g-f (g-pmax-,S), g-dg-pmax-) 

By contrast, in the sparse case, the derivative code generated by ADIFOR 2.0 will contain the following 
declarations: 

Note that the Fortran interface to SparsLinC declares each directional gradient vector to be an INTEGER. 
This is because each Fortran INTEGER gradient vaxiable will be interpreted by SparsLinC to be a pointer to 
the sparse representation of the corresponding vector. 

It is usually possible to clipand-paste the declarations for the directional gradient vectors, and possibly 
the declarations of COMMON blocks that contain directional gradient vectors, from the code generated by 
ADIFOR 2.0. This is true for both nonsparse and sparse applications of ADIFOR 2.0. Just be aware that 
the declarations for the directional gradient vectors in the nonsparse and sparse codes are different. 

Parenthetically, if you want to compare the sparse and nonsparse approaches for a particular problem, it 
is often good coding practice to write one driver for both, with preprocessor directives specifying the parts 
where the two differ. For example, for the above declaration, the following code could appear in the driver: 

We use this format, wherever applicable (Le., wherever corresponding sparse and nonsparse codes are 
present), in the rest of this discussion. (On most Unix systems, filenames ending with “.F” are interpreted 
by makefiles as Fortran files with preprocessor statements. Users unfamiliar with preprocessor directives can 
consult the “man” pages for “cppn, the C preprocessor.) 
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Value Array: 11.0 33.0 I 44.0 

ADIFOR 2.0 User’s Guide 

77.0 1 
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C.4.3 Initializing and Customizing SparsLinC 
SparsLinC data structures must be initialized before any computation can be performed. To this end, the 
user must call the routine XSPINI before all other calls to any SparsLinC (except for calls to XSPCNF, which 
must precede the call to XSPINI, as described below) or ADIFOR 2.0-generated routines. XSPINI takes no 
arguments and is called as follows: 

CALL XSPINI 

The routine XSPCNF provides a means of tuning SparsLinC data structures for a particular problem at 
hand. Most sparse vectors maintained by SparsLinC are stored in what is commonly referred to as the “single 
subscript” and “compressed subscript” scheme. The single subscript scheme is the one already introduced 
in the Fortran context in Section C.l. In the compressed subscript scheme, in contrast, we keep track of 
nonzero index ranges, representing the vector of Section C.l by 

This representation is more efficient than the single-subscript representation when sparse vectors contain a 
good portion of contiguous nonzero index ranges. A contiguous nonzero index range is a range of indices 
wherein all the corresponding values are nonzeros. For example, for our vector above, the largest such range 
has size 2 and contains elements 3 and 4. This scenario commonly arises when computing Jacobians with 
banded structure or gradients of partially separable functions. SparsLinC automatically converts a vector 
from the single-subscript to the compressed-subscript representation when the number of nonzeros in the 
vector exceeds a certain threshold switchthreshold,  say. 

Either way, since the size to which vectors can grow is not known a priori, SparsLinC must provide, 
for the value and index arrays, a data structure capable of representing vectors of arbitrary size. The 
data structure currently employed in SparsLinC is a linked list of arrays each of which has a fixed number 
of entries. Let us denote this number of entries with SSbucketsize for the single subscript scheme and 
CSbucketsize for the compressed subscript scheme. 

SparsLinC allows the user to adjust these values using the XSPCNF routine. For example, the sequence 
of calls 

CALL XSPCNF(1,lO) 
CALL XSPCNF(2,SOO) 
CALL XSPCNF(3,20) 

sets SSbucketsize to 10, CSbucketsize to 500, and swi tch threshold  to 20. This would be appropriate, 
for example, for computing the gradient of a partially separable function (see Section C.3.21, where each 
O f t  usually contains about 20 nonzeros, and the number of independent variables is greater than 500. 

While XSPINI assigns default values to these parameters and hence there is, from a functional perspective, 
no need to call XSPCNF, we encourage experimenting with these parameters and welcome feedback. Our 
experiments have shown that SparsLinC performs best if CSbucketsize is close in value to the size of 
the largest contiguous nonzero index range present in the problem. The tradeoff is between runtime and 
memory, where a larger value of CSbucketsize is likely to result in faster runtime, but also the dynamic 
allocation of more memory. In all cases, SSbucketsize should be set smaller (and usually much smaller) 
than CSbucketsize and should not exceed switchthreshold.  We are working on a facility to trace and 
assimilate SparsLinC runtime information to aid with SparsLinC performance tuning. 

The user should pay heed to the following important note: XSPCNF may be called only before calling 
XSPINI to set SSbuckets ize  and CSbucketsize. This is because once XSPINI is called, the array dimen- 
sions set via these options cannot be modified. Calling XSPCNF to set SSbuckets ize  and CSbucketsize, 
after a call to XSPINI, will result in a runtime error. Calls to XSPCNF to set swi tch threshold  can be made 
at any time. 
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C.4.4 Initializing the Seed Matrix 
Each of the precision-specific SparsLinC routines [S , D ,  C Z] SPSD converts a precision-specific sparse vector 
stored in the Fortran Sparse Format into a corresponding vector in the SparsLinC Sparse Format. In the 
following example, for the purpose of demonstration, we initialize columns 19 and 20 of g-x (corresponding 
to the derivatives of x(19) and x(20)), in both the nonsparse and sparse ways (assume that the arrays, 
INDVEC and VALVEC are declared appropriately): 

t i fdef  NON-SPARSE 
g-x( 7,191 = 2.0 
g,x(19,19) = 1.0 
g-x(20,20) = 1.0 

telif  SPARSE 
INDVEC(1)  = 7 
VALVEC(1) = 2 . 0  
INDVEC(2) = 19 
VALVEC(2) = 1.0 
CALL SSPSD(g-x(l9) ,INDVEC,VALVEC ,2) 
CALL SSPSD(g,x(20) ,20,1.0,1) 

tendif 

Note also that a vector must be initialized in a “one-shot” fashion; hence, for example, the following 
piece meal approach would be an incorrect initialization of g-x (19) : 

INDVEC(1)  = 7 
VALVEC(1) = 2.0 
CALL SSPSD (g-x ( 19 ) , INDVEC , VALVEC , 1 
INDVEC(1)  = 19 
VALVEC(1) = 1.0 
CALL SSPSD(g-x(l9) , INDVEC, VALVEC ,I) 

Because of the “destructive copy” feature of SPSD (see Section C.6) ,  the above would be equivalent to 
having made only the second of the two calls. 

C.4.5 Extracting Directional Gradient Vectors from SparsLinC 
SparsLinC provides two sets of precision-specific interfaces for extracting vector results: 

[S,D,C,ZlSPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO) 

extracts sparse-object(VPTR) into the Fortran Nonsparse Format vector XVEC. INLEN is the size of XVEC. 
The returned value OUTLEN is the largest index in the nonzero index set in sparse-object(VPTR). The value 
of INFO is used to indicate whether XVEC was sufficiently large to store all of the nonzero elements in 
sparse-object(VPTR). If OUTLEN is less than INLEN, then XVEC(OUTLEN+l: INLEN) is set to zero. 

[S,D,C,ZlSPXSQ (INDVEC,  VALVEC, INLEN, VPTR, OUTLEN, INFO) 

extracts sparse-object(VPTR) into the Fortran Sparse Format vector represented by the two arrays INDVEC and 
VALVEC. INLEN is the size of the arrays INDVEC and VALVEC. The returned value OUTLEN is the number of nonze- 
rosin sparse-object(VPTR). The value of INFO is used to indicate whether XVEC was sufficiently large to store all 
of the nonzero elements in sparse-object(VPTR). If OUTLEN is less than INLEN, then VALVEC(OUTLEN+l: I N L E N )  
and INDVEC (OUTLEN+l: I N L E N )  are not referenced. 

In the following code segments, we show examples of the usage of these extraction routines along with 
the corresponding necessary declarations (there is no equivalent ADIFOR 2.0 nonsparse extraction, since in 
that case the output variables are already in Fortran Nonsparse Format). 
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PARAMETER (in-len-xd = g-pmax-) 
INTEGER out,len_xd(5), info-xd(5) 
REAL g-f -xd(in-len-xd, 5) 

DO i = 1, 5 
... 

CALL SSPXDq(g-f-xd(l,i), in-len-xd, g-f ( i )  , 
out-len-xd(i), info-xd(i))  

ENDDO 

in-len-xd is a user-defined value specifying the leading dimension of the Fortran nonsparse column 
vectors of g-f-xd, i.e., it is the user’s estimate of what is the largest index of nonzero value in the vector to 
be extracted. In this case, by setting in-len-xd = g-pmax-, we have ensured ourselves that the SparsLinC 
Sparse Format vector will always “fit” into the Fortran Nonsparse Format vector. (In the next example we 
will discuss the case of underestimating memory requirements.) 

Note that as specified above, g-f-xd is defined identically to the nonsparse g-f in Section C.4.2. Given 
Fortran’s column order array storage, the above call to SSPXDq causes g-f -xd to be aligned exactly with the 
nonsparse g-f. 

SPXSQ Examde 

Here, our choice of in-len-xs = 40 implies that we have made the assumption that there are at  most 
40 nonzeros in any row of the Jacobian (i.e., given our declaration of z in Section C.4.2, we assume that 
the least sparse directional derivative vector is 96% sparse). To make sure that our memory requirement 
assumption holds, we add the following code: 

max-len-xs = 0 
DO i = 1, 5 

I F  (info-xs(i)  .NE. 0 .AND. out,len-xs(i) .GT. max-len-xs) THEN 

END I F  
max-len-xs = out-len-xs(i) 

ENDDO 

Now max-len-xs is encoded with the information we need. That is, if zero, our assumption was true, 
else, max-len-xs is equal to the true number of nonzeros in the least sparse row of the Jacobian and we 
know how much memory is really needed to extract all nonzero derivative values. 

C.4.6 Adding the Contents of a Sparse Vector to a Dense Vector 
Two SparsLinC routines are provided for adding a SparsLinC Sparse Format vector to a Fortran Nonsparse 
Format vector. 

IS, D, C , Zl SPXMq (XVEC , INLEN , MULT, VPTR, OUTLEN , INFO) 

adds to XVEC the contents of sparse-object(VPTR) multiplied by MULT (Le., XVEC = XVEC + MULT * sparse-object(VPTR)). 

IS, D, C , 21 SPXAq (XVEC , INLEN, VPTR, OUTLEN , INFO) 
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is identical to SPXMQ, except that the multiplier is assumed to be one (Le., XVEC = XVEC + 
sparse-object(VPTR)). Note that SPXMQ and SPXAQ are functionally very similar to the SPXDQ routine, the 
only difference being that SPXDQ “assigns to” XVEC while SPXMQ and SPXAQ “add to” XVEC the contents of the 
sparse vector. Note also, that the interfaces of SPXAQ and SPXDQ are identical. 

C.4.7 Dumping the Contents of a Sparse Vector 
SparsLinC provides a set of precision-specific interfaces for dumping a sparse vector to a file. 

[S ,D, C , Z] SPPRQ (VPTR, EXT) 

writes the number of nonzeros as well as index/value pairs of sparse-object(VPTR) to stdout or a file. EXT 
is an INTEGERin the range [0,999] and specifies the destination of the output: if zero, output is written to 
stdout; otherwise, output is written to the file SPPRQ .EXT. 

SPPRQ can be a useful routine during debugging, to quickly check the values of a derivative vector 
somewhere in the code. It also has the advantage of not requiring that the user provide memory in which 
to extract the nonzero values in the sparse vector. 

Admittedly, the interface of SPPRQ is rather crude. This is because we have avoided passing string argu- 
ments, because of the inconsistency of the Fortran-to-C string-passing protocols on different platforms. 

SPPRQ Example 

DO i = 1, 2 

EMDDQ 
CALL SPPRQ(g-f (i) , 6) 

The above code prints the nonzero derivative information in g-f (1) and g-f (2) into the file “SPPRQ.6” 
in the current directory. Assume that g-f (1) g-f (2) contain 4 and 2 nonzero values, respectively. Then 
the following is an example of what might be the contents of “SPPRQ.6’ subsequent to the execution of the 
above code: 

Number of nonzeros = 4 
Index Value ----- 

4 -4.892400e-01 
5 6.523200e+00 
6 - 1.630800e+00 

188 -2.030000e+Ol 

Number of nonzeros = 2 
Index Value ----- ----- 

37 3.812800e+00 
256 1.000000e+00 

Note that the vectors are printed out in the order in which the corresponding SPPRQ was called, and 
there is no identification in the file denoting which set of numbers belong to which vector. This task is left 
to the user. 

C.4.8 Extracting Performance Information 
In addition to providing derivative information, SparsLinC can also provide information about its own per- 
formance. Because of the system-specific nature of timing routines, runtime measures are best arrived at by 
enveloping the appropriate system calls around the call to the top level subroutine. For example: 



Revision B ADIFOR 2.0 User’s Guide 

CALL timer (t 1) 
CALL g-top-foo(x, g-x, . . 
CALL timer(t2) 
t-elapsed = t2 - tl 

April 29, 1995 

An implementation of timer that returns elapsed user time as a real value is provided in the 
$(AD-HOME)/lib/libtimer-$(AD-ARCH) .a archive, which can be linked into your executable by adding one 
of the following to your link line: 

... -L$AD-HOME/lib -1timer-$AD-ARCH 
or 

... $AD-HOME/lib/libtimer-$AD-ARCH.a 
The SparsLinC routine XSPMEH returns how many kilobytes of memory have been dynamically allocated 

in the process of computing derivatives: 

REAL USEDKB 

CALL XSPMEH(USEDKB) 
... 

C.4.9 Freeing Dynamically Allocated Memory 
The routine XSPFRA frees all dynamically allocated memory in SparsLinC. Freeing memory might be useful 
if after finishing the derivative computation, the user wishes to perform some further memory-intensive 
computation. There are no arguments, and the call is simply 

CALL XSPFRA 

XSPFRA has the effect of leaving “dangling pointers”, meaning that the Fortran INTEGER gradient variables, 
which are interpreted by SparsLinC as pointers, will retain the values (addresses) they contained before 
XSPFRA was called. However, after the call to XSPFRA, the memory pointed to by these pointers will no longer 
be under SparsLinC control. Any attempt to use these variables as pointers (e.g., by using them as pointer 
arguments to some SparsLinC routine) wil l  likely cause a segmentation fault. For this reason, no calls to 
any SparsLinC routine should be made after XSPFRA. 

c .5 A Brief Tutorial Example 
SparsLinC is designed to be easy to use. There are three basic steps to be followed: 

1. Applying ADIFOR 2.0 to generate sparse derivative code. (Section C.5.1), 
2. Writing the “Sparse” derivative code driver. (Section C.5.2), and 
3. Linking all the Fortran code with SparsLinC 1.0. (Section C.5.3). 

C.5.1 Invoking ADIFOR 2.0 to Generate Sparse Code 
In order for ADIFOR 2.0 to create derivative code in which vector linear combinations are performed by 
means of calls to SparsLinC 1.0 routines, the following ADIFOR 2.0 option must be specified in either the 
ADIFOR 2.0 command line or the script file: 

AD-FLAVOR=sparse 
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C.5.2 An Example Derivative Code Driver 

April 29, 1995 

The derivative code driver is a user-generated Fortran program that invokes the derivative code generated 
by ADIFOR 2.0 (see Step 4 in the tutorial in Chapter 4). In general, the sparse derivative code driver 
is malogous to the nonsparse derivative code driver and differs from the latter in only a few places. The 
following is an example derivative code driver, based on the code fragments shown throughout Section C.4: 

PROGRAM DRIVER 

REAL x(lOOO), f(5), v 

tifdef NON-SPARSE 

#elif SPARSE 
REAL g-x(g-pmax,,1000), g-f (g-pm=-,5) , g-v(g-pm=-) 

INTEGER g-x(lOOO), g-f (51, g-v 
PARAMETER (in-len-xs = 40) 
INTEGER g-f-ind-xs(in-len-xs,5), out-len-xs (51, info-xs(5) 
REAL g-f -val-xs(in-len-xs, 5) 
REAL USEDKB 

#endif 

CCC 
CCC variables. 

Ye assume some statements at this point initialize the independent 

#ifdef SPARSE 
CCC Tuning of SparsLinC parameters (optional) and mandatory initialization 

CALL XSPCNF ( 1, 20 ) 
CALL XSPCNF ( 2, 500) 
CALL XSPCNF ( 3 ,  10 ) 
CALL XSPINI 

#endif 

CCC Initializing the seed matrix as identity, 

#ifdef NON-SPARSE 
DO i=1,1000 

DO j=1,1000 

ENDDO 
g-x(i, i) = 1. OdO 

g-x(i,j) = O.OdO 

ENDDO 

DO i-1,1000 

ENDDO 

#elif SPARSE 

CALL SSPSD (g-x (i) , i , 1 . do, 1) 
#endif 

#ifclef NON-SPARSE 
CALL g,top-foo(g-p-, x, g-x, ldg-x, f, g-f, ldg-f, 

+ v ,  g-w, ldg-w, non-active-var) 
#elif SPARSE 

#endif 
CALL g-top-foo(x, g-x, f, g-f, v ,  g-v, non-active-var) 

#ifdef SPARSE 
DO i = 1. 5 
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CALL SSPXSq(g-f-ind-xs(l,i) , g-f-val-xs( l , i ) ,  in-len-xs, g-f (i) 
out-len-xs(i), in fo-xs( i ) )  

ENDDO 
max-len-xs = 0 
DO i = 1, 5 

I F  ( info-xs( i )  .NE. 0 .AND. out-len-xs(i) .GT. max-len-xs) THEN 

ENDIF 
max-len-xs = out,len-xs(i) 

ENDDO 

CALL XSPMEM(USEDKB) 
#endif 

Taking a close look at the calls to the top level routine, g-top-f oo, in the nonsparse and sparse derivative 
code driver, we realize that the only differences between the sparse and nonsparse calls are that there is 
never a need to pass a leading dimension argument along with each gradient variable argument, and also 
there is no need to pass a value for g-p-, the runtime nonsparse directional gradient vector size. Note 
that, regardless of whether ADIFOR 2.0 is invoked in the sparse or nonsparse mode, it generates the same 
subroutine name. 

C.5.3 Linking with SparsLinC 1.0 
To use SparsLinC, you must link a machine-specific version of the SparsLinC library into your executable 
by adding one of the following to your link line: 

... -L$AD-HOHE/lib -lSparsLinC-$AD-ARCH 

or 

... $AD-HOME/lib/libSparsLinC-$AD-ARCH.a 

C.6 Detailed Specification of Access Routines 
This section contains the detailed description of the SparsLinC 1.0 access routines discussed in Section C.4. 

We adopt the convention that for a Fortran INTEGER variable VPTR, acting as a pointer to a SparsLinC 
Sparse Format vector, the sparse derivative object pointed to by VPTR is called sparse-object(VPTR). Also, 
to save space, only the calling sequence for one particular floating-point precision is provided. 

SSPSD, DSPSD, CSPSD, ZSPSD 

SUBROUTINE SSPSD (VPTR, INDVEC, VALVEC, LEN) 
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Purpose 
Conversion of a vector in Fortran Sparse Format into a vector in SparsLinC Sparse For- 
mat. The Fortran Sparse Format vector is given by the two arrays, INDVEC(1:LEN) and 
VALVEC (1 :LEN), representing the indices and values of a sparse vector x (say), respectively. 
x is copied into sparse-object(VPTR), which is the vector in SparsLinC Sparse Format. The 
indices in INDVEC need not be in any particular order (internally, SPSD performs an ascend- 
ing order sort). However, INDVEC and VALVEC must be identically aligned. That is, if in the 
Fortran Nonsparse Format z has a nonzero entry at index i with value v ,  then for some J, 
INDVEC(J) = i and VALVEC(J) = v .  SPSD performs a destructive copy. That is, 
if sparse-object(VPTR) had been previously allocated (via SPSD or as a result of be- 
ing an output argument of some other SparsLinC routine), the previous information in 
sparse-object(VPTR) is lost, and the dynamically allocated memory where that information 
resided is deallocated. 

Arguments 
VPTR (output) INTEGER 

Upon exit, sparse-object(VPTR) contains a copy of the sparse vector repre- 
sented by INDVEC and VALVEC. 

INDVEC (input) INTEGER array, dimension (LEN) 
Indices of the nonzero values of the sparse vector. (We assume that indices 
are 2 1; therefore, INDVEC entries 5 0 would be incorrect and would result 
in a runtime error.) 

VALKEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di- 
mension (LEN) 
Nonzero values of the sparse vector. 

LEN (input) INTEGER 
LEN 2 0 is the number of nonzeros in the sparse vector. If LEN = 0, VPTR 
is initialized to point to the vector of all zeros and INDVEC and VAWEC are 
not referenced. 

SSPXDQ, DSPXDQ, CSPXDQ, ZSPXDQ 
SUBROUTINE SSPXDQ (XVEC, INLEN, VPTR, OUTLEN, I N F O )  

Purpose 

Arguments 
Extracts sparse-object(VPTR) into the Fortran Nonsparse Format vector XVEC. 

XVEC (output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, 
dimension (INLEN) 
On exit, if INFO = 0, XVEC(1: INLEN) will contain a dense representation 
of sparse-object(VPTR). If OUTLEN < INLEN, then XVEC(OUTLEN+l: INLEN) is 
initialized to all zeros. If INFO # 0, XVEC is not referenced. 

PNLEN 

VPTR 

(input) INTEGER 
Length of XVEC. 

(input /ou tpu t ) INTEGER 
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is 
initialized to point to the vector of all zeros (which is why it might be an 
output argument). 
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(output) INTEGER 
Largest index in the nonzero index set in sparse-object(VPTR). This value 
will always be returned, whether XVEC is initialized or not. See the descrip- 
tion of INFO below. 

(output) INTEGER 
If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not referenced. 
Otherwise, INFO is set to 0, and XVEC(1:SNWN) is initialized to a Fortran 
Nonsparse Format copy of sparse-object(VPTR). 

SSPXSQ, DSPXSQ, CSPXSQ, ZSPXSQ 

SUBROUTINE SSPXSQ (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, I N F O )  

Purpose 
Extracts sparse-object(VPTR) into the Fortran Sparse Format vector represented by the two 
arrays, INDVEC and VALVEC . 

Arguments 
INDVEC (output) INTEGER array, dimension (INLEN) 

On exit, if INFO = 0, INDVEC(1:OUTLEN) contains the indices of the nonzero 
entries of sparse-object(VPTR). If INFO = 0 and OUTLEN < INLEN then 
INDVEC(OUTLEN+I:INLEN) is not referenced. If INFO # 0, INDVEC is not 
referenced. 

VALVEC 

INLEN 

VPTR 

OUTLEN 

INFO 

(output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEXI array, 
dimension (INLEN) 
On exit, if INFO = 0, VALVEC(1:OUTLEN) will contain the nonzero en- 
tries of sparse-object(VPTR). If INFO = 0 and OUTLEN < INLEN then 
VALVEC(OUTLEN+I:INLEN) is not referenced. If INFO # 0, VALVEC is not 
referenced. 

(input) INTEGER 
Length of INDVEC and VALVEC, 

(input/output) INTEGER 
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is 
initialized to point to the vector of all zeros (which is why it might be an 
output argument). 

(output) INTEGER 
Number of nonzeroes in sparse-object(VPTR). This value will always be re- 
turned, whether INDVEC and VALVEC are initialized or not. See the descrip- 
tion of INFO below. 

(output) INTEGER 
If INLEN < OUTLEN, INFO will be set to -1, and INDVEC and VALVEC are 
not referenced. Otherwise, INFO is set to 0, and INDVEC(1:OUTLEN) and 
VALVEC(1: OUTLEN) are initialized to the Fortran Sparse Format copy of 
sparse-object (VPTR). 
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SSPXMQ, DSPXMQ, CSPXMQ, ZSPXMQ 

SUBROUTINE SSPXMQ (XVEC, INLEN, HULT, VPTR, OUTLEN, INFO) 

Purpose 
Adds the weighted contents of sparse-object(VPTR) to the Fortran Nonsparse Format 
vector XVEC, where MULT is the multplicative weight @.e., XVEC = XVEC + MULT * 
sparse-object(VPTR)). For example, say XVEC is a vector of length 7 containing all ones, 
KWLT = 2.0, and sparse-object(VPTR) is as follows: 

Index Array: 1 3 4 7 

Value Array: 11.0 33.0 44.0 77.0 

Subsequent to the call to this routine, XVEC would contain the following: 

(23.0, 1.0, 67.0, 89.0, 1.0, 1.0, 155.0) 

Arguments 
XVEC 

INLEN 

HULT 

VPTR 

OUTLEN 

INFO 

(input/output) REAL [DOUBLE PRECISION, COMPLEX , DOUBLE COMPLEX] 
array, dimension ( INLEN) 
On exit, if INFO = 0, XVEC(1:INLEN) will have added to it the weighted 
contributions of the values in sparse-object(VPTR), with MULT specifying the 
weight. If INFO # 0, XVEC is not modified. 

(input) INTEGER 
Length of XVEC. 

(input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] 
Multiplier. 

(input/output) INTEGER 
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is 
initialized to point to the vector of all zeros (which is why it might be an 
output argument). 

(output) INTEGER 
Largest index in the nonzero index set in sparse_object(VPTR). This value 
will always be returned, whether XVEC is modified or not. See the descrip- 
tion of INFO below. 

(output) INTEGER 
If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other- 
wise, INFO is set to 0, and X V E C ( 1 : I N L E N )  is modified as described above. 

SSPXAQ, DSPXAQ, CSPXAQ, ZSPXAQ 

SUBROUTINE SSPXAQ (XVEC. INLEN, VPTR, OUTLEN, INFO) 
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Purpose 
Adds the contents of sparse-object(VPTR) to the Fortran Nonsparse Format vector XVEC 
(;.e., XVEC = XVEC + sparse-object(VPTR)). (SPXA is identical to the SPXMQ routine with MULT 
= 1.0; see the documentation for SPXnq.) 

Arguments 
XVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] 

array, dimension ( INLEN) 
On exit, if INFO = 0, XVEC(1: INLEN) will have added to it the values in 
sparse-object(VPTR). If INFO # 0, XVEC is not modified. 

INLEN 

VPTR 

OUTLEN 

INFO 

(input) INTEGER 
Length of XVEC. 

(input/output) INTEGER 
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is 
initialized to point to the vector of all zeros (which is why it might be an 
output argument). 

(output) INTEGER 
Largest index in the nonzero index set in sparse-object(VPTR). This value 
will always be returned, whether XVEC is modified or not. See the descrip- 
tion of INFO below. 

(output) INTEGER 
If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other- 
wise, INFO is set to 0, and XVEC(1:INLEN) is modified as described above. 

SSPPRQ, DSPPRQ, CSPPRQ, ZSPPRQ 
SUBROUTINE SSPPRQ (VPTR, EXT) 

Purpose 
Writes number of nonzeros as well as index/value pairs of sparse-object(VPTR) onto stdout 
or a file, with the following format: 

Number of nonzeros = . . 
Index Value 
- __ 
. . .  
~ . .  . . .  

Arguments 
VPTR 

EXT 

(input /output) INTEGER 
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is 
initialized to point to the vector of all zeros (which is why it might be an 
output argument). 

(input) INTEGER 
Must be in the range [0,999]. If EXT = 0, output written is to stdout. Oth- 
erwise EXT is converted to its ASCII equivalent and used as the extension 
appended to the filename “SPPR.” and output is written to this file. 
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XSPCNF 

SUBROUTINE XSPCNF (OPT, VAL) 

Purpose 
Allows user to customize SparsLinC for each run. The following table specifies for each 
parameter its name, option number, default value, and range of allowable values. “SS- 
bucketsize” and “CSbucket-size” are the number of entries per array in the linked list 
representation of a single-subscript and compressed-subscript vector respectively. For all 
vector linear combinations, if at the conclusion of the computation the left-hand-side vector 
has an SS representation and the number of its nonzero entries exceeds “switch-threshold”, 
the vector is converted to a CS representation. 

Name 

SS bucketsize 
CSbucket-size 
switch-threshold 

- OPT Default Range 

1 8 >1 
2 32 >1 
3 16 >1 

XSPCNF with OPT = 1 or OPT = 2 may be called only before calling XSPINI. Calling 
XSPCNF with OPT = 1 or 2 after a call to XSPINI will result in a runtime error. Calls to 
XSPCNF with OPT = 3 can be made at any time. 

Arguments 
OPT 

VAL 

(input) INTEGER 
Specifies the option number associated with a given parameter as given in 
the above table. 

(input) INTEGER 
The new value for the parameter specified by OPT. 

XSPMEM 

SUBROUTINE XSPMEM (USEDKB) 

Purpose 

Arguments 
Reports how many kilobytes of memory have been allocated dynamically in SparsLinC. 

USED (output) REAL. 
The number of kilobytes of storage allocated for SparsLinC data structures. 
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XSPINI 

SUBROUTINE XSPINI 

Purpose 
Initializes the sparse data structures by dynamically allocating memory for some SparsLinC- 
internal global variables. It must be called before any of the other SparsLinC routines 
(except for calls to XSPCNF with OPTS 1-15) and needs to be called no more than once (when 
called more than once, all but the first call act as no-ops). 

Arguments 
none 

XSPFRA 

SUBROUTINE XSPFRA 

Purpose 
Frees all memory allocated for C sparse vector data structures. Note: all pointers to 
sparse directional gradient variables (VPTR’S) are left dangling. 

Arguments 
none 



Appendix 

Changes 
between 

D 

in Naming Conventions 
ADIFOR 1.0 and 

ADIFOR 2,O 

ADIFOR 1.0 and ADIFOR 2.0 create external names differently. Specifically, by default, ADIFOR 2.0 now 
uses a separator character of ((-'' in all generated names. Also, since ADIFOR 2.0 no longer attempts to 
clone procedures based on calling context, the derivative computing procedure for a procedure f oo will be 
named g f o o ,  assuming that A D J R E F I X  and AD-SEP have not been modified from their default values. 
Make sure that you make any names of derivative computing procedures and gradient common blocks that 
appear in your derivative driver code correspond to the new naming conventions. You will be reminded by 
the linker if the names of procedures in your derivative driver are inconsistent. YOU WILL NOT SEE ANY 
WARNING, HOWEVER, IF YOU FAIL T O  MAKE THE NAMES OF GRADIENT COMMON BLOCKS 
BE CONSISTENT BETWEEN YOUR DRIVER AND THE GENERATED DERIVATIVE CODE. 
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