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DIFFEOMORPHISM GROUPS AND ANYON FIELDS 

Gerald A. Goldin’ and David H. Sharp’ 

Departments of Mathematics and Physics. Rutgers University 
New Brunswick, N J  08903 USA 

Los Alamos. Ski 87545 USA 
’ Theoretical Division, Los Alamos National Laboratory 

Abstract 

We make use of unitary representations of the group of diffeomorphisms of the 
plane to construct an explicit field theory of anyons. The resulting anyon fields 
satisfy q-commutators, where q is the well-known phase shift associated with a 
single counterclockwise exchange of a pair of anyons. Our method uses a reaiiza- 
tion of the braid group by means of paths in the plane, that transform naturally 
under diffeomorphisms of R’ 

1 .  DIFFEOMORPHISM GROUP REPRESENTATIONS AND ANYONS 

The intrinsic structure of standard quantum mechanics includes representations of an 
infinite-dimensional group. whose infinitesimal generators are the mass density operator 
p ( x .  t )  and the momentum density operator J(x. t ) .  By examining the commutation 
relations and other properties of p and J, one determines that the corresponding group is 
the natural semidirect product G = S(M) x D z f l ( M ) .  where the manifold M is physical 
space (typically R3). S( M )  is the additive group of smooth. real-valued scalar functions 
on .I1 that  together with all derivatives vanish rapidly at infinity (Schwartz‘ space). and 
Diflc.11) is the group of diffeomorphisms of M under composition that.  together with 

Quantum-mechanical systems are described by the continuous unitary represen- 
tations (CURS) of G. or in certain cases (such as an ideal. incompressible fluid) par- 
ticular subgroups of G (e.g.. the volume-preserving diffeomorphisms). This fact has 
been established and used in our previous work to obtain a unified description of an 
astonishing variety of quantum systems. ranging from extended objects such as Tortex 
configurations2 to point particles obeying boson. fermion. and (in two space dimen- 
sions) intermediate. or “anyon”. statistics3. The latter possibility had aiready been 
conjectured from the topology of two-particle configuration space in the plane4: the 
diffeomorphism group approach provided a rigorous prediction even without the as- 
sumed exclusion of configurations where the particle coordinates coincide. From diffeo- 
morphism group representations there also followed many of the fundamental physical 
properties of angons-the shifts in angular momentum and energy spectra. the connec- 
tion with configuration space topology. the relation to charged particles circling regions 
of magnetic flus. and the mathematical role of the braid g r o ~ p ~ . ’ . ~ .  Xngon statistics 

all derivatives. become rapidly trivial at infinity’. -. 



find appiication in physics to surface phenomena. particularly the tractionai quantum 
Hall effect'. 

Based on the diversity of known quantum systems associated i.!th CURS of the 
diffeomorphism group or its semidirect product, we believe that G can be regarded as 
a universal. or generic, group of local symmetries describing non-relativistic quantum 
theory6. In the formulation of quantum mechanics based on diffeomorphism group 
representations. canonical fields w and t.'= do not play a fundamental role. b'hile the 
infinitesimal generators p and J can be constructed from canonical fields in specific mod- 
els (see below), is not necessary to use this fact to obtain representations of Dz$(-U). 
or to establish the physical interpretations of these representations. 

It is nevertheless useful to reintroduce the field operators when that is possible: 
for example, annihilation and creation operators provide a way to construct states with 
specified numbers of particles, and fields are a starting point for many computational 
methods. It is thus worth asking how canonical fields can be constructed. taking as a 
starting point a collection of CC'Rs of G. 

LVe show here how creation and annihilation fields can be constructed. uniquely u p  
to unitary equivalence, as operators zntertwznzng a hzerurchy of representations of G. 
So defined. these operators create or annihilate configurutzons, where the type of object 
created is defined by the representations from which one starts. We take as a specific 
example the construction of anyon fields from diffeomorphism group representations. 
Then we are able to determine the algebra that the field operators satisfy. Thus we 
obtain q-commutation relations for anyon fields not as a starting assumption. nor by 
introducting a Chern-Simons potential into a canonical field theory, but strictly as a 
consequence of the unitary group representations that describe anyons together with 
the intertwining property defining the fields, In the course of doing this, we shall also 
make clear how elements of Diff(R2) act on the braid group. 

First we provide some basic facts about the infinite-dimensional Lie algebra of 
mass and momentum density operators. and the corresponding Lie group of unitarJ- 
operators. in canonical nonrelativistic theories. One has formally, 

p ( x , t )  = rn.L:qX,t)c(X.t). 

J(x,t) = ( r i / 2 i ) { ~ . ' ( ~ . t ) [ V ~ ( ~ . t ) ]  - [ Y ' L ' ~ J X , ~ ) ] V ( X . ~ ) } .  

where the fields in (1.1) obey, at equal times t .  for all X.Y. 

[*(x, t ) .  e=(y .  t ) ] *  = 6(x - y).  

(1 .1)  

(1 .2 )  

The subscript - - * '  denotes the commutator. and "+" the anticommutator bracket. To 
interpret p and J as operator-valued distributions on the spatial manifold "U. define 
p ( f )  = J,%, pix) fcx) dx and J(g) = J(x )  g(x) dx: where f f S(M). and g is a 
vector field whose components (together with all derivatives) vanish rapidly at infinity. 
1l-e shall call the set of such vector fields I e c t ( M ) .  N'e then obtain the same infinite- 
dimensional semidirect product Lie algebra ( a  nonrelativistic local current algebra' 
Independent  of which bracket is chosen in (1.1). namely: 

[ J ( g l ) .  Jm)] = - W i g l .  g d .  ( 1.3 i 

where g . F.f = Lg.f  is the Lie derivative. and [gl. gz] = g1 Pg:! - gz . Tgl  is the Lie 
bracket of the vector fields. The fact that the Lie algebra (1 .3)  is the same for fermions 



and bosons means that the information about the particle statistics. formerly encoaec 
in the algebra of fields. will now be contained in the choice of a represcntatzon satisfying 
(1.3). tVe have shown that inequivalent representations. in spaces of dimension greater 
than one. describe the different statistics3. 

It is a standard result that the C" vector field g generates a unique one-parameter 
group of C" diffeomorphisrns. 0: : JV + M ( t  E R) with 0: o of2 = dE+t2: satisfying 
the ordinary differential equation ( a / a t ) & ( x )  = g ( o t ( x ) ) .  together with the initial 
condition oy=-,(x) = x. (The conditions on g at infinity are important to the global 
existence of ot . )  Then, defining the unitary operators I'(f) = exp [ ( t / n ) p ( f ) ;  and 
\'(of:) = exp [ ( z t / h ) J ( g ) ] ,  we have the semidirect product group law. 

where olqz = o2 o o1 is the composition of the diffeomorphisms. 
The simplest representations of (1.3) and (1.4) are the !V-particle Bose and Fermi 

representations. For specificity let :M = R2 or R3 and let the wave function a:" belong 
to the Hilbert space 7li: of symmetric (s) or antisymmetric ( a )  functions of -Y variables 
( x i . .  . . x . ~ )  E .%I. square integrable with respect to Lebesgue measure p. Then these 
representations are given by 

.v 
p , v ( f ) @ y ( x l ,  * . . ,x.v) = m f ( x , )  @;:(XI.. . . .xi%,) , 

j=1 

and correspondingly 

'1' 

\ ~ v ( O ) @ ~ ~ ( X i . .  . . ,Xx) = @:F(Q(Xi). . . . , O ( X . l r ) )  [n 3 @ ( X j ) ] 4 .  i 1.6) 

where J o ( x )  denotes the Jacobian of the diffeomorphism o at  x. 
Sote that the operators in (1.5) are self-adjoint and those in (1.6) are unitary. 

The. preserve the particle number AY. and are also manifestly symmetric with respect to 
eschange of particle coordinates x,: thus they also preserve the wave function symmetry. 
For -Y = 0.1.2.. . . . the :V-particle Bose (respectively. Fermi) representations constitute 
a hierarchy. in an obvious physical sense that we make precise below. 

2 . HIERARCHIES OF REPRESENTATIONS AND THEIR INTERTWIIV- 
ING FIELD OPERATORS 

The first step in our development is to  establish the conditions that have to be s .  - 

isfied for creation and annihilation field operators to intertwine representations of the 
diffeomorphism group. This allows us to specify a well-defined sense. satisfied by the 
above examples. in which a collection of continuous unitary representations of the group 
Di$(-211 forms a hierarchy. The representations in the hierarchy are labeled by the nuni- 
ber -1- of elementary configurations: thus we establish the bracket that an inrertn.ining 
field must obe?. wi th  the operators in t h e  .Y-configuration Hilbert space. 



The required conditions foIIow from the structure of the commmutation reiations 
between the fieids L' and v= and the operators p and J .  For bosons and fermions 
(where we already know p. J. Y, and v-). these commutation relations can be obtained 
by direct formal computation starting from (1.1) and (1 .2) .  To facilitate the calculation. 
and in anticipation of the results of Section 3.2, we shall generalize this procedure from 
the outset and start directly from the q-commutation relations for the fields. These 
are based on the q-deformed bracket [ A , B ] ,  = AB - qBA. where q is assumed to be 
a complex number of modulus one. \Vhen q = 1, we recover the cornmutator brackets 

in (1 .2 ) ,  and when q = -1. we have the anticommutator brackets "i". \\'e write 

[V(X,  t ) .  v(y, t ,], = fdJ=(x. t ) .  Lqy, t ) ] ,  = 0 * 

(2 .1)  

Sote  that for the first two equations of (2.1) to  be consistent when q # i l .  they cannot 
be interpreted as holding for all ordered pairs (x .y) .  but only in a half-space H of 
,I1 x 111. In the complementary half-space I? = iM x 121 - H ,  we have instead the 
(l/q)-bracket. Then the equation for [w(x). ~ ( y ) ] ~  is consistent with the equation for 
: L - . = ( X ) .  ~%-(y ) ] , .  since we are assuming that IqI = 1. The third equation of (2 .1)  is 
written as indicated for (x ,y )  E H: it may be written equivalently (using = l / q )  as 

( 2 . 2 )  

Now we are ready to obtain brackets for 1~.' and with p and J. Me shall use the 

(2 .3)  
algebraic identi t4; 

[AB, C]- = A[B, C], + q [A. C],/,B. 
that relates the ordinary commutator to the q-commutator. Then we can calculate 
the commutators of the field operators with the generators of the infinite-dimensional 
group. Me obtain. for field operators obeying (2.1) and (2 .2)  for any fixed value of q 
having modulus one. 

[p(y. t ) .  c)*(x. t ) ]  = mC'(y.t)6(x - yi. 

[p (y .  t ) .  w(x, t ) ]  = -rnu,(y. t)6(x - y) .  
ti 
21 (J(y. t ) .  t*'(~,t)] = --(~'~(~.t)Cyb(x - y) - 6(x - ~)'i'y~q=(y.t)} 

( 2 . 4 )  

( 2 . 5 )  

The justification of these equations for all values of x and y involves performin,o the 
calculation in each half-space separately. and noting that the answer is the same. 

Ses t  we multiply (2 .4)  by the test functions k(x) and f ( y ) .  and ( 2 . 5 )  by the test 
function hix) and vector field g (y ) .  and integrate over x and y. 11-e thus obtain. 

fr 
22 [ J ( y . t ) . ~ ( ~ . t ) ]  = --{~~(Y.t)T,b(x - y )  - 6 ( ~ -  y)Tyv(y.t)}. 

(2 .6)  

( 2 . 7  1 

The essential point is that  we find the same commutator brackets independent of 
whether we begin the calculation with Bose fields. Fermi fields. or even fields satis- 
fying q-commutators: that is. equations (2.6) and ( 2 . 7 )  are representation-independent! 

t2 
2;  [ J ( g ) . z * ( h ) ]  = -v(-{g*Th + T .  (gh )} ) .  



It  is also straightforward to verify that (1.3) together with (2.61 and ( 2 . 7 )  satisfy the 
Jacobi identity. as long as we do not include brackets of fields with each other in the 
identity. However. I' and 12' satisfy different relations with each other in the Bose and 
Fermi cases. and (as we shall shortly see) in the anyon case. Only in the Bose case do 
we have an actual Lie algebra of fields together with densities and currents, 

For the cases of bosons and fermions. we can now look again at the .Y-particle 
representations (1.5) and (1.6). and interpret L*= and w as creation and annihilation 
operators respectively intertwznzng these representations. In the Bose or Fermi Fock 
representations of the usual second-quantized nonrelativistic field operators, we have 
Hilbert space vectors Pa = ((D::). S = 0 , l .  2 , .  . .. with (3:: E %:a. For bosons (s). 

1 . x  
[LL'=(x)@s].v(xl.. . x,v) = - S(X - x,) a?$-l(xl. . .XI . . . x:v) .  (2 .6 ! 

v% ,=I 

n-here x, means that x, is to be omitted: for fermions ( a ) ,  

[L'(X)@'a].v(X1 . . . x v )  = m a ? ~ ~ , ( x l . . . x l v . x ) ,  

1 N 

\l-hen all but one of the .Y-particle components of @ vanish. we can see from (2.8) or 
(2 .9 )  that t a l  : 31:a -+ while 2;: : 7d:cl + 'If::. It is straightforward to verify 
esplicitly that both (2.8) and (2.9) satisfy (2.6) and (2.7).  

Sote  next that the expressions rn f h and ( t 2 / 2 i ) ( g .  V h  + V. ( g k ) } ,  which occur on 
the right-hand sides of ( 2 . 6 )  and (2 .7) .  are just the one-particle representations of p ( f )  
and J ( g )  respectively. applied to h (if we regard h as an element of the Hilbert space 
7-il I .  Then we can rewrite (2.6) and ( 2 . 7 )  in the form 

i p ( f ) .  L * ' ( h ) ]  = L " ( p , ~ = i ( f ) h ) .  [ J ( g ) . t " ( h ) ]  = I ."(J,v=i(g)h).  

i P ( f ) . 4 h ) ]  = --W(P.v=df)h) * [ J ( g ) . w ( h ) ]  = --I Js=ljg)h) * ('2.10 j 

Finally we exponentiate p ( f )  and J(g) in (2.10). and obtain 

c ~ i .f ) L*- ( h )  P( f j = L** (L,V,l (f)h) . V( o)Q8 ( h ) 1  '-l(o) = i,'( k l . . = 1 (  o)h j . 

I ~ 1 f I L' ( h ) I * - ( f ) = 6 ( L*.V = 1 ( - f ) h ) . c * ( Q ) c ( h ) 1 ' - ( 0 ) = t' ( ( 1 -V= 1 ( 0- ' ) h ) ' ( 2.1 1 i 

\\-hen we make the dependence on .Y explicit in (2.11). we have 

[ . \  i . f k ' i h  1 = ~ , ~ ~ - . \ = l ( - ~ ) h ) ~ - . ~ + l ( ~ ) .  I v ( O ) L ' ( h )  = t l ( ~ ~ : ~ = l ( ~ - l ) h ~ ~ : v + l ( ~ ~ .  (2.12) 

The preceding calculations for the case of canonical fields motivate the following 
general perspective. For a collection of CURS of the diffeomorphism group (or  its 
semidirect prodcct I to form a hierarchy labeled by -Y. a necessary and sufficient con- 
ditIon is that L,- and L' can be constructed obeying (2.12). EspeciallJ- noteworth?- IC 
the  fact that the argument of the fields L*= and L* in these equations is a Hilbert space 
\.ector from the -\* = 1 space in the hierarchy, This fact def ines  the .\* = 1 space. and 
establishes the nature of the configuration that L-- creates and 'L' annihilates. 



Fte expect this general structure to occur not only for point ..ke configurations. but 
also for configurations of extended objects such as vortex filaments or ribbons. Fi‘ith 
vortex configurations. the argument of t‘.’ and w is a one-vortex Hilbert space vector. so 
that the unsmeared creation and annihilation fields no longer depend on a single point 
in space but on a spatially extended configuration. Only the currents. in unsmeared 
form. have as their arguments individual points in space. In the case of quantum vortex 
configurations. we also have additional complications associated with the possibiiity of 
overlapping or knotted vortices. This is a topic of our current research. 

In the next section we use the above results to construct explicit fields for anyons 
that obey (2.12). anticipating that the fields will satisfy different commutation rela- 
tions from those satisfied by Bose and Fermi fields. It turns out that these are the 
q-commutators written above. 

3 .  CONSTRUCTING ANYON FIELDS 

In this section. we construct anyon fields from a hierarchy of continuous unitary rep- 
resentations of the group DZf(R’). using the .Y-anyon representations3. FVe displaj. 
these fields explicit!!-. using a convenient diagrammatic representation of the elements 
of the braid group. It then emerges that the fields so obtained satisfy a q-commutator 
algebra. W*e stress that the q-commutator is not put in by hand, but is one of the 
consequences of the diffeomorphism group approach, just as anyons themselves are a 
consequence of the representation theory of the diffeomorphism group. 

L1s.e construct anyon fields obeying the commutation relations (2.12) in the follow- 
ing steps: First. we write the iV-anyon representation of Difl(R2) and its semidirect 
product. in the Hilbert space of equivariant wave functions, defined on the univer- 
sal covering space of .V-particle configuration space in R2. The equivariance is for a 
one-dimensional unitary representation (a character) of the braid group B.v. Second. 
we make this representation of Di$(R2) concrete by introducing a way of labeling an 
element in the covering space by a set of .Y paths in the plane. Third. we make use of 
this to define ~ 3 -  as a creation operator mapping ‘H,;.’ to Finally we state the 
resuits about LS- and t‘ that are obtained in this framework. 

To write the .V-anyon representation. recall that an -1’-particle configuration is 
an unordered set 7 of :Y distinct points in the plane: 7 = {xi . . .xx} C R2: the 
indesing of the points is arbitrary. Let the configuration space A.Y be the set of all 
such configurations -,. and let p be a normalized measure on A,v locally equivalent to 
Lebesgue measure. The fundamental group r i (A2v)  is the braid group B,v. .An element 
’, of the universal covering space 3:~ can be labeled by a configuration 7 .  together with 
a braid b f B,y that specifies the sheet in i . y  to which the element belongs: we shall 
n-rite ’. = ( 7 . b ) .  This labeling is not unique. but conventional: the sheet associated 
n-ith the identity element E E B.y may be selected arbitrarily. IVe denote by p the 
projection mapping. p ( : , )  = -;. The braid group also acts on i i v :  for b’ G B.Y. we 
have b’i-; .  bI = ( 7 .  bb’) .  .An equivariant wave function \E is a complex-valued function 
on A,,. that transforms in accordance with a character T of B,v: that is. \ t i-; .bb’i  = 
Tib’ IG(7 .  b i .  Because \t is equivariant. the product 6(-;.  b)&(* , .  b\ is independent of the 
particular choice of b. Thus we can use the measure p on L.Y to define - square-integrable 
wave functions and to introduce an inner product: ( @ . Q )  = JJ:\ 6 ( - .  b ~ G l - ~ . b ~ c i / ~ ! - ~  i .  

The result is the Hiibert space ‘N.:!. 
.As we have emphasized strongl?. in our  earlier work’. these ideas are not restricted 

to complex-valued functions and one-dimensional representations of B.y: quantum theo- 
ries based on higher-dimensional. irreducible representations are equally possible [ braid 

- 

. -  



parastatistics!. However. we limit ourselves here to discussing the usual anyon case 
where. when 6 is the braid for a single, counterclockwise exchange of two particles. 
T(b)  = exp i#. 

Son. the action of diffeomorphisms in the base space. which is given by o; ,  = 
{ o(xl 1 . .  . .o (x .v ) )  for o E DZfl(R2). lifts to the covering space in such a way that if 
p ( 5 )  = -. then p ( o ? )  = o-]. Denote by IiT the stability subgroup of 3. Diffeomor- 
phisms in li-, act. as do braids. on the points ( 7 .  b )  E p - ' ( - , )  belonging to the different 
sheets in the covering space. There is thus a natural homomorphism from l<-, onto 
B.s: and T determines a CUR of I<-, in which distinct components are represented by 
(in general) distinct complex numbers. The iy-anyon representation of the semidirect 
product group G may be written on E,:? as: 

(3 . l j  f i ( 7 i .  V d l i  ~.- .y(f)@!?)  = exp[ i ( j . f ) ]* ( j j .  b:v(o)@(?) = G ( o i )  

where ( 5 .  f )  = Cj f ( x , )  when 7 = { X I . .  .x,v}, and where po is the transformed mea- 
sure given by d ~ ~ ( - ;  j = d p ( o 7 ) .  

Sext we introduce a concrete way to  label points in i., that assists in understand- 
ing the action of diffeomorphisms in this space. For x E R2. write x in Cartesian 
coordinates as (z'. z 2 ) .  Choose a typical configuration -/ = (x, j j = 1.. . . . -Y} in which 
(for now) all the xj have distinct values of their first coordinates: i.e.. z) # .rL for 
j # k. For such a choice of 7 .  we consider a set r of iy continuous. non-seif-intersecting 
and non-mutually-intersecting paths {rj { j = 1.. . . . -y}. coming in from infinity and 
terminating at the x,. For specificity we shall take all the I'j at infinity to  be parallel 
to the r2-axis, and to extend in the direction of the negative r2-axis. For a fixed con- 
figuration -/. consider two such sets of paths. r '  and r'. terminating at -:. They are 
said to  be homotopic if the individual paths r,l can be continuously deformed into the 
paths r12. without moving the terminal points x, f 3. without changing the direction 
of the paths at infinity (though the:. may be translated). and of course without any of 
the paths intersecting each other. Denote the homotopy class containing r by 1 r j,. An 
element 5 of the covering space. with p ( 3  ) = - j .  can now be identified with a ciass [ r 
whose set of termir..:: points is 7 .  

Given a configuration 7 as above. we can make a canonical choice for an element 2i 

of the covering space by letting all the rj be straight half-lines parallel to the .r'-axis. 
. or I': (see Fig. 1 ) .  Since the indexing of \ l e  call this particular set of paths ro 

the x! is to this point arbitrary. we can also label the paths and their terminal points in 
accordance with the order of their z1 coordinates. Thus we have ri < si < . . . < xi-. 
w i t h  r !  terminating at xI. The homotopy class [ rz 1 is the element of p - ' ( - ;  ) that we 
shall conventionally associate with the identity element in the braid group. 

Xow the important observation is that diffeomorphisms of the plane act not onl!. 
on the configurations -i but on the sets of paths r. since these also lie in the plane. It is 
also evident that a diffeomorphism that becomes trivial at infinity respects homotopy 
equivalence as we halve defined it.  so that i t  actually acts on [ r ] .  Thus. for fixed 7 .  
diffeomorphisms in the stability subgroup A', map the classes r! of paths terminating 
at -; into each other. 

Suppose. for specificity. that we have a fixed pair of points {xl . X L }  in  the plane. and 
consider the canonical paths ri 4x1 .x2 i constructed in accordance with Fig. 1. terminating 
at {xl.x2}. Let o be a diffeomorphism. trivial at infinit).. that exchanges the points: 
1.e.. x.1 = o(.xl) and x1 = otx2,t. One rt--aj* in which o might act o n  t h e  pair of path. rr''xz' is to map them to a pair of paths as in Fig. 2 (imagine o to have supporr 
in t h e  shaded region of the Diane). Then we may regard o as implementing a sinele 

{ X I  ..... X K }  



counterclockwzse exchange of x1 and x2. and associate with this diffeomorphism the 
corresponding generator b12 in the braid group. Alternativel?;, a diffeomorphism may 
implement a clockwise exchange of the points. as in Fig. 3. IVith such a diffeomorphism. 
we associate the inverse braid group generator b;;. Clearly a group homomorphism is 
defined in this manner, from the stabiiity subgroup fi-, of DZfl(R2) onto the braid 
group. The example generalizes in the obvious way to iV-particle configurations in R2. 
11.e denote the homomorphism by h, : A'? - B s .  and write h,(o) = b for the braid 
associated with 0. 

Figure 1. For 7 = {XI.. . . .x,v}. a canonical choice rl, of paths { rl } terminating at ( x I } .  

2 

1 + X 

8 I 

x 2  

0 . .  

I I I  
I I I  
I D I  

I 8  

0 . .  

Figure 2. .A diffeomorphism with support inside the indicated region moves the paths to 
a different homotopy class. implementing a single counterclockwise exchange of two points 
labeled originally as in Fig. 1. 



1 

Figure 3. .A diffeomorphism implementing a single clockwise exchange. as distinct from t h e  
counterclockwise exchangc of Fig. 2. 

I 
I I 
I 
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The above provides a faithful mapping from Bh: to the homotopy classes [ r ;. Then 

we can write T ( T )  in place of T(b) .  when b is the braid that takes [ r';] to [ r 1 .  
\\,'e shall next make use of this picture to define the anyon creation field L**. mapping 

'H.tq to and satisfying the desired equations (2.12). To describe the way that 
such an anyon field acts, we introduce one more important convention: a way to denote 
the procedure for adding a single anyonic particle a t  x. not merely to an .Y-anyon 
configuration, but to  an element of the *'V-anyon covering space. Doing this. of course. 
u-ill break the homotopy equivalence, because points on many different sheets of the 
i -1. -C 1 )-anyon covering space correspond to  the introduction of a a new anyon at a 
point x. JYe therefore need a standard way to make the choice. 

Given the homotopy class [ r;]. and the additional point x. define a new set of 
by placing the point x in the plane among the -Y paths comprising ra. paths Tx 

and drawing a new path r ,v+l  that terminates at x. and comes in from infinity to the 
right of the .Y existing paths without intersecting them (see Fig. 4). The homotopy 

] is thus defined. specifying a particular element of the (JY + 1)-anyon class !r, 
covering space. We stress the rather subtle point that [rP1 ""'""}] is defined by this 
procedure as a homotopy class: but in order to define it. we needed to  use not merely 
the class [r; 1. but the actual element r; within that class. 

\\.e now have all we need to construct the anyon creation field acting on the Hilbert 
space W.:?. in close analogy with the second-quantized. nonrelativistic Bose and Fermi 
creation fields discussed above. Roughly speaking. we can already see from Figs. 1-1 
how the q-commutator will enter. Suppose (xl .x2} are as in Fig. 2 .  If we first create 
ail anyon at x2. we obtain the path r l  = rix2j. which is a straight line parallel to the 
.?.'-axis. terminating at x2. Creating the next anyon at xl gives us the paths in the 
class ! re2'  1 .  Such a pair of paths is depicted in Fig. 2 .  corresponding to the braid 
group generator. On the other hand. if we first create the anyon at X I .  we consider the 
path rl = rAx1". Creating the next anJ-on at x2 gii-es us the paths in the class [ r x 2  ,. 
which for this example is just the class To { x 1 + x 2 1  associated with the identity element of 
the braid group. There will thus be a relative phase q = T t b l J )  occurring in the two 
products of creation operators. where T is the one-dimensional unitar!. representation 
of t h e  braid group characterizing the anyons in the hierarchy. 

{ X I  ..... X.V} 

{ X I  ..... X'V) 
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l lore  precisely. consider an equivariant wave function 6 , ~  in 'H,:?. IVe write 6.y = 
@,y( 1. rj. where 7 = {x~.. . . . x s }  and the paths in r terminate at the points in -, . For 
fixed 7 it is convenient to regard 4,s as defined for the zndirtdual sets of paths r. but 
constant on the equivalence classes [I' 1. The  equivariance of &.v is put in b>- requiring 
thp.t if  r is obtained from r; by the braid b = h,(o). then 

or with an alternative notation. G , v ( ~ .  r )  = T(r)&.,r(,. r;). That is. specifying 4.y for 
i almost i all values on a single sheet in the covering space S.Y.  defines its values on an!. 
other sheet. \Ye see now that the condition we imposed earlier in defining ra. that 
all the x, have distinct values of their first coordinates. can be regarded merely as the 
omission of an arbitrary boundary (having measure zero) associated with crossing from 
one sheet to the next in i , v .  

Sow we write. in analogy with Eqs. (2.8) and (2 .9) .  the anyon annihilation and 
creation fields. Let ;k denote the sequence ( 6 . ~ ) .  -\- = 0.1.2. .  . .. with $ Y  5 Et?. and 
( $ . & I  = xy(&.y.$.\-) < x. \ \ e  define 



f 

where as before x, means that the point xJ is omitted. This dehnes i t . t t x )Q ,~  anu 
[L*=(x)$]v  on one sheet. kVe extend the definitions in ( 3 . 3 )  to the other sheets of 5, 
(in general. infinitely many of them) using the equivariance property ( 3 . 2 ) .  

Comparing 13.3) with (2.8) and (2.9).  note that the factors d m  and 1;fi 
no longer appear. This is because. in the case of anvons. the inner product is defined 
with respect to integration in the base space A.v (or. equivalently. over just one sheet 
of i . v ) ,  It must be defined so. as the number of sheets in the covering space is not .Y! 
any longer. but is now infinite. 

IVhen all but one of the ,Y-particle components of 6 vanish, we see from (3 .3 )  that 
I... : RA,P,, --.+ and L.'. : %,:? 3 .H<,P,,. In fact. v and L*= defined in this way are just 
the intertwining fields obeying Eqs. (2.12). 

Finally, we are in a position to determine, by straightforward calculation from ( 3 . 3 ) .  
what commutation relations the anyon fields we have obtained satisfy with each other. 
The answer is just the q-commutation relations given by Eqs. (2.1). where q is the phase 
specified by the representation T of the braid group generator. Furthermore. we recover 
the operators pfx) and J(x) in terms of the anyon fields as the desired expressions given 
by (1.1). with J( $.v, p(x)$,v) d2s = X m .  

4 .  CONCLUSION 

To sum up we have proposed a way. beginning with a collection of diffeomorphism group 
representations. to classify them into hierarchies based on the existence of intertwining 
field operators. Our method works not only for the .Y-particle Bose and Fermi represen- 
tations. .Y = 0.1.2. .  . . (by which it is motivated). but for the .Y-anyon representations 
of Di'(R2) that we previously obtained. Anyons with distinct values of the phase 
characterizing the intermediate statistics belong naturally to different hierarchies. 

Then we obtain q-commutation relations for the resulting anyon fields as a con-  
sequence of our prescription. .Assuming little more than the fundamental role played 
bs* CCRs of the diffeomorphisrn group, we thus arrive by entirely natural means at a 
framework for treating the many-anyon system. Our approach provides an alternative to 
beginning with the introduction of fields obeying noncanonical commutation relations. 
or to beginning with particles obeying canonical fields and introducing a Chern-Simons 
potential to describe the anyons. 

I1.e expect this method to generalize to still other hierarchies of diffeomorphism 
group representations. such as those describing extended objects like quantized vortex 
loops and filaments. 
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