ELECTROLYTIC IN PROGRESS DRESSING (ELID) FOR HIGH-EFFICIENCY, PRECISION GRINDING OF CERAMIC PARTS: An Experiment Study

B. P. Bandyopadhyay

CERAMIC TECHNOLOGY FOR ADVANCED HEAT ENGINES

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ELECTROLYTIC IN PROGRESS DRESSING (ELID)
FOR HIGH-EFFICIENCY, PRECISION GRINDING OF CERAMIC PARTS:
An Experimental Study

B. P. BANDYOPADHYAY
University of North Dakota,
Department of Mechanical Engineering
Grand Forks,
ND 58202-8359

Prepared for the
U.S. Department of Energy
Assistant Secretary for Energy Efficiency and Renewable Energy
Office of Transportation Technologies

for
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract DE-AC05-840R21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
TABLE OF CONTENTS

Summary 1

1. Introduction 2

2. The ELID Grinding Principle 3

2.1 Steps Involved in Electrolytic Dressing
2.2 Electrical Behavior during Electrolytic Dressing
2.3 The ELID Grinding Mechanism

3 Experimental Set Up

3.1 The Grinding Machine
3.2 Grinding Wheels
3.3 Grinding Fluid
3.4 Power Supply
3.5 Surface Finish Measurements

4. Materials

5. Results - Part I: Effects of Process Variables

5.1 Influence of Bond Materials
5.2 Influence of Power Source
5.3 Influence of Abrasive Friability
5.4 Influence of Grinding Fluid
5.5 Part I Conclusions

6. Results - Part II: Applications of ELID Grinding

6.1 Rough and Efficient Grinding
6.2 Mirror Finish Grinding
6.3 Part II Conclusions

7. Acknowledgements

8. References

9. Appendix

9.1 Representative pictures of the ground specimens
9.2 Representative video microscope pictures of the ground specimens.
9.3 ELID grinding results from Fuji Die Co. Ltd. (internal company report)
SUMMARY

This report describes Electrolytic In-process Dressing (ELID) as applied to the efficient, high-precision grinding of structural ceramics, and describes work performed jointly by Dr. B. P. Bandyopadhyay, University of North Dakota, and Dr. H. Ohmori, of the Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan, from June through August, 1994. Dr. Ohmori pioneered the novel ELID grinding technology which incorporates electrolytically-enhanced, in-process dressing of metal bonded superabrasive wheels. The principle of ELID grinding technology will be discussed in the report as will its application for rough grinding and precision grinding. Two types of silicon nitride based ceramics (Kyocera's Si₃N₄, and Eaton's SRBSN) were ground under various conditions with ELID methods. Mirror surface finishes were obtained with # 4000 mesh size wheel (average grain size = 4 μm). The results of these investigations will be presented in this report. These include the effects of wheel bond type, type of power supply, abrasive grit friability, and cooling fluid composition. The effects of various parameters are discussed in terms of the mechanisms of ELID grinding, and in particular, the manner of boundary layer formation on the wheels and abrasive grit protrusion.
1. INTRODUCTION

Interest in advanced ceramics has increased significantly in recent years due to their unique physical properties and to significant improvements in their mechanical properties and reliability [1]. The advantages of ceramics over other materials include high hardness and its retention at elevated temperatures, light weight, chemical stability, and superior wear resistance. Despite these advantages, use of structural ceramics in various applications has not increased rapidly owing in part to the high cost of machining these materials.

The cost of grinding may account for up to 75% of the component costs for structural ceramics compared to 5% to 15% for metallic components [2]. The primary cost drivers in grinding structural ceramics are low efficiency due to low removal rates, high superabrasive wheel wear rates, and long wheel dressing time. Manufacturing engineers tried to solve the problem in the traditional way utilizing highly rigid grinding machines and tough metal-bonded superabrasive wheels. That research led to the successful development of cast iron-bonded diamond grinding wheels [3,4]. These wheels are manufactured by mixing diamond abrasive, cast iron powder or fibers, and a small amount of carbonyl iron powder, by compacting it to the desired form under the pressure of 6-8 ton/cm² and then by sintering it in an atmosphere of ammonia [5]. Higher material removal rates have been reported for grinding with these wheels; however, that type of wheel is not suitable for long-term, continuous grinding for the following reasons:

1) Tougher metal-bonded wheels will exhibit poor dressing ability. Therefore, efficient and stable grinding will be difficult to achieve simultaneously.

2) High material removal rate grinding will promote wear of the abrasive grains. Therefore, more frequent redressing of the wheel will be required.

3) While machining metals such as steel, wheel loading (embdenment of swarf) will be caused.

Considerable research on ceramic machining has been conducted at the Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan. RIKEN was established in 1917. It is a nonprofit institute supported by the government's Science and Technology Agency. The institute is a research complex consisting of about fifty laboratories of various disciplines. Research is conducted under active collaborations with universities, other research institutions, and industries.

In 1988, Dr. Hitoshi Ohmori of RIKEN pioneered the novel grinding technology known as Electrolytic In-process Dressing (ELID) and is now senior scientist for the ELID project. The ELID technique can provide in-process dressing of tough, metal-bonded
superabrasive grinding wheel by the electrolytic action. In-process dressing controls the effectiveness of abrasive protrusions before and during the grinding of ceramic materials.

ELID grinding research is performed at one of the Materials Fabrication Laboratories in RIKEN. Cast Iron Fiber Bonded Diamond (CIFB-D) wheels were also developed at this laboratory. ELID grinding research is performed in two branches of RIKEN. One branch is at Wako city, which is the main campus of RIKEN, and the other branch is at Itabashi. The funding for this research project is obtained from various industries and there is no contribution from any government agency. However, the salaries of the researchers are paid by RIKEN. 40 (forty) companies are currently participating in this research project. The contribution from each company is 500,000 yen ($5000.00, with the present exchange rate $1 = 100 yen). Therefore, the annual budget for the project is 2 million yen or $200,000.00. The ELID research group organizes seminars three times a year and to which it invites representatives from various industries.

Dr. Bandyopadhyay participated in the ELID grinding research program at RIKEN, Japan, from June until August 1994. During this time he was mainly involved in the ultra precision ELID grinding of two types of silicon nitride specimens on a rotary surface grinder. He also worked with ELID systems on a horizontal surface grinder and a horizontal spindle in-feed grinder. These grinding machines were available at the Itabashi Campus (the experiments were conducted mainly at the WAKO campus) of RIKEN. Dr. Bandyopadhyay carried with him two types of silicon nitride specimens for study. One of them was Kyocera's Si₃N₄ and the other one was Eaton's SRBSN. Specimens were in the form of modulus of rupture specimens of rectangular cross section. These two types of silicon nitride based ceramics were ground with the ELID grinding technology under various grinding conditions.

This rest of this report will discuss the principle and mechanisms of ELID grinding, various applications of ELID grinding technology, and the results of the ELID grinding experiments on silicon nitride specimens.

2. THE ELID GRINDING PRINCIPLE

The concept of in-process dressing in a crude form was proposed by Nakagawa and Suzuki [4]. Those authors studied the effects of in-process dressing with a dressing stick. The grinding wheel was dressed at the beginning of each stroke. The authors reported higher material rates and steady state grinding with the in-process dressing.

Dressing methods which use electric power are not new. The principle is based on "electro-chemical grinding" [6]. The electrolytically-conductive or metal-bonded wheel is made the anode. The grinding wheel is dressed because an electrolysis process occurs between the anode and a fixed graphite cathode. A
bronze-bonded diamond grinding wheel was dressed using this technology [7]. However, the authors used a sodium chloride solution as an electrolyte and this solution is harmful to machine tools.

A commercial in-process dressing grinding machine, based on the electro-discharge principle, is currently available. The machine is sold under the trade name COMMEC system. The system uses an electro-conductive grinding wheel which is energized with a relatively small amount of pulse current. Current flows from the wheel to the chuck through the coolant. The flow of ions creates hydrogen bubbles in the coolant creating an electric potential across them. When the potential becomes critical, a spark jumps across the bubble. These sparks will melt the material as it begins to clog the wheel and thus provides in-process dressing [8]. Expensive COMMEC systems do not provide continuous protrudent grains from the superabrasive wheels. Therefore, the method is not suitable for ultrafine grinding of materials; especially, with a micro-grain sized grinding wheel.

The ELID grinding method was first proposed by Dr. Ohmori in 1988. A number of papers describing the advantages of ELID grinding have been published [9-13]. The ELID system's essential elements are metal bonded grinding wheel, electrolytic power source, and electrolytic coolant. The most important feature of this system is that no special machine is required. Power sources from conventional electro-discharge or electro-chemical machines can be used for this method. Also, conventional grinding machines can be used for this method.

Figure 1 shows the principle of the ELID grinding process. The grinding wheel is connected to the positive terminal of a power supply with a smooth brush contact, and a fixed electrode is made negative. The electrode is made from copper having 1/6 of the wheel periphery length and width of 2 mm more than the wheel rim thickness. The gap between the wheel and the electrode can be adjusted by a mechanical means. A clearance of approximately 0.1 mm is kept between the positive and negative poles. The electrolysis occurs upon the supply of a suitable grinding fluid and an electric current. The experimental set up is shown in Fig. 2.

2.1 Steps Involved in Electrolytic Dressing:

The ELID grinding consists of the following three steps:

i) Precision truing of the micro-grain grinding wheel.

ii) Pre-Dressing process of the wheel by electrolysis.

iii) Grinding process with electrolytic in-process dressing.

Precision truing is carried out so that the initial eccentricity is reduced to a level comparable or less than that of
the average grain size of the wheel. Therefore, truing is very important when ultraprecision grinding is performed with a micro-grit-size wheel.

The second step is pre-dressing to achieve protrusion of the grains. This step is essential for proper grinding operation. Pre-dressing is performed at a slower speed and typically takes about 10-15 minutes.

The in-process dressing (third process) occurs whilst grinding. The conditions of electrolysis of the last two processes differ due to the changing wheel surface condition during electrolysis.

2.2 Electrical Behavior during Electrolytic Dressing:

The relationship between electric current, voltage, and time during electrical dressing is shown in Fig. 3. When the predressing starts (point 1), the surface of the trued wheel has good electrical conductivity. Therefore, the current is as high as that set on the power source, and the voltage between the wheel and the electrode is low. After several minutes, the cast iron bond material, which is mostly ionized into Fe2+, is removed by electrolysis. The ionized Fe reacts to form either Fe(OH)\textsubscript{2} or Fe(OH)\textsubscript{3} according to the following:

\[
\begin{align*}
\text{Fe} & \rightarrow \text{Fe}^{2+} + 2e^- \quad (1) \\
\text{Fe}^{2+} & \rightarrow \text{Fe}^{3+} + e^- \quad (2) \\
\text{H}_2\text{O} & \rightarrow \text{H}^+ + \text{OH}^- \quad (3) \\
\text{Fe}^{2+} + 2\text{OH}^- & \rightarrow \text{Fe(OH)}_2 \quad (4) \\
\text{Fe}^{3+} + 3\text{OH}^- & \rightarrow \text{Fe(OH)}_3 \quad (5)
\end{align*}
\]

These hydroxides further change into oxides (e.g., Fe\textsubscript{2}O\textsubscript{3}) during electrolysis. After these reactions have occurred and insulating substances grow on the wheel surface, its electrical conductivity will be reduced. The current decreases and the working voltage becomes as high as that which was originally set as the open circuit voltage (denoted by 2).

2.3 The ELID Grinding Mechanism

The various stages of ELID are shown in Fig. 4. At the beginning, grinding is performed with the pre-dressed wheel and the protrudent grains grind the workpiece. With time, the grains and the oxide layer begin to wear. The wear of the oxide layer causes an increase in electro-conductivity of the wheel's surface. Thus, the electrolysis increases (denoted by 3 in Fig. 3) and the oxide layer is recovered. The protrusion of the grains remains constant. For high-efficiency ELID grinding (rough grinding) no isolating
layer is required. However, for mirror finish ELID grinding a relatively thick oxide layer seems to work better.

3. EXPERIMENTAL SET UP

3.1 The Grinding Machine

An ELID system can easily be adapted to work on a conventional grinding machine. The following items are required to develop the system: a negative electrode, a brush, a specific type of metal-bonded wheel, and a specific type of grinding fluid.

The current experiments were conducted on a vertical rotary surface grinder. The spindle was direct belt-driven by a 5.5 kW motor. Spindle speed was regulated with an inverter. The spindle of the machine was mounted on hydrostatic oil bearings. The table feed was controlled by a DC tachometer-generator connected to a reduction motor. Such a system allowed continuous feed adjustment. The workpiece was mounted on a plate which was in turn clamped in the fixture on the table. A copper cathode which had 1/6 the area of the entire wheel surface was used for the electrical dressing.

3.2 Grinding Wheels

Cup-type Cast Iron Fiber Bonded (CIFB) diamond wheels with various grit sizes were used to study grit size effects on surface finish. The diameter of the wheels was 200 mm. The wheel grit sizes we used are given in Table I.

Table I: Grain Size of Used Diamond Grinding Wheels.

<table>
<thead>
<tr>
<th>Mesh Size</th>
<th>Grain Size μm</th>
<th>Average Grain Size μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>#325</td>
<td>40 - 90</td>
<td>63.0</td>
</tr>
<tr>
<td>#600</td>
<td>20 - 30</td>
<td>25.5</td>
</tr>
<tr>
<td>#1200</td>
<td>8 - 16</td>
<td>11.6</td>
</tr>
<tr>
<td>#2000</td>
<td>5 - 10</td>
<td>6.88</td>
</tr>
<tr>
<td>#4000</td>
<td>2 - 6</td>
<td>4.06</td>
</tr>
<tr>
<td>#6000</td>
<td>1.5 - 4</td>
<td>3.15</td>
</tr>
<tr>
<td>#8000</td>
<td>.5 - 3</td>
<td>1.76</td>
</tr>
</tbody>
</table>

3.3 Grinding Fluid

Noritake AFG-M Grinding fluid was used diluted to 1:50 in these experiments. The pumping rate of the fluid was 20-30 lit/min.

3.4 Power Supply

A direct current pulse generator was used as a power supply. The power supply has a open voltage of 60 V (square wave) with a peak current of 10 A. The pulse width can be adjusted, and in the experiment 5 μs on-time and off-time was used.
3.5 Surface Finish Measurements

The surface finish was measured by the Mitutoyo 501 surface roughness measuring instrument using a 5 micron diamond stylus. For surface characterization of the ground specimens video microscope was used. The system consists of a Olympus microscope model OVM 1000 NM (along with OVM-SAD), Ikegami Monitor and a video printer from Mitsubishi color video copy processor SCT-CP 120. The total cost of the system is 1 million yen ($10,000.00) with two lenses magnification 100 and 1000. Lenses each cost about 100,000 yen ($1000.00). The operating cost is nominal, cost of one picture is 40 yen (40 cents). Some representative pictures are provided later in the report. Because of limited lens quality the images were not clear.*

[* Note: In previous investigations of ground ceramic surfaces, conducted with a Hitachi S-800 scanning electron microscope at Oak Ridge National Laboratory, we found that a magnification of 300X to 700X was optimum.]

The ground specimens (a small section from each sample) were sent to another institute for Scanning Electron Microscopy (SEM) and Atomic Force Microscope (AFM) studies. The results of that work were not available at this time of this report.]

4. MATERIALS

Two silicon nitride materials, a sintered reaction bonded silicon nitride (Eaton's SRBSN), and a cast and sintered silicon nitride (Kyocera's Si₃N₄) obtained from a commercial vendor were ground. Specimens were in the form modulus of rupture specimens of rectangular cross-section. Their nominal dimensions were as follows:

Kyocera's silicon nitride: 60 mm * 5 mm * 5 mm.
EATON's SRBSN: 100 mm * 10 mm * 10 mm.

5. RESULTS - PART I: Effects of Process Variables on ELID Grinding

The results of our ELID grinding tests are presented in two parts. Part I describes the effects on grinding properties such as efficiency, accuracy and quality due to the different types of metal bonded wheels, electrolytic power source, grinding fluid, and abrasive friability. Part 2 describes various applications of ELID grinding.

5.1 Influence of Bond Materials.

The effects of three kinds of metal bonded wheels, cast iron fiber bonded (CIFB), cobalt bonded (CB), and bronze bonded (BB), were studied [12]. Figure 5 shows the effect of bond materials on the dressing current. A CIFB wheel has the type of electric behavior which indicates easy isolation of the wheel surface, i.e.
the working current can easily decrease. In contrast, a CB wheel showed relatively constant current during dressing, and a BB wheel showed an almost constant current. Figure 6 shows the change in the wheel diameter before and after the dressing. A CIFB wheel has a thick isolating layer consisting of the oxides and hydroxides generated on the wheel surface. The thickness is checked by measuring the wheel diameter with a micrometer before and after dressing. A BB wheel has a thin isolating layer, and a CB wheel has an isolating layer between those extremes.

For high-efficiency grinding no isolating layer is required. This condition will provide a high dressing rate and high abrasive protrusion. For ELID mirror-surface grinding a relatively thick oxide layer is required. Therefore, BB bonded wheels are recommended for rough grinding and CIFB wheels should be used for mirror-finish grinding. However, our investigations have shown that a CIFB wheel can be used both for rough and mirror finish grinding.

After 30 minutes of pre-dressing, each wheel (#140 metal bonded CBN wheel) was tested for efficient grinding. Figure 7 shows the difference in the normal component of the grinding force for the three bond materials. It is clear from the figure that a wheel having a thinner isolating layer has a lower grinding resistance (e.g., the BB wheel). The grinding force was maximum for the CIFB wheel.

5.2 Influence of Power Source

The effects of using three types of power sources were studied: one using a DC (direct current)- pulse, one using DC-plain (constant voltage), and one using AC (alternate voltage) [12]. Figure 8 shows the difference in dressing current due to the type of power source. The DC-plain produced the sharpest decrease in the dressing current. On the other hand, AC caused the smallest decrease in current.

Figure 9 shows the difference in the isolating layer and the etched layer thickness during the initial 20 minutes of dressing. The DC-plain caused the greatest thickness, the AC the least. The etched layer was obtained by measuring the change in wheel diameter after the dressing and scrapping the isolating layer. Figure 10 shows the effects of the power source on the normal component of the force. The DC-plain source exhibited the highest grinding force because the thick isolating layer reduced the effectiveness of the abrasive action. If a DC-plain source is applied to a CB or BB wheel, it should be effective because those wheels do not generate much of an isolating layer (see Fig. 6).

Differences in the dressed wheel surface produce differences in the surface roughness of the ground specimens. When ELID grinding was performed using a #4000 mesh size wheel, the AC source provided the worst surface finish and the DC-pulse provided the best.
Figure 11 shows the changes in the isolating layer thickness which occur with time and pulse width. A pulse width of 2 μs generated the thickest isolating layer during an electrical dressing of 20 min. No significant differences were produced by pulse widths of 8 micro seconds and 4 micro seconds. In both the cases tap water was used. A thick isolating layer of approximately 24 μm was generated under 2 μs pulses, but when 4 or 8 μs were applied, an isolating layer of 5 micron was generated.

5.3 Influence of Abrasive Friability

Influence of abrasive friability was investigated by using four steel-bonded wheels having four kinds of #140 diamond abrasives: MBG-660, MBG II, MBG-600, and RVG.

The changes in normal grinding force, under conventional grinding conditions, which are produced by grinding wheels having different abrasive friabilities are shown in Fig. 12. The lowest grinding force was obtained with the RVG wheel, which has the highest friability. After a stock removal of 5000 mm³, MBG 660 wheel, which had the lowest friability, exhibited the highest force. Thus, the grinding force corresponded to relative friability. Figure 13 shows the changes in the normal grinding force using the same wheels with ELID grinding. With the application of ELID, all the grinding forces were reduced, although the order of the grinding force remained same as under the conventional grinding. This is because ELID can provide protrusions of any kind of diamond abrasives, thereby reducing the grinding force.

5.4 Influence of Grinding Fluid on ELID Finish Grinding

The influence of grinding fluids was investigated while finish ELID grinding. Figure 14 shows the change in the dressing current while using two different types of grinding fluids. Fluid 1 was diluted with tap water with a lower percentage of Cl- ion than fluid 2. The properties of these two fluids are given in table 2.

Table 2 Properties of the grinding fluids used.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Ion % ppm</th>
<th>pH</th>
<th>Electrical Conductivity μS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cl⁻</td>
<td>SO₄²⁻</td>
<td></td>
</tr>
<tr>
<td>Fluid 1 with</td>
<td>8.1</td>
<td>16.8</td>
<td>8.1</td>
</tr>
<tr>
<td>tap water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid 2 with</td>
<td>26.6</td>
<td>44.0</td>
<td>7.4</td>
</tr>
<tr>
<td>ground water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With fluid 1, the current decreased more rapidly than with fluid 2. The isolating layer thickness resulting from fluid 1 was approximately 12 μm and that from fluid 2 was 2 μm. Better surface finish was obtained with the application of fluid 1.
5.5 Conclusions (Section I)

The influence of the wheel bond materials, power supplies, abrasive friability, and grinding fluid on ELID grinding performance has been discussed. Proper selection of wheel, power supply, grinding fluid improves the efficiency and precision of the ELID grinding process.

The ideal wheel surface condition required is illustrated in Fig. 15. For high efficiency grinding a thinner isolating layer is required whereas for mirror finish ELID grinding a relatively thick oxide layer is preferred.

A thinner isolating layer is formed when grinding is performed with a bronze bonded diamond grinding wheel. Therefore such a wheel will be suitable for rough grinding. The grinding force will also be less.

CIFB-D wheels are recommended for both rough and mirror finish grinding. The grinding performance can be optimized by controlling the current, pulse width of the electric supply, and the grinding fluid. Currently optimized ELID grinding parameters are not available. More research is to done especially in the area of rough grinding to optimize the ELID grinding performance.

6.0 RESULTS - PART II: Applications of ELID Grinding

6.1 Rough and Efficient Grinding

Rough and efficient ELID grinding was performed on a reciprocal surface grinder and coarse grit CIFB-D wheels (#140 and #170). A specialized power generator was used as the ELID power supply. The following ceramic materials were ground: SiC, Si₃N₄, Sialon, and WC. Figure 16 shows the normal grinding force in grinding Si₃N₄ ceramics with and without ELID. When ELID was not applied, the normal grinding force increased gradually to approximately to 450 N. On the other hand, with the application of ELID the grinding force was reduced to 200N.

Table 3 summarizes the grinding conditions used in these experiments [11]. In traverse grinding, as shown in Fig. 16, a material removal rate (MRR) of 1800 mm³/min was obtained. This is not high compared to conventional grinding. In plunge grinding, however, MRRs as high as 6000 mm³/min could be achieved with the ELID technique. Figure 17 shows the influence of ELID current on the grinding force. Higher current reduces the grinding force. But the data in Fig. 17 suggest that the difference between grinding forces will be smaller after a large amount of stock removal.
Table 3 Plunge Grinding Conditions

<table>
<thead>
<tr>
<th>Work Material</th>
<th>SiC</th>
<th>Si3N4</th>
<th>SiAlON</th>
<th>WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Velocity: m/min</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Feed Rate: m/min</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Grinding Width: mm</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Depth of cut: µm</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Removal rate: mm³/min</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>2000</td>
</tr>
<tr>
<td>Open Voltage: Volt</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Peak Current: Amp</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>On-time: µs</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Off-time: µs</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4 shows the normal grinding force obtained in ELID grinding of different work materials. WC tends to load the wheel surface with chips. Even when ELID was applied, the grinding force was higher than that of the other ceramics. The grinding force for machining SiC was found to be the lowest. This is because SiC was the most brittle material of the four ceramics we machined.

Table 4 Normal grinding force and working current for ELID grinding of different work materials

<table>
<thead>
<tr>
<th>Removal Rate mm³/min</th>
<th>SiC Fn N</th>
<th>Si3N4 Fn N</th>
<th>SiAlON Fn N</th>
<th>WC Fn N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>170</td>
<td>280</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>4000</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>6000</td>
<td>350</td>
<td>650</td>
<td>650</td>
<td>-</td>
</tr>
</tbody>
</table>

6.2 Mirror Finish Grinding

Experiments were conducted to study the effects of mesh size on the surface finish of the workpiece. The cutting conditions for this part of the experiment were: cutting speed = 21.5 m/sec, workpiece feed rate = 80 mm/min, and the depth of cut = 1 µm/pass. The results of the investigation are presented in Figs. 18 and 19. Three surface finish parameters, Ra, Rz, and Rmax [where Ra is the arithmetic mean of the departures of the roughness profile from the
mean line, Rz is the ten point height of the roughness profile, and Rmax is the maximum peak to valley height of the profile] were monitored \[14\] during this investigation. A mirror finish surface was obtained when ELID grinding was performed with a 4000 mesh size grinding wheel. Typical surface roughness profiles are shown in Fig. 20.

In the second series of experiments, the effect of cutting speeds on the surface finish (Ra) was studied. The experiments were conducted at a workpiece feed rate of 80 mm/min, and depth of cut of 1 μm/pass. The results are presented in Fig. 21 and 22. In ELID grinding, the cutting speed has no significant effect on the surface finish of the workpiece. Better surface finish was obtained with the SRBSN material than Si₃N₄ especially with rougher wheels (#325, and #600). However, with finer wheels (#4000), almost the same surface finish was obtained with both the materials. This behavior is shown in the Fig. 23.

In the third series of experiments, the effect of feed rate on the surface finish was studied. The grinding conditions for this series of experiments were cutting speed = 21.5 m/sec and the depth of cut = 1 μm/pass. The results are shown in Figs. 24 and 25. Except for the higher feed rate with the rougher wheel (#325), in ELID grinding, the feed rate had no significant effect on the surface finish. As observed previously, better surface finish was obtained with the SRBSN material than Si₃N₄ when grinding was performed with rougher wheels. However, with finer wheels (#4000) almost same surface finish was obtained with both the materials.

In the last series of experiments, the effect of diamond concentration was studied on the three surface finish parameters. The results are presented in Figs. 26, and 27. When grinding with lower diamond concentration (10 in the experiment), chatter marks were observed on the ground surface. There was a wide variation of Rmax parameter along the specimen. During grinding, the ELID current was not stable, indicating that the grinding process itself was not stable. We concluded that more burnishing was taking place instead of grinding under this condition. We therefore do not recommend using a 10 concentration wheel in this process.

6.3 Part II Conclusions

This section describes a mirror finish surface grinding technique with electrolytic-in-process (ELID) dressing using micro-grit cast iron fiber bonded wheels. Experiments were conducted on a rotary surface grinder. The influence of mesh size, grinding speeds, feed rate, and diamond wheel concentration on surface finish were also studied in this investigation. We concluded:

1. Employment of the ELID system produced a mirror finish workpiece.
2. This technology will find wide application in the optical and semiconductor industry, such as mirror finishing of silicon wafers, many kinds of fine ceramics, ferrite and glass.

3. The ELID grinding system has been successfully applied to the following grinding operations: machining center, surface grinder, in-feed grinder, lap grinder, and internal grinder.

ACKNOWLEDGEMENTS

Research sponsored by the United States Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion system Materials Program, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

REFERENCES

8. NICCO Creep Feed Grinders: Catalog from Carl Citron Inc., NJ.

LIST OF FIGURES

Figure 1 Principle of ELID Grinding
Figure 2 Experimental Set Up
Figure 3 Behavior of Electrolytic Dressing
Figure 4 Stages of In-Process Electrolytic Dressing
Figure 5 Difference in Dressing Current due to Wheel Bond Material
Figure 6 Difference in Wheel Diameter Before and After Pre-Dressing
Figure 7 Difference in Grinding Force Due to Wheel Bond Material
Figure 8 Difference in Dressing Current due to Power Source
Figure 9 Difference in Isolating Layer and Etched Layer Thickness due to Power Source
Figure 10 Difference in Grinding Force due to Power Source
Figure 11 Change in Insulating Layer Thickness according to Time and Pulse Width
Figure 12 Difference in Grinding Force due to Abrasive Friability under Ordinary Grinding
Figure 13 Difference in Grinding Force due to Abrasive Friability under ELID Grinding
Figure 14 Difference in Working Current due to Grinding Fluid
Figure 15 Ideal Wheel Conditions
Figure 16 Changes in Normal Grinding Force Wheel: # 170 CIFB-D, Work: Si3N4 (50*50)
Figure 17 Influence of Current on Grinding Force for Si3N4
Figure 18 The Effect of Wheel Grit Size on Surface Finish
Figure 19 The Effect of Wheel Grit Size on Surface Finish
Figure 20 Typical Surface Roughness Pattern
Figure 21 The Effect of Cutting Speed on Surface Finish
Figure 22 The Effect of Cutting Speed on Surface Finish
Figure 23 The Effect of Wheel Grit Size on Surface Finish
Figure 24 The Effect of Feed Rate on Surface Finish
Figure 25 The Effect of Feed Rate on Surface Finish
Figure 26 The Effect of Diamond Concentration on Surface Finish
Figure 27 The Effect of Diamond Concentration on Surface Finish
Figure 1. Principle of EHD Grinding

A. System construction

B. Electrode detail
Figure 2. Experimental Set Up
Wheel: Cup Type φ200 X 5, #4000 C1FB-D
Condition: $E_v = 60$V, $I_p = 10$A, $\tau_{on} = \tau_{off} = 5$ µs
Rotation: 600 rpm, Electrode: 1/6 copper, Gap: 0.1 mm
(electrode area is 1/6 of wheel surface)

Figure 3. Behavior of Electrolytic Dressing
Upon completion of pre-dressing, a constant grain protrusion is obtained during ELID grinding. Oxide layer removed during grinding.

Figure 4. Stages of In-Process Electrolytic Dressing
Figure 5. Difference in Dressing Current due to Wheel Bond Material

Figure 6. Difference in Wheel Diameter Before and After Pre-Dressing

Figure 7. Difference in Grinding Force Due to Wheel Bond Material
Figure 8. Difference in Dressing Current due to Power Source

Figure 9. Difference in Isolating Layer and Etched Layer Thickness due to Power Source

Figure 10. Difference in Grinding Force due to Power Source
Figure 11. Change in Insulating Layer Thickness according to Time and Pulse Width
Figure 12. Difference in Grinding Force due to Abrasive Friability under Ordinary Grinding

Figure 13. Difference in Grinding Force due to Abrasive Friability under ELID Grinding
Figure 14. Difference in Working Current due to Grinding Fluid

- Fluid 1: electric conditions: 300V, I=10A, \(r_0 = 0.05 \) \(\mu s \), electrode: copper, \(g_2 = 0.08mm \)
- Fluid 2

A. for efficient grinding
- Thinner isolating layer than abrasive protrusions

B. for mirror surface grinding

Fig. 15 Ideal Wheel Conditions
Figure 16. Changes in Normal Grinding Force Wheel:
#170 CIFB-D, Work: Si3N4 (50*50)
Figure 17. Influence of Current on Grinding Force for Si$_3$N$_4$
Wheel: Cup type CIFB-D, Diameter 200 mm
Material Silicon Nitride

[V = 21.5 m/sec, f = 80 mm/min,
t = 1 micron/pass]

Figure 18. The Effect of Wheel Grit Size on Surface Finish
Wheel: Cup type CIFB-D, Diameter 200 mm
Material: SRBSN

\[V = 21.5 \text{ m/sec}, \, f = 80 \text{ mm/min}, \]
\[t = 1 \text{ micron/pass} \]

Figure 19. The Effect of Wheel Grit Size on Surface Finish
Figure 20. Typical Surface Roughness Pattern
Wheel Cup Type: CIFB-D, Diameter 200 mm, Feed Rate 80 mm/min, D.O.C = 1 micron/pass. Material: Silicon Nitride

Figure 21. The Effect of Cutting Speed on Surface Finish
Wheel Cup Type: CIFB-D, Diameter 200 mm, Feed Rate 80 mm/min, D.O.C = 1 micron/pass. Material: SRBSN

Figure 22. The Effect of Cutting Speed on Surface Finish
Wheel: Cup type CIFB-D, Diameter 200 mm

\[V = 21.5 \text{ m/sec}, \ f = 80 \text{ mm/min}, \ t = 1 \text{ micron/pass} \]

Figure 23. The Effect of Wheel Grit Size on Surface Finish
Wheel Cup Type: CIFB-D, Diameter 200 mm,
V= 21.5 m/sec D.O.C = 1 micron/pass.
Material: Silicon Nitride

Figure 24. The Effect of Feed Rate on Surface Finish
Wheel Cup Type: CIFB-D, Diameter 200 mm,
V= 21.5 m/sec D.O.C = 1 micron/pass.
Material: SRBSN

Figure 25. The Effect of Feed Rate on Surface Finish
Figure 26. The Effect of Diamond Concentration on Surface Finish

Wheel: Cup type Diameter: 200 mm CIFB-D,
#4000 V = 21.5 m/sec, f = 80 mm/min,
D.O.C. = 1 micron/pass
Material: Silicon Nitride
Figure 27. The Effect of Diamond Concentration on Surface Finish
INTERNAL DISTRIBUTION

Central Research Library (2)
Document Reference Section
Laboratory Records Department (2)
Laboratory Records, ORNL RC
ORNL Patent Section
M&C Records Office (3)
L. F. Allard, Jr.
L. D. Armstrong
P. F. Becher
R. F. Bernal
T. M. Besmann
P. J. Blau
K. W. Boling
R. A. Bradley
K. Breder
C. R. Brinkman
V. R. Bullington
H. Cai
G. M. Caton
S. J. Chang
R. H. Cooper, Jr.
S. A. David
J. H. DeVan
J. L. Ding
M. K. Ferber
F. M. Foust
W. Fulkerson
R. L. Graves
D. L. Greene
H. W. Hayden, Jr.
E. E. Hoffman

C. R. Hubbard
M. A. Janney
D. R. Johnson (5)
D. Joslin
R. R. Judkins
M. A. Karnitz
M. R. Kass
B. L. Keyes
H. D. Kimrey, Jr.
K. C. Liu
E. L. Long, Jr.
W. D. Manly
R. W. McClung
D. J. McGuire
J. R. Merriman
T. A. Nolan
A. E. Pasto
K. P. Plucknett
M. H. Rawlins
M. L. Santella
A. C. Schaffhauser
S. Scott
E. J. Soderstrom
D. P. Stinton
R. W. Swindeman
T. N. Tiesg
B. H. West
S. G. Winslow
J. M. Wyrick
Pioneering Research Info. Ctr.
E.I. Dupont de Nemours & Co. Inc.
Experimental Station
P.O. Box 80302
Wilmington DE 19880-0302

Jeffrey Abboud
U.S. Advanced Ceramics Assoc.
1600 Wilson Blvd., Suite 1008
Arlington VA 22209

James H. Adair
University of Florida
Materials Science & Engineering
317 MAE Bldg.
Gainesville FL 32611-2066

Donald F. Adams
University of Wyoming
Mechanical Engineering Department
P.O. Box 3295
Laramie WY 82071

Andrzej Aeamski
Materials Conversion Group
236-B Egidi Drive
Wheeling IL 60090

Jalees Ahmad
AdTech Systems Research Inc.
Solid Mechanics
1342 N. Fairfield Road
Dayton OH 45432-2698

Yoshio Akimune
NISSAN Motor Co., Ltd.
Materials Research Laboratory
1 Natsushima-Chō
Yokosuka 237
JAPAN

Mufit Akinc
Iowa State University
322 Spedding Hall
Ames IA 50011

Ilhan A. Aksay
Princeton University
A313 Engineering Quadrangle
Princeton NJ 08544-5263

Charles Aldridge
Heany Industries, Inc.
249 Briarwood Lane
Scottsville NY 14546

Joseph E. Amaral
Instron Corporation
Corporate Engineering Office
100 Royale Street
Canton MA 02021

Edward M. Anderson
Aluminum Company of America
N. American Industrial Chemical
P.O. Box 300
Bauxite AR 72011

Norman C. Anderson
Ceradyne, Inc.
Ceramic-to-Metal Division
3169 Redhill Avenue
Costa Mesa CA 92626

Don Anson
BCL
Thermal Power Systems
505 King Avenue
Columbus OH 43201-2693

Thomas Arbanas
G.B.C. Materials Corporation
580 Monastery Drive
Latrobe PA 15650-2698

Frank Armatis
3M Company
Building 60-1N-01
St. Paul MN 55144-1000

Everett B. Arnold
Detroit Diesel Corporation
Mechanical Systems Technology
13400 Outer Drive West
Detroit MI 48239-4001

Bertil Aronsson
Sandvik AB
S-12680
Stockholm Lerkrogsvagen 19
SWEDEN
Dennis Assani
University of Michigan
Dept. of Mechanical Engineering
321 W.E. Lay, N.C.
Ann Arbor MI 48109

V. S. Avva
North Carolina A&T State Univ.
Dept. of Mechanical Engineering
Greensboro NC 27411

Patrick Badgley
Sky Technologies, Inc.
2815 Franklin Drive
Columbus IN 47201

Sunggi Baik
Pohang Institute of Sci. & Tech.
P.O. Box 125
Pohang 790-600
KOREA

John M. Bailey
Consultant
Caterpillar, Inc.
P.O. Box 1875
Peoria IL 61656-1875

Bob Baker
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Frank Baker
Aluminum Company of America
Alcoa Technical Center
Alcoa Center PA 15069

Clifford P. Ballard
AlliedSignal Aerospace Company
Ceramics Program
P.O. Box 1021
Morristown NJ 07962-1021

B. P. Bandyopadhyay
ELID Team
Wako Campus
2-1 Hirosawa Wako-shi
Saitama 351-01
JAPAN

P. M. Barnard
Ruston Gas Turbines Limited
P.O. Box 1
Lincoln LN2 5DJ
ENGLAND

Harold N. Barr
Hittman Corporation
9190 Red Branch Road
Columbia MD 21045

Renald D. Bartoe
Vesuvius McDanel
510 Ninth Avenue
Box 560
Beaver Falls PA 15010-0560

David L. Baty
Babcock & Wilcox - LRC
P.O. Box 11165
Lynchburg VA 24506-1165

Donald F. Baxter, Jr.
ASM International
Advanced Materials & Processes
Materials Park OH 44073-0002

M. Brad Beardsley
Caterpillar Inc.
Technical Center Bldg. E
P.O. Box 1875
Peoria IL 61656-1875

John C. Bell
Shell Research Limited
Thornton Research Centre
P.O. Box 1
Chester CH1 3SH
ENGLAND

M. Bentele
Xamag, Inc.
259 Melville Avenue
Fairfield CT 06430

Larry D. Bentsen
BFGoodrich Company
R&D Center
9921 Brecksville Road
Brecksville OH 44141
Tom Bernecki
Northwestern University
1801 Maple Avenue
Evanston IL 60201-3135

Charles F. Bersch
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria VA 22311

Ram Bhatt
NASA Lewis Research Center
21000 Brookpark Road
Cleveland OH 44135

Deane I. Biehler
Caterpillar Inc.
Engineering Research Materials
P.O. Box 1875, Bldg. E
Peoria IL 61656-1875

John W. Bjerklie
Consolidated Natural Gas Service Co. Inc.
Research Department
Pittsburgh PA 15222-3199

William D. Bjorndahl
TRW, Inc.
One Space Park, MS:R6-2188
Building 01, Room 2040
Redondo Beach CA 90278

Keith A. Blakely
Advanced Refractory Technologies, Inc.
699 Hertel Avenue
Buffalo NY 14207

Edward G. Blanchard
Netzsch Inc.
119 Pickering Way
Exton PA 19341

Bruce Boardman
Deere and Company Technical Ctr.
3300 River Drive
Moline IL 61265

Lawrence P. Boesch
EER Systems Corp.
1593 Spring Hill Road
Vienna VA 22182-2239

Donald H. Boone
Boone & Associates
2412 Cascade Drive
Walnut Creek CA 94598-4313

Tom Booth
AlliedSignal, Inc.
AirResearch Los Angeles Division
2525 West 190th Street
Torrance CA 90509-2960

Tibor Bornemisza
Energy Technologies Applications, Inc.
5064 Caminito Vista Lullo
San Diego CA 92130-2846

J.A.M. Boulet
University of Tennessee
Engineering Science and Mechanics
Knoxville TN 37996-2030

Leslie J. Bowen
Materials Systems
53 Hillcrest Road
Concord MA 01742

Steven C. Boyce
Air Force Office of Scientific Research
AFOSR/NA Bldg. 410
Bolling AFB DC 20332-6448

Gary L. Boyd
Ceramic Engineering Consulting
328 Sneath Way
Alpine CA 91901

Steve Bradley
UOP Research Center
50 E. Algonquin Road
Des Plaines IL 60017-6187
Michael C. Brands
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50179
Columbus IN 47201

Raymond J. Bratton
Westinghouse Science & Technology
1310 Beulah Road
Pittsburgh PA 15235

John J. Brennan
United Technologies Corporation
Silver Lane, MS:24
East Hartford CT 06108

Terrence K. Brog
Golden Technologies Company
4545 McIntyre Street
Golden CO 80403

Gunnar Broman
317 Fairlane Drive
Spartanburg SC 29302

Alan Brown
P.O. Box 882
Dayton NJ 08810

Jesse J. Brown
VPI & SU
Ctr. for Advanced Ceram Materials
Blacksburg VA 24061-0256

Sherman D. Brown
University of Illinois
Materials Science and Engineering
105 South Goodwin Avenue
Urbana IL 61801

S. L. Bruner
Ceramatec, Inc.
2425 South 900 West
Salt Lake City UT 84119

Walter Bryzik
U.S. Army Tank Automotive Command
R&D Center, Propulsion Systems
Warren MI 48397-5000

S. J. Burden
2572 Devonwood
Troy MI 48098

Curt V. Burkland
AMERCOM, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Bill Bustamante
AMERCOM, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Oral Buyukozturk
Massachusetts Institute of Technology
77 Massachusetts Ave., Room 1-280
Cambridge MA 02139

David A. Caillet
Ethyl Corporation
451 Florida Street
Baton Rouge LA 70801

Roger Cannon
Rutgers University
P.O. Box 909
Piscataway NJ 08855-0909

Scott Cannon
P.O. Box 557254
Atlanta GA 30356

Harry W. Carpenter
1844 Fuerte Street
Fallbrook CA 92028

David Carruthers
Kyocera Industrial Ceramics Company
P.O. Box 2279
Vancouver WA 98668-2279

Calvin H. Carter, Jr.
Cree Research, Inc.
2810 Meridian Parkway
Durham NC 27713
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>William C. Connors</td>
<td>Sundstrand Aviation Operations</td>
</tr>
<tr>
<td></td>
<td>Materials Science & Engineering</td>
</tr>
<tr>
<td></td>
<td>4747 Harrison Avenue</td>
</tr>
<tr>
<td></td>
<td>Rockford IL 61125-7002</td>
</tr>
<tr>
<td>John A. Coppola</td>
<td>Carborundum Company</td>
</tr>
<tr>
<td></td>
<td>Niagara Falls R&D Center</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 832</td>
</tr>
<tr>
<td></td>
<td>Niagara Falls NY 14302</td>
</tr>
<tr>
<td>Normand D. Corbin</td>
<td>Norton Company</td>
</tr>
<tr>
<td></td>
<td>SGNICC/NRDC</td>
</tr>
<tr>
<td></td>
<td>Goddard Road</td>
</tr>
<tr>
<td></td>
<td>Northboro MA 01532-1545</td>
</tr>
<tr>
<td>Douglas Corey</td>
<td>AlliedSignal, Inc.</td>
</tr>
<tr>
<td></td>
<td>2525 West 190th Street, MS:T52</td>
</tr>
<tr>
<td></td>
<td>Torrance CA 90504-6099</td>
</tr>
<tr>
<td>Keith P. Costello</td>
<td>Chand/Kare Technical Ceramics</td>
</tr>
<tr>
<td></td>
<td>2 Coppage Drive</td>
</tr>
<tr>
<td></td>
<td>Worcester MA 01603-1252</td>
</tr>
<tr>
<td>Ed L. Courtright</td>
<td>Pacific Northwest Laboratory</td>
</tr>
<tr>
<td></td>
<td>MS:K3-5</td>
</tr>
<tr>
<td></td>
<td>Richland WA 99352</td>
</tr>
<tr>
<td>Anna Cox</td>
<td>Mitchell Market Reports</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 23</td>
</tr>
<tr>
<td></td>
<td>Monmouth Gwent NP5 4YG</td>
</tr>
<tr>
<td></td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>J. Wesley Cox</td>
<td>BRL</td>
</tr>
<tr>
<td></td>
<td>1801 Maple Avenue</td>
</tr>
<tr>
<td></td>
<td>Evanston IL 60201-3135</td>
</tr>
<tr>
<td>Art Cozens</td>
<td>Instron Corporation</td>
</tr>
<tr>
<td></td>
<td>3414 Snowden Avenue</td>
</tr>
<tr>
<td></td>
<td>Long Beach CA 90808</td>
</tr>
<tr>
<td>Mark Crawford</td>
<td>New Technology Week</td>
</tr>
<tr>
<td></td>
<td>4604 Monterey Drive</td>
</tr>
<tr>
<td></td>
<td>Annandale VA 22003</td>
</tr>
<tr>
<td>Richard A. Cree</td>
<td>Markets & Products, Inc.</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 14328</td>
</tr>
<tr>
<td></td>
<td>Columbus OH 43214-0328</td>
</tr>
<tr>
<td>Les Crittenden</td>
<td>Vesuvius McDanel</td>
</tr>
<tr>
<td></td>
<td>Box 560</td>
</tr>
<tr>
<td></td>
<td>Beaver Falls PA 15010</td>
</tr>
<tr>
<td>William J. Croft</td>
<td>U.S. Army Materials Technology</td>
</tr>
<tr>
<td></td>
<td>405 Arsenal Street</td>
</tr>
<tr>
<td></td>
<td>Watertown MA 02172</td>
</tr>
<tr>
<td>M. J. Cronin</td>
<td>Mechanical Technology, Inc.</td>
</tr>
<tr>
<td></td>
<td>968 Albany-Shaker Road</td>
</tr>
<tr>
<td></td>
<td>Latham NY 12110</td>
</tr>
<tr>
<td>Gary M. Crosbie</td>
<td>Ford Motor Company</td>
</tr>
<tr>
<td></td>
<td>20000 Rotunda Drive</td>
</tr>
<tr>
<td></td>
<td>MD-2313, SRL Building</td>
</tr>
<tr>
<td></td>
<td>Dearborn MI 48121-2053</td>
</tr>
<tr>
<td>Floyd W. Crouse, Jr.</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td></td>
<td>Morgantown Energy Technology Ctr</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 880</td>
</tr>
<tr>
<td></td>
<td>Morgantown WV 26505</td>
</tr>
<tr>
<td>John Cuccio</td>
<td>AlliedSignal Engines</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 52180, MS:1302-2Q</td>
</tr>
<tr>
<td></td>
<td>Phoenix AZ 85072-2180</td>
</tr>
<tr>
<td>Raymond A. Cutler</td>
<td>Ceramatec, Inc.</td>
</tr>
<tr>
<td></td>
<td>2425 South 900 West</td>
</tr>
<tr>
<td></td>
<td>Salt Lake City UT 84119</td>
</tr>
<tr>
<td>Stephen C. Danforth</td>
<td>Rutgers University</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 909</td>
</tr>
<tr>
<td></td>
<td>Piscataway NJ 08855-0909</td>
</tr>
</tbody>
</table>
Sankar Das Gupta
Electrofuel Manufacturing Co.
9 Hanna Avenue
Toronto Ontario MGK-1W8
CANADA

Frank Davis
AlliedSignal Aerospace Company
7550 Lucerne Drive, #203
Middleburg Heights OH 44130

Robert F. Davis
North Carolina State University
Materials Engineering Department
P.O. Box 7907
Raleigh NC 27695

George C. DeBell
Ford Motor Company
Scientific Research Lab
P.O. Box 2053, Room S2023
Dearborn MI 48121-2053

Michael DeLuca
RSA Research Group
1534 Claas Ave.
Holbrook NY 11741

Gerald L. DePoorter
Colorado School of Mines
Metallurgical & Materials Engr
Golden CO 80401

J. F. DeRidder
Omni Electro Motive, Inc.
12 Seely Hill Road
Newfield NY 14867

Nick C. Dellow
Materials Technology Publications
40 Sotheron Road
Watford Herts WD1 2QA
UNITED KINGDOM

L. R. Dharani
University of Missouri-Rolla
224 M.E.
Rolla MO 65401

Douglas A. Dickerson
Union Carbide Specialty Powders
1555 Main Street
Indianapolis IN 46224

John Dodsworth
Vesuvius Research & Development
Technical Ceramics Group
Box 560
Beaver Falls PA 15010

B. Dogan
Institut fur Werkstoffforschung
GKSS-Forschungszentrum Geesthacht
Max-Planck-Strasse
D-2054 Geesthacht
GERMANY

Alan Dragoo
U.S. Department of Energy
ER-131, MS:F-240
Washington DC 20817

Jean-Marie Drapier
FN Moteurs S.A.
Material and Processing
B-4041 Milmort (Herstal)
BELGIUM

Kenneth C. Dreitlein
United Technologies Research Ctr
Silver Lane
East Hartford CT 06108

Robin A.L. Drew
McGill University
3450 University Street
Montreal Quebec H3A 2A7
CANADA

Winston H. Duckworth
BCL
Columbus Division
505 King Avenue
Columbus OH 43201-2693

Bill Durako
Materials Engineering, Inc.
P.O. Box 43
Virgil IL 60182
Ernest J. Duwell
3M Abrasive Systems Division
3M Center
St. Paul MN 55144-1000

Chuck J. Dziedzic
GTC Process Forming Systems
4545 McIntyre Street
Golden CO 80403

Robert J. Eagan
Sandia National Laboratories
Engineered Materials & Processes
P.O. Box 5800
Albuquerque NM 87185-5800

Jeffrey Eagleson
Lanxide Corporation
1001 Connecticut Avenue, N.W.
Washington DC 20036

Harry E. Eaton
United Technologies Corporation
Silver Lane
East Hartford CT 06108

Harvill C. Eaton
Louisiana State University
240 Thomas Boyd Hall
Baton Rouge LA 70803

Christopher A. Ebel
Carborundum Company
Technology Division
P.O. Box 832
Niagara Falls NY 14302-0832

J. J. Eberhardt
U.S. Department of Energy
Office of Transportation Materl's
CE-34, Forrestal Building
Washington DC 20585

Jim Edler
Eaton Corporation
26201 Northwestern Highway
P.O. Box 766
Southfield MI 48037

G. A. Eiseman
Dow Chemical Company
Ceramics and Advanced Materials
52 Building
Midland MI 48667

William A. Ellingson
Argonne National Laboratory
Energy Technology Division
9700 S. Cass Avenue
Argonne IL 60439

Anita Kaye M. Ellis
Machined Ceramics
629 N. Graham Street
Bowling Green KY 42101

Glen B. Engle
Nuclear & Aerospace Materials
16716 Martincoit Road
Poway CA 92064

Jeff Epstein
Ceramic Technologies, Inc.
12739 Ashford Knoll
Houston TX 77082

Kenneth A. Epstein
Dow Chemical Company
2030 Building
Midland MI 48674

Art Erdemir
Argonne National Laboratory
9700 S. Cass Avenue
Argonne IL 60439

E. M. Erwin
Lubrizol Corporation
17710 Riverside Drive
Lakewood OH 44107

John N. Eustis
U.S. Department of Energy
Industrial Energy Efficiency Div
CE-221, Forrestal Building
Washington DC 20585
W. L. Everitt
Kyocera International, Inc.
8611 Balboa Avenue
San Diego CA 92123

Gordon Q. Evison
332 S. Michigan Avenue
Suite 1730
Chicago IL 60604

John W. Fairbanks
U.S. Department of Energy
Office of Propulsion Systems
CE-322, Forrestal Building
Washington DC 20585

Tim Fawcett
Dow Chemical Company
Advanced Ceramics Laboratory
1776 Building
Midland MI 48674

Robert W. Fawley
Sundstrand Power Systems
Div. of Sundstrand Corporation
P.O. Box 85757
San Diego CA 92186-5757

Jeff T. Fenton
Vista Chemical Company
900 Threadneedle
Houston TX 77079

Larry Ferrell
Babcock & Wilcox
Old Forest Road
Lynchburg VA 24505

Raymond R. Fessler
BIRL
1801 Maple Avenue
Evanston IL 60201

Ross F. Firestone
Ross Firestone Company
188 Mary Street
Winnetka IL 60093-1520

Sharon L. Fletcher
Arthur D. Little, Inc.
15 Acorn Park
Cambridge MA 02140-2390

Thomas F. Foltz
Textron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Renee G. Ford
Materials and Processing Report
P.O. Box 72
Harrison NY 10528

John Formica
Supermaterials
2020 Lakeside Avenue
Cleveland OH 44114

Edwin Frame
Southwest Research Institute
P.O. Drawer 28510
San Antonio TX 78284

Armanet Francois
French Scientific Mission
4101 Reservoir Road, N.W.
Washington DC 20007-2176

R. G. Frank
Technology Assessment Group
10793 Bentley Pass Lane
Loveland OH 45140

David J. Fr anus
Forecast International
22 Commerce Road
Newtown CT 06470

Marc R. Freedman
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

Douglas Freitag
Bayside Materials Technology
17 Rocky Glen Court
Brookeville MD 20833
Brian R.T. Frost
Argonne National Laboratory
9700 S. Cass Avenue, Bldg. 900
Argonne IL 60439

Lawrence R. Frost
Instron Corporation
100 Royall Street
Canton MA 02021

Xiren Fu
Shanghai Institute of Ceramics
1295 Ding-xi Road
Shanghai 200050
CHINA

J. P. Gallagher
University of Dayton Research Institute
300 College Park, JPC-250
Dayton OH 45469-0120

Garry Garvey
Golden Technologies Company Inc.
4545 McIntyre Street
Golden CO 80403

Richard Gates
NIST
Materials Bldg., A-256
Gaithersburg MD 20899

L. J. Gauckler
ETH-Zurich
Sonneggstrasse 5
CH-8092 Zurich 8092
SWITZERLAND

George E. Gazza
U.S. Army Materials Technology
Ceramics Research Division
405 Arsenal Street
Watertown MA 02172-0001

D. Gerster
CEA-DCOM
33 Rue De La Federation
Paris 75015
FRANCE

John Ghinazzi
Coors Technical Ceramics Company
1100 Commerce Park Drive
Oak Ridge TN 37830

Robert Giddings
General Electric Company
P.O. Box 8
Schenectady NY 12301

A. M. Glaeser
University of California
Lawrence Berkeley Laboratory
Hearst Mining Building
Berkeley CA 94720

Joseph W. Glatz
510 Rocksville Road
Holland PA 18966

W. M. Goldberger
Superior Graphite Company R&D
2175 E. Broad Street
Columbus OH 43209

Allan E. Goldman
U.S. Graphite, Inc.
907 W. Outer Drive
Oak Ridge TN 37830

Stephen T. Gonczy
Allied Signal Research
P.O. Box 5016
Des Plaines IL 60017

Robert J. Gottschall
U.S. Department of Energy
ER-131, MS:G-236
Washington DC 20585

Earl Graham
Cleveland State University
Dept. of Chemical Engineering
Euclid Avenue at East 24th Street
Cleveland OH 44115

John W. Graham
Astro Met, Inc.
9974 Springfield Pike
Cincinnati OH 45215
N. B. Havewala
Corning Inc.
SP-PR-11
Corning NY 14831

John Haygarth
Teledyne WAA Chang Albany
P.O. Box 460
Albany OR 97321

N. L. Hecht
U. of Dayton Research Institute
300 College Park
Dayton OH 45469-0172

Peter W. Heitman
Allison Engine Company
P.O. Box 420, MS:W-5
Indianapolis IN 46206-0420

Robert W. Hendricks
VPI & SU
210 Holden Hall
Blacksburg VA 24061-0237

Thomas P. Herbell
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

Marlene Heroux
Rolls-Royce, Inc.
2849 Paces Ferry Road, Suite 450
Atlanta GA 30339-3769

Robert L. Hershey
Science Management Corporation
1255 New Hampshire Ave., N.W.
Suite 1033
Washington DC 20036

Hendrik Heystek
Bureau of Mines
Tuscaloosa Research Center
P.O. Box L
University AL 35486

Robert V. Hillery
GE Aircraft Engines
One Neumann Way, M.D. H85
Cincinnati OH 45215

Arthur Hindman
Instron Corporation
100 Royall Street
Canton MA 02021

Shinichi Hirano
Mazda R&D of North America, Inc.
1203 Woodridge Avenue
Ann Arbor MI 48105

Tommy Hiraoka
NGK Locke, Inc.
1000 Town Center
Southfield MI 48075

Fu H. Ho
General Atomics
P.O. Box 85608
San Diego CA 92186-9784

John M. Hobday
U.S. Department of Energy
Morgantown Energy Technology Ctr
P.O. Box 880
Morgantown WV 26507

Clarence Hoenig
Lawrence Livermore National Lab
P.O. Box 808, Mail Code L-369
Livermore CA 94550

Thomas Hollstein
Fraunhofer-Institut fur Werkstoffmechanik
Wohlerstrasse 11
D-79108 Freiburg
GERMANY

Richard Holt
National Research Council Canada
Structures and Materials Lab
Ottawa Ontario K1A OR6
CANADA

Woodie Howe
Coors Technical Ceramics Company
1100 Commerce Park Drive
Oak Ridge TN 37830
Tom Kalamasz
Norton/TRW Ceramics
7A-4 Raymond Avenue
Salem NH 03079

Lyle R. Kallenbach
Phillips Petroleum
Mail Drop:123AL
Bartlesville OK 74004

Nick Kamiya
Kyocera Industrial Ceramics Corp.
25 Northwest Point Blvd., #450
Elk Grove Village IL 60007

Roy Kamo
Adiabatics, Inc.
3385 Commerce Park Drive
Columbus IN 47201

Chih-Chun Kao
Industrial Technology Research Institute
195 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Keith R. Karasek
AlliedSignal Aerospace Company
50 E. Algonquin Road
Des Plaines IL 60017-5016

Martha R. Kass
U.S. Department of Energy
Oak Ridge Operations
Building 4500N, MS:6269
Oak Ridge TN 37831-6269

Robert E. Kassel
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Allan Katz
Wright Laboratory
Metals and Ceramics Division
Wright-Patterson AFB OH 45433

R. Nathan Katz
Worcester Polytechnic Institute
100 Institute Road
Worcester MA 01609

Tony Kaushal
Detroit Diesel Corporation
13400 Outer Drive, West
Detroit MI 48239-4001

Ted Kawaguchi
Tokai Carbon America, Inc.
375 Park Avenue, Suite 3802
New York NY 10152

Noritsugu Kawashima
TOSHIBA Corporation
4-1 Ukishima-Cho
Kawasaki-Ku Kawasaki, 210
JAPAN

Lisa Kempfer
Penton Publishing
1100 Superior Avenue
Cleveland OH 44114-2543

Frederick L. Kennard, III
AC Rochester
1300 N. Dort Highway
Flint MI 48556

David O. Kennedy
Lester B. Knight Cast Metals Inc.
549 W. Randolph Street
Chicago IL 60661

George Keros
Photon Physics
3175 Penobscot Building
Detroit MI 48226

Thomas Ketcham
Corning, Inc.
SP-DV-1-9
Corning NY 14831

Pramod K. Khandelwal
Allison Engine Company
P.O. Box 420, MS:T10B
Indianapolis IN 46206
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim R. Kidwell</td>
<td>AlliedSignal Engines</td>
<td>P.O. Box 52180, Phoenix AZ 85072-2180</td>
</tr>
<tr>
<td>Shin Kim</td>
<td>The E-Land Group</td>
<td>19-8 ChangJeon-dong, Mapo-gu, Seoul 121-190, KOREA</td>
</tr>
<tr>
<td>W. C. King</td>
<td>Mack Truck, Z-41</td>
<td>1999 Pennsylvania Avneue, Hagerstown MD 21740</td>
</tr>
<tr>
<td>Carol Kirkpatrick</td>
<td>MSE, Inc.</td>
<td>P.O. Box 3767, Butte MT 59702</td>
</tr>
<tr>
<td>Tony Kirn</td>
<td>Caterpillar Inc.</td>
<td>Defense Products Department, JB7, Peoria IL 61629</td>
</tr>
<tr>
<td>James D. Kiser</td>
<td>NASA Lewis Research Center</td>
<td>21000 Brookpark Road, MS:49-3, Cleveland OH 44135</td>
</tr>
<tr>
<td>Max Klein</td>
<td></td>
<td>900 24th Street, N.W., Unit G, Washington DC 20037</td>
</tr>
<tr>
<td>Richard N. Kleiner</td>
<td>Golden Technologies Company</td>
<td>4545 McIntyre Street, Golden CO 80403</td>
</tr>
<tr>
<td>Stanley J. Klima</td>
<td>NASA Lewis Research Center</td>
<td>21000 Brookpark Road, MS:6-1, Cleveland OH 44135</td>
</tr>
<tr>
<td>Albert S. Kobayashi</td>
<td>University of Washington</td>
<td>Mechanical Engineering Department, Mail Stop: FU10, Seattle WA 98195</td>
</tr>
<tr>
<td>Shigeki Kobayashi</td>
<td>Toyota Central Research Labs</td>
<td>Nagakute Aichi, 480-11, JAPAN</td>
</tr>
<tr>
<td>Richard A. Kole</td>
<td>Z-Tech Corporation</td>
<td>8 Dow Road, Bow NH 03304</td>
</tr>
<tr>
<td>Joseph A. Kovach</td>
<td>Eaton Corporation</td>
<td>32500 Chardon Road, Willoughby Hills OH 44094</td>
</tr>
<tr>
<td>Kenneth A. Kovaly</td>
<td>Technical Insights Inc.</td>
<td>P.O. Box 1304, Fort Lee NJ 07024-9967</td>
</tr>
<tr>
<td>Ralph G. Kraft</td>
<td>Spraying Systems Company</td>
<td>North Avenue at Schmale Road, Wheaton IL 60189-7900</td>
</tr>
<tr>
<td>A. S. Krieger</td>
<td>Radiation Science, Inc.</td>
<td>P.O. Box 293, Belmont MA 02178</td>
</tr>
<tr>
<td>Pieter Krijgsman</td>
<td>Ceramic Design International Holding B.V.</td>
<td>P.O. Box 68, Hattem 8050-AB, THE NETHERLANDS</td>
</tr>
<tr>
<td>Waltraud M. Kriven</td>
<td>University of Illinois</td>
<td>105 S. Goodwin Avenue, Urbana IL 61801</td>
</tr>
<tr>
<td>Edward J. Kubel, Jr.</td>
<td>ASM International</td>
<td>Advanced Materials & Processes, Materials Park OH 44073</td>
</tr>
</tbody>
</table>
Dave Kupperman
Argonne National Laboratory
9700 S. Cass Avenue
Argonne IL 60439

Oh-Hun Kwon
North Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

W. J. Lackey
GTRI
Materials Science and Tech. Lab
Atlanta GA 30332

Jai Lala
Tenmat Ltd.
40 Somers Road
Rugby Warwickshire CV22 7DH
ENGLAND

Hari S. Lamba
General Motors Corporation
9301 West 55th Street
Lagrange IL 60525

Richard L. Landingham
Lawrence Livermore National Lab
P.O. Box 808, L-369
Livermore CA 94550

James Lankford
Southwest Research Institute
6220 Culebra Road
San Antonio TX 78228-0510

Stanley B. Lasday
Business News Publishing Co.
1910 Cochran Road, Suite 630
Pittsburgh PA 15220

S. K. Lau
Carborundum Company
Technology Division
P.O. Box 832, B-100
Niagara Falls NY 14302

J. Lawrence Lauderdale
Babcock & Wilcox
1850 "K" Street, Suite 950
Washington DC 20006

Jean F. LeCostauquec
Teextron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Benson P. Lee
Technology Management, Inc.
4440 Warrensville Rd., Suite A
Cleveland OH 44128

Burtrand I. Lee
Clemson University
Olin Hall
Clemson SC 29634-0907

June-Gunn Lee
KIST
P.O. Box 131, Cheong-Ryang
Seoul 130-650
KOREA

Stan Levine
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

David Lewis, III
Naval Research Laboratory
Code 6370
Washington DC 20375-5343

Ai-Kang Li
Materials Research Labs., ITRI
195-5 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Robert H. Licht
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545
John Mangels
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Murli Manghnani
University of Hawaii
2525 Correa Road
Honolulu HI 96822

Russell V. Mann
Matec Applied Sciences, Inc.
75 South Street
Hopkinton MA 01748

William R. Manning
Champion Aviation Products Div
P.O. Box 686
Liberty SC 29657

Ken Marnoch
Amercom, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Robert A. Marra
Aluminum Company of America
Alcoa Technical Center
Alcoa Center PA 15069

Steve C. Martin
Advanced Refractory Technologies
699 Hertel Avenue
Buffalo NY 14207

Kelly J. Mather
William International Corporation
2280 W. Maple Road
Walled Lake MI 48088

James P. Mathers
3M Company
3M Center, Bldg. 201-3N-06
St. Paul MN 55144

Ron Mayville
Arthur D. Little, Inc.
15-163 Acorn Park
Cambridge MA 02140

F. N. Mazadarany
General Electric Company
Bldg. K-1, Room MB-159
P.O. Box 8
Schenectady NY 12301

James W. McCauley
Alfred University
Binns-Merrill Hall
Alfred NY 14802

Louis R. McCreight
2763 San Ramon Drive
Rancho Palos Verdes CA 90274

Colin F. McDonald
McDonald Thermal Engineering
1730 Castellana Road
La Jolla CA 92037

B. J. McEntire
Norton Company
10 Airport Park Road
East Granby CT 06026

Chuck McFadden
Coors Ceramics Company
600 9th Street
Golden CO 80401

Thomas D. McGee
Iowa State University
110 Engineering Annex
Ames IA 50011

Carol McGill
Corning Inc.
Sullivan Park, FR-02-08
Corning NY 14831

James McLaughlin
Sundstrand Power Systems
4400 Ruffin Road
P.O. Box 85757
San Diego CA 92186-5757

Matt McMonigle
U.S. Department of Energy
Improved Energy Productivity
CE-231, Forrestal Building
Washington DC 20585
J. C. McVickers
AlliedSignal Engines
P.O. Box 52180, MS:9317-2
Phoenix AZ 85072-2180

D. B. Meadowcroft
"Jura," The Ridgeway
Oxshott
Leatherhead Surrey KT22 OLG
UNITED KINGDOM

Joseph J. Meindl
Reynolds International, Inc.
6603 W. Broad Street
P.O. Box 27002
Richmond VA 23261-7003

Michael D. Meiser
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

George Messenger
National Research Council of Canada
Building M-7
Ottawa Ontario K1A OR6
CANADA

D. Messier
U.S. Army Materials Technology
SLCMT-EMC
405 Arsenal Street
Watertown MA 02172-0001

Arthur G. Metcalfe
Arthur G. Metcalfe and Associates, Inc.
2108 East 24th Street
National City CA 91950

R. Metselaar
Eindhoven University
P.O. Box 513
Eindhoven 5600 MB
THE NETHERLANDS

David J. Michael
Harbison-Walker Refractories Co.
P.O. Box 98037
Pittsburgh PA 15227

Ken Michaels
Chrysler Motors Corporation
P.O. Box 1118, CIMS:418-17-09
Detroit MI 48288

Bernd Michel
Institute of Mechanics
P.O. Box 408
D-9010 Chemnitz
GERMANY

D. E. Miles
Commission of the European Comm.
rue de la Loi 200
B-1049 Brussels
BELGIUM

Carl E. Miller
AC Rochester
1300 N. Dort Highway, MS:32-31
Flint MI 48556

Charles W. Miller, Jr.
Centorr Furnaces/Vacuum Industries
542 Amherst Street
Nashua NH 03063

R. Minimmi
Eni chem America
2000 Cornwall Road
Monmouth Junction NJ 08852

Michele V. Mitchell
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Howard Mizuhara
WESGO
477 Harbor Boulevard
Belmont CA 94002
Helen Moeller
Babcock & Wilcox
P.O. Box 11165
Lynchburg VA 24506-1165

Francois R. Mollard
Concurrent Technologies Corp.
1450 Scalp Avenue
Johnstown PA 15904-3374

Phil Mooney
Panametrics
221 Crescent Street
Waltham MA 02254

Geoffrey P. Morris
3M Company
3M Traffic Control Materials
Bldg. 209-BW-10, 3M Center
St. Paul MN 55144-1000

Jay A. Morrison
Rolls-Royce, Inc.
2849 Paces Ferry Road, Suite 450
Atlanta GA 30339-3769

Joel P. Moskowitz
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Brij Moudgil
University of Florida
Material Science & Engineering
Gainesville FL 32611

Christoph J. Mueller
Sprechsaal Publishing Group
P.O. Box 2962, Mauer 2
D-8630 Coburg
GERMANY

Thomas W. Mullan
Vapor Technologies Inc.
345 Route 17 South
Upper Saddle River NJ 07458

Theresa A. Mursick-Meyer
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

M. K. Murthy
MkM Consultants International
10 Avoca Avenue, Unit 1906
Toronto Ontario M4T 2B7
CANADA

David L. Mustoe
Custom Technical Ceramics
8041 West I-70 Service Rd. Unit 6
Arvada CO 80002

Curtis V. Nakaishi
U.S. Department of Energy
Morgantown Energy Technology Ctr.
P.O. Box 880
Morgantown WV 26507-0880

Yoshio Nakamura
Faicera Research Institute
3-11-12 Misono
Sagamihara, Tokyo
JAPAN

Stefan Nann
Roland Berger & Partner GmbH
Georg-Glock-Str. 3
40474 Dusseldorf
GERMANY

K. S. Narasimhan
Hoeganaes Corporation
River Road
Riverton NJ 08077

Robert Naum
Applied Resources, Inc.
P.O. Box 241
Pittsford NY 14534

Malcolm Naylor
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50183
Columbus IN 47202-3005
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred A. Nichols</td>
<td>Argonne National Laboratory</td>
<td>9700 S. Cass Avenue, Argonne, IL 60439</td>
</tr>
<tr>
<td>H. Nickel</td>
<td>Forschungszentrum Juelich (KFA)</td>
<td>Postfach 1913, D-52425 Juelich, GERMANY</td>
</tr>
<tr>
<td>Dale E. Niesz</td>
<td>Rutgers University</td>
<td>Center for Ceramic Research, P.O. Box 909, Piscataway, NJ 08855-0909</td>
</tr>
<tr>
<td>Paul W. Niskanen</td>
<td>Lanxide Corporation</td>
<td>P.O. Box 6077, Newark, DE 19714-6077</td>
</tr>
<tr>
<td>David M. Nissley</td>
<td>United Technologies Corporation</td>
<td>Pratt & Whitney Aircraft, 400 Main Street, MS 163-10, East Hartford, CT</td>
</tr>
<tr>
<td>Daniel Oblas</td>
<td></td>
<td>50 Meadowbrook Drive, Bedford, MA 01730</td>
</tr>
<tr>
<td>Don Ohanehi</td>
<td>Magnetic Bearings, Inc.</td>
<td>1908 Sussex Road, Blacksburg, VA 24060</td>
</tr>
<tr>
<td>Hitoshi Ohmori</td>
<td>ELID Team</td>
<td>Itabashi Branch, 1-7 13 Kaga Itabashi, Tokyo 173, JAPAN</td>
</tr>
<tr>
<td>Robert Orenstein</td>
<td>General Electric Company</td>
<td>55-112, River Road, Schenectady, NY 12345</td>
</tr>
<tr>
<td>Richard Palicka</td>
<td>Cercom, Inc.</td>
<td>1960 Watson Way, Vista, CA 92083</td>
</tr>
<tr>
<td>Joseph N. Panzarino</td>
<td>Norton Company</td>
<td>SGNICC/NRDC, Goddard Road, Northboro, MA 01532-1545</td>
</tr>
<tr>
<td>Pellegrino Papa</td>
<td>Corning Inc.</td>
<td>MP-WX-02-1, Corning, NY 14831</td>
</tr>
<tr>
<td>Terry Paquet</td>
<td>Boride Products Inc.</td>
<td>2879 Aero Park Drive, Traverse City, MI 49684</td>
</tr>
<tr>
<td>E. Beth Pardue</td>
<td>MPC</td>
<td>8297 Williams Ferry Road, Lenior City, TN 37771</td>
</tr>
<tr>
<td>Soon C. Park</td>
<td>3M Company</td>
<td>Building 142-4N-02, P.O. Box 2963, St. Paul, MN 55144</td>
</tr>
<tr>
<td>Vijay M. Parthasarathy</td>
<td>Caterpillar/Solar Turbines</td>
<td>2200 Pacific Highway, P.O. Box 85376, San Diego, CA 92186-5376</td>
</tr>
<tr>
<td>Harmut Paschke</td>
<td>Schott Glaswerke</td>
<td>Christoph-Dorner-Strasse 29, D-8300 Landshut, GERMANY</td>
</tr>
<tr>
<td>James W. Patten</td>
<td>Cummins Engine Company, Inc.</td>
<td>P.O. Box 3005, Mail Code 50183, Columbus, IN 47202-3005</td>
</tr>
</tbody>
</table>
Robert A. Penty
Penty & Associates
38 Oakdale Drive
Rochester NY 14618

Robert W. Pepper
Textron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Peter Perdue
Detroit Diesel Corporation
13400 Outer Drive West,
Speed Code L-04
Detroit MI 48239-4001

John J. Petrovic
Los Alamos National Laboratory
Group MST-4, MS:G771
Los Alamos NM 87545

Frederick S. Pettit
University of Pittsburgh
Pittsburgh PA 15261

Richard C. Phoenix
Ohmtek, Inc.
2160 Liberty Drive
Niagara Falls NY 14302

Bruce J. Pletka
Michigan Technological University
Metallurgical & Materials Engr.
Houghton MI 49931

John P. Pollinger
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

P. Popper
High Tech Ceramics International
Journal
22 Pembroke Drive - Westlands
Newcastle-under-Lyme
Staffs ST5 2JN
ENGLAND

F. Porz
Universitat Karlsruhe
Institut fur Keramik Im
Maschinendau
Postfach 6980
D-76128 Karlsruhe
GERMANY

Harry L. Potma
Royal Netherlands Embassy
Science and Technology
4200 Linnean Avenue, N.W.
Washington DC 20008

Bob R. Powell
General Motors Corporation
Metallurgy Department
Box 9055
Warren MI 48090-9055

Stephen C. Pred
Biesterfeld U.S., Inc.
500 Fifth Avenue
New York NY 10110

Karl M. Prewo
United Technologies Research Ctr.
411 Silver Lane, MS:24
East Hartford CT 06108

Vimal K. Pujari
Norton Company
SGNCC/NRDC
Goddard Road
Northboro MA 01532-1545

George Quinn
NIST
Ceramics Division, Bldg. 223
Gaithersburg MD 20899

Ramas V. Raman
Ceracon, Inc.
1101 N. Market Boulevard, Suite 9
Sacramento CA 95834

Charles F. Rapp
Owens Corning Fiberglass
2790 Columbus Road
Granville OH 43023-1200
Dennis W. Readey
Colorado School of Mines
Metallurgy and Materials Engr.
Golden CO 80401

Wilfred J. Rebello
PAR Enterprises, Inc.
12601 Clifton Hunt Lane
Clifton VA 22024

Harold Rechter
Chicago Fire Brick Company
7531 S. Ashland Avenue
Chicago IL 60620

Robert R. Reeber
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park NC
27709-2211

K. L. Reifsnider
VPI & SU
Engineering Science and Mechanics
Blacksburg VA 24061

Paul E. Rempes
McDonnell Douglas Aircraft Co.
P.O. Box 516, Mail Code:0642263
St. Louis MO 63166-0516

Gopal S. Revankar
John Deere Company
3300 River Drive
Moline IL 61265

K. Y. Rhee
Rutgers University
P.O. Box 909
Piscataway NJ 08854

James Rhodes
Advanced Composite Materials Corp
1525 S. Buncombe Road
Greer SC 29651

Roy W. Rice
W. R. Grace and Company
7379 Route 32
Columbia MD 21044

David W. Richerson
2093 E. Delmont Drive
Salt Lake City UT 84117

Tomas Richter
J. H. France Refractories
1944 Clarence Road
Snow Shoe PA 16874

Michel Rigaud
Ecole Polytechnique
Campus Universite De Montreal
P.O. Box 6079, Station A
Montreal, P.Q. Quebec H3C 3A7
CANADA

John E. Ritter
University of Massachusetts
Mechanical Engineering Department
Amherst MA 01003

W. Eric Roberts
Advanced Ceramic Technology, Inc.
990 "F" Enterprise Street
Orange CA 92667

Y. G. Roman
TNK TPD Keramick
P.O. Box 595
Einhoven 5600 AN
HOLLAND

Michael Rossetti
Arthur D. Little, Inc.
15 Acorn Park
Cambridge MA 01240

Barry Rossing
Lanxide Corporation
P.O. Box 6077
Newark DE 19714-6077

Steve L. Rotz
Lubrizol Corporation
29400 Lakeland Boulevard
Wickliffe OH 44092

Robert Ruh
Wright Laboratory
WL/MLLM
Wright-Patterson AFB OH 45433
Robert J. Russell
17 Highgate Road
Framingham MA 01701

Jon A. Salem
NASA Lewis Research Center
21000 Brookpark Road
Cleveland OH 44135

W. A. Sanders
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

J. Sankar
North Carolina A&T State Univ.
Dept. of Mechanical Engineering
Greensboro NC 27406

Yasushi Sato
NGK Spark Plugs (U.S.A.), Inc.
1200 Business Center Drive, #300
Mt. Prospect IL 60056

Maxine L. Savitz
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Ashok Saxena
GTRI
Materials Engineering
Atlanta GA 30332-0245

David W. Scanlon
Instron Corporation
100 Royall Street
Canton MA 02021

Charles A. Schacht
Schacht Consulting Services
12 Holland Road
Pittsburgh PA 15235

Robert E. Schafrik
National Materials Advisory Board
2101 Constitution Ave., N.W.
Washington DC 20418

James Schiene
AlliedSignal Engines
P.O. Box 52180, MS:1302-2P
Phoenix AZ 85072-2180

John C. Schneider
San Juan Technologies, Inc.
3210 Arena Road
Colorado Springs CO 80921-1503

Gary Schnittgrund
Rocketdyne, BA05
6633 Canoga Avenue
Canoga Park CA 91303

Mark Schomp
Lonza, Inc.
17-17 Route 208
Fair Lann NJ 07410

Joop Schoonman
Delft University of Technology
P.O. Box 5045
2600 GA Delft
THE NETHERLANDS

Robert B. Schulz
U.S. Department of Energy
Office of Transportation Matrials.
CE-34, Forrestal Building
Washington DC 20585

Murray A. Schwartz
Materi als Technology Consulting
30 Orchard Way, North
Potomac MD 20854

Peter Schwarzkopf
SRI International
333 Ravenswood Avenue
Menlo Park CA 94025

William T. Schwessinger
Multi-Arc Scientific Coatings
1064 Chicago Road
Troy MI 48083-4297
W. D. Scott
University of Washington
Materials Science Department
Mail Stop:FB10
Seattle WA 98195

Nancy Scoville
Thermo Electron Technologies
P.O. Box 9046
Waltham MA 02254-9046

Thomas M. Sebestyen
U.S. Department of Energy
Advanced Propulsion Division
CE-322, Forrestal Building
Washington DC 20585

Brian Seegmiller
Coors Ceramics Company
600 9th Street
Golden CO 80401

T. B. Selover
AICRE/DIPPR
3575 Traver Road
Shaker Heights OH 44122

Charles E. Semler
Semler Materials Services
4150 Mumford Court
Columbus OH 43220

Thomas Service
Service Engineering Laboratory
324 Wells Street
Greenfield MA 01301

Kish Seth
Ethyl Corporation
P.O. Box 341
Baton Rouge LA 70821

William J. Shack
Argonne National Laboratory
9700 S. Cass Avenue, Bldg. 212
Argonne IL 60439

Peter T.B. Shaffer
Technical Ceramics Laboratories,
4045 Nine/McFarland Drive
Alpharetta GA 30201

Richard K. Shaltens
NASA Lewis Research Center
21000 Brookpark Road, MS:302-2
Cleveland OH 44135

Robert S. Shane
1904 NW 22nd Street
Stuart FL 34994-9270

Ravi Shankar
Chromalloy
Research and Technology Division
Blaisdell Road
Orangeburg NY 10962

Terence Sheehan
Alpex Wheel Company
727 Berkley Street
New Milford NJ 07646

Dinesh K. Shetty
University of Utah
Materials Science and Engineering
Salt Lake City UT 84112

Masahide Shimizu
New Ceramics Association
Shirasagi 2-13-1-208, Nakano-ku
Tokyo, 165
JAPAN

Thomas Shreves
American Ceramic Society, Inc.
735 Ceramic Place
Westerville OH 43081-8720

Jack D. Sibold
Coors Ceramics Company
4545 McIntyre Street
Golden CO 80403

Johann Siebels
Volkswagen AG
Werkstofftechnologie
Postfach 3180
Wolfsburg 1
GERMANY
George H. Siegel
Point North Associates, Inc.
P.O. Box 907
Madison NJ 07940

Richard Silberglitt
FM Technologies, Inc.
10529-B Braddock Road
Fairfax VA 22032

Mary Silverberg
Norton Company
SGNCC/NRDC
Goddard Road
Northboro MA 01532-1545

Gurpreet Singh
Department of the Navy
Code 56X31
Washington DC 20362-5101

Maurice J. Sinnott
University of Michigan
5106 IST Building
Ann Arbor MI 48109-2099

John Skildum
3M Company
3M Center
Building 224-2S-25
St. Paul MN 55144

Richard H. Smoak
Smoak & Associates
3554 Hollyslope Road
Altadena CA 91001-3923

Jay R. Smyth
AlliedSignal Engines
111 S. 34th Street, MS:503-412
Phoenix AZ 85034

Rafal A. Sobotowski
British Petroleum Company
Technical Center, Broadway
3092 Broadway Avenue
Cleveland OH 44115

S. Somiya
Nishi Tokyo University
3-7-19 Seijo, Setagaya
Tokyo, 157
JAPAN

Boyd W. Sorenson
DuPont Lanxide Composites
1300 Marrows Road
Newark DE 19711

Charles A. Sorrell
U.S. Department of Energy
Advanced Industrial Concepts
CE-232, Forrestal Building
Washington DC 20585

C. Spencer
EA Technology
Capenhurst Chester CH1 6ES
UNITED KINGDOM

Allen Spizzo
Hercules Inc.
Hercules Plaza
Wilmington DE 19894

Richard M. Spriggs
Alfred University
Center for Advanced Ceramic Technology
Alfred NY 14802

Charles Spuckler
NASA Lewis Research Center
21000 Brookpark Road, MS:5-11
Cleveland OH 44135-3191

M. Srinivasan
Material Solutions
P.O. Box 663
Grand Island NY 14702-0663

Gordon L. Starr
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code:50182
Columbus IN 47202-3005
Tom Stillwagon
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

H. M. Stoller
TPL Inc.
3754 Hawkins, N.E.
Albuquerque NM 87109

Paul D. Stone
Dow Chemical USA
1776 "Eye" Street, N.W., #575
Washington DC 20006

F. W. Stringer
Aero & Industrial Technology Ltd.
P.O. Box 46, Wood Top
Burnley Lancashire BB11 4BX
UNITED KINGDOM

Thomas N. Strom
NASA Lewis Research Center
21000 Brookpark Road, MS:86-6
Cleveland OH 44135

M. F. Stroosnijder
Institute for Advanced Materials
Joint Research Centre
21020 Ispra (VA)
ITALY

Karsten Styhr
30604 Ganado Drive
Rancho Palos Verdes CA 90274

T. S. Sudarshan
Materials Modification, Inc.
2929-P1 Eskridge Center
Fairfax VA 22031

M. J. Sundaresan
University of Miami
P.O. Box 248294
Coral Gables FL 33124

Patrick L. Sutton
U.S. Department of Energy
Office of Propulsion Systems
CE-322, Forrestal Building
Washington DC 20585

Willard H. Sutton
United Technologies Corporation
Silver Lane, MS:24
East Hartford CT 06108

J. J. Swab
U.S. Army Materials Technology
Ceramics Research Division, SLCMT-EMC
405 Arsenal Street
Watertown MA 02172

Robert E. Swanson
Metalworking Technology, Inc.
1450 Scalp Avenue
Johnstown PA 15904

Steve Szaruga
Air Force Wright Aeronautical Lab
WL/MLBC
Wright-Patterson AFB OH
45433-6533

Yo Tajima
NGK Spark Plug Company
2808 Iwasaki
Komaki-shi Aichi-ken, 485
JAPAN

Fred Teeter
5 Tralee Terrace
East Amherst NY 14051

Monika O. Ten Eyck
Carborundum Microelectronics
P.O. Box 2467
Niagara Falls NY 14302-2467

David F. Thompson
Corning Glass Works
SP-DV-02-1
Corning NY 14831
Merle L. Thorpe
Hobart Tafa Technologies, Inc.
20 Ridge Road
Concord NH 03301-3010

T. Y. Tien
University of Michigan
Materials Science and Engineering
Dow Building
Ann Arbor MI 48103

D. M. Tracey
Norton Company
SGN ICC/NRDC
Goddard Road
Northboro MA 01532-1545

Marc Tricard
Norton Company, WGTC
1 New Bond Street
Worcester MA 01615-0008

L. J. Trostel, Jr.
Box 199
Princeton MA 01541

W. T. Tucker
General Electric Company
P.O. Box 8, Bldg. K1-4C35
Schenectady NY 12301

Masanori Ueki
Nippon Steel Corporation
1618 Ida
Nakahara-Ku Kawasaki, 211
JAPAN

Filippo M. Ugolini
ATA Studio
Via Degli Scipioni, 268A
ROMA, 00192
ITALY

Donald L. Vaccari
Allison Gas Turbines
P.O. Box 420, Speed Code S49
Indianapolis IN 46206-0420

Carl F. Van Conant
Boride Products, Inc.
2879 Aero Park Drive
Traverse City MI 49684

John F. Vander Louw
3M Company
3M Center, Bldg. 60-1N-01
Saint Paul MN 55144

Marcel H. Van De Voorde
Commission of the European Comm.
P.O. Box 2
1755 ZG Petten
THE NETHERLANDS

O. Van Der Biest
Katholieke Universiteit Leuven
Dept. Metaalkunde en Toegepaste
de Croylaan 2
B-3030 Leuven
BELGIUM

Michael Vannier
Washington University, St. Louis
510 S. Kings Highway
St. Louis MO 63110

Stan Venkatesan
Southern Coke & Coal Corporation
P.O. Box 52383
Knoxville TN 37950

V. Venkateswaran
Carborundum Company
Niagara Falls R&D Center
P.O. Box 832
Niagara Falls NY 14302

Dennis Viechnicki
U.S. Army Materials Technology
405 Arsenal Street
Watertown MA 02172-0001

Ted Vojnovich
U.S. Department of Energy, ST-311
Office of Energy Research, 3F077P
Washington DC 20585
John D. Volt
E.I. DuPont de Nemours & Co. Inc.
P.O. Box 80262
Wilmington DE 19880

John B. Wachtman
Rutgers University
P.O. Box 909
Piscataway NJ 08855

Shigetaka Wada
Toyota Central Research Labs
Nagakute Aichi, 480-11
JAPAN

Janet Wade
AlliedSignal Engines
P.O. Box 52180, MS:1303-2
Phoenix AZ 85072-2180

Richard L. Wagner
Ceramic Technologies, Inc.
537 Turtle Creek South Dr., #24D
Indianapolis IN 46227

J. Bruce Wagner, Jr.
Arizona State University
Center for Solid State Science
Tempe AZ 85287-1704

Daniel J. Wahlen
Kohler, Co.
444 Highland Drive
Kohler WI 53044

Ingrid Wahlgren
Royal Institute of Technology
Studvik Library
S-611 82 Nykoping
SWEDEN

Ron H. Walecki
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Michael S. Walsh
Vapor Technologies Inc.
6300 Gunpark Drive
Boulder CO 80301

Chien-Min Wang
Industrial Technology Research Institute
195 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Robert M. Washburn
ASMT
11203 Colima Road
Whittier CA 90604

Gerald Q. Weaver
Carborundum Specialty Products
42 Linus Allain Avenue
Gardner MA 01440-2478

Kevin Webber
Toyota Technical Center, U.S.A.
1410 Woodridge, RR7
Ann Arbor MI 48105

Karen E. Weber
Detroit Diesel Corporation
13400 Outer Drive West
Detroit MI 48239-4001

James K. Weddell
Du Pont Lanxide Composites Inc.
P.O. Box 6100
Newark DE 19714-6100

R. W. Weeks
Argonne National Laboratory
MCT-212
9700 S. Cass Avenue
Argonne IL 60439

Ludwig Weiler
ASEA Brown Boveri AG
Eppelheimer Str. 82
D-6900 Heidelberg
GERMANY

James Wessel
Dow Corning Corporation
1800 "M" Street, N.W., #325 South
Washington DC 20036
Egon E. Wolff
Caterpillar Inc.
Technical Center
P.O. Box 1875
Peoria IL 61656-1875

George W. Wolter
Howmet Turbine Components Corp.
Technical Center
699 Benston Road
Whitehall MI 49461

James C. Wood
NASA Lewis Research Center
21000 Brookpark Road, MS:86-6
Cleveland OH 44135

Wayne L. Worrell
University of Pennsylvania
3231 Walnut Street
Philadelphia PA 19104

John F. Wosinski
Corning Inc.
ME-2 E-5 H8
Corning NY 14830

Ruth Wroe
ERDC
Capenhurst Chester CH1 6ES
ENGLAND

Bernard J. Wrona
Advanced Composite Materials Corp
1525 S. Buncombe Road
Greer SC 29651

Carl C. M. Wu
Naval Research Laboratory
Ceramic Branch, Code 6373
Washington DC 20375

John C. Wurst
U. of Dayton Research Institute
300 College Park
Dayton OH 45469-0101

Neil Wyant
ARCH Development Corp.
9700 S. Cass Avenue, Bldg. 202
Argonne IL 60439

Roy Yamamoto
Texaco Inc.
P.O. Box 509
Beacon NY 12508-0509

John Yamanis
AlliedSignal Aerospace Company
P.O. Box 1021
Morristown NJ 07962-1021

Harry C. Yeh
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Hiroshi Yokoyama
Hitachi Research Lab
4026 Kuji-Cho
Hitachi-shi Ibaraki 319-12
JAPAN

Thomas M. Yonushonis
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50183
Columbus IN 47202-3005

Thomas J. Yost
Corning Inc.
Technical Products Div., 21-1-2
Corning NY 14831

Jong Yung
Sundstrand Aviation Operations
4747 Harrison Avenue
Rockford IL 61125

C. S. Yust
106 Newcrest Lane
Oak Ridge TN 37830

A. L. Zadoks
Caterpillar Inc.
Technical Center, Building L
P.O. Box 1875
Peoria IL 61656-1875

Avi Zangvil
University of Illinois
104 S. Goodwin Avenue
Urbana IL 61801
Charles H. Zenuk
Transtech
6662 E. Paseo San Andres
Tucson AZ 85710-2106

Carl Zweben
General Electric Company
P.O. Box 8555, VFSC/V4019
Philadelphia PA 19101

Department of Energy
Oak Ridge Operations Office
Assistant Manager for Energy
 Research and Development
P.O. Box 2001
Oak Ridge, TN 37831-8600

Department of Energy (2)
Office of Scientific and Technical
 Information
Office of Information Services
P.O. Box 62
Oak Ridge, TN 37831

For distribution by microfiche
 as shown in DOE/OSTI-4500.