Texture Development During Equal Channel Angular Forging of BCC Metals

PDF Version Also Available for Download.

Description

Equal channel angular forging (ECAF) has been proposed as a severe plastic deformation technique for processing metals, alloys, and composites [e.g. Segal, 1995] (Fig. 1). The technique offers two capabilities of practical interest: a high degree of strain can be introduced with no change in the cross-sectional dimensions of the work-piece, hence, even greater strains can be introduced by re-inserting the work-piece for further deformation during subsequent passes through the ECAF die. Additionally, the deformation is accomplished by simple shear (like torsion of a short tube) on a plane whose orientation, with respect to prior deformations, can be controlled by ... continued below

Physical Description

6 pages

Creation Information

Agnew, S.R. August 8, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 44 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Equal channel angular forging (ECAF) has been proposed as a severe plastic deformation technique for processing metals, alloys, and composites [e.g. Segal, 1995] (Fig. 1). The technique offers two capabilities of practical interest: a high degree of strain can be introduced with no change in the cross-sectional dimensions of the work-piece, hence, even greater strains can be introduced by re-inserting the work-piece for further deformation during subsequent passes through the ECAF die. Additionally, the deformation is accomplished by simple shear (like torsion of a short tube) on a plane whose orientation, with respect to prior deformations, can be controlled by varying the processing route. There is a nomenclature that has developed in the literature for the typical processing routes: A: no rotations; B{sub A}: 90 degrees CW (clockwise), 90 degrees CCW (counterclockwise), 9O degrees CW, 90 degrees CCW...; Bc: 90 degrees CW, 90 degrees CW, 90 degrees CW...; and C: 180 degrees, 18 0 degrees.... The impact of processing route on the subsequent microstructure [Ferasse, Segal, Hartwig and Goforth, 1997; Iwahashi, Horita, Nemoto and Langdon, 1996] and texture [Gibbs, Hartwig, Cornwell, Goforth and Payzant, 1998] has been the subject of numerous experimental studies.

Physical Description

6 pages

Notes

OSTI as DE00009885

Source

  • 12th International Conference on Textures of Materials (ICOTOM12), Montreal, Quebec (CA), 08/08/1999--08/13/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ORNL/CP-103540
  • Report No.: KC 02 01 05 0
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 9885
  • Archival Resource Key: ark:/67531/metadc792594

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 8, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Nov. 2, 2017, 3:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 44

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Agnew, S.R. Texture Development During Equal Channel Angular Forging of BCC Metals, article, August 8, 1999; Tennessee. (digital.library.unt.edu/ark:/67531/metadc792594/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.