<table>
<thead>
<tr>
<th>Name</th>
<th>MSIN</th>
<th>Text With All Attach.</th>
<th>Text Only</th>
<th>Attach./ Appendix Only</th>
<th>EDT/ECN Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Akita</td>
<td>T6-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. J. Berglin</td>
<td>G3-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. G. Brown</td>
<td>S7-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. A. Crea</td>
<td>H0-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. D. Clements</td>
<td>G2-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Greenborg</td>
<td>H0-35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. L. Guthrie</td>
<td>H4-65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. D. Haggerty</td>
<td>S7-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. E. Hanson</td>
<td>H5-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. L. Hecht</td>
<td>L5-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. F. Howden</td>
<td>G3-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. M. Jones</td>
<td>S5-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. J. Kennedy</td>
<td>S7-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. S. Krogstrup</td>
<td>R3-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. W. Lentsch</td>
<td>R2-78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. L. Mackey</td>
<td>H5-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. L. McElroy</td>
<td>S7-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. P. Mortensen</td>
<td>S7-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. E. Myers</td>
<td>S7-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. A. Reynolds</td>
<td>R2-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. A. Ritter</td>
<td>H0-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. L. Romine</td>
<td>H5-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. S. Schofield</td>
<td>S7-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. A. Schwarz</td>
<td>H0-35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. C. Simpson</td>
<td>R2-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. J. Swan</td>
<td>H6-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. R. Thielges</td>
<td>L6-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Toffer</td>
<td>H0-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Files</td>
<td>H5-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Files</td>
<td>L8-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSTI (2)</td>
<td>L8-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDT No. 611684
ECN No. NA

Project Title/Work Order: Half-Liter Supernatant Sampler System Engineering Work Plan

Date: 5/22/95

NAME

A-6000-135 (01/93) WEF067
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
2. To: (Receiving Organization)
See Distribution List

3. From: (Originating Organization)
Nuclear Analysis and Characterization

4. Related EDT No.:
NA

5. Proj./Prog./Dept./Div.:
Characterization

6. Cog. Engr.:
G. A. Ritter

7. Purchase Order No.:
NA

8. Originator Remarks:
See attached engineering work plan for review and approval.

11. Receiver Remarks:

15. DATA TRANSMITTED

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document/Drawing No.</th>
<th>Sheet No.</th>
<th>Rev. No.</th>
<th>Title or Description of Data Transmitted</th>
<th>Impact Level</th>
<th>Reason for Transmittal</th>
<th>Originator Disposition</th>
<th>Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>WHC-SD-WM-WP-303</td>
<td>All</td>
<td>0</td>
<td>Half-Liter Supernatant Sampler System Engineering Work Plan</td>
<td>SQ</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. KEY

<table>
<thead>
<tr>
<th>Impact Level (F)</th>
<th>Reason for Transmittal (G)</th>
<th>Disposition (H & I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, or 4 (see MRP 5.43)</td>
<td>1. Approval</td>
<td>1. Approved</td>
</tr>
<tr>
<td></td>
<td>2. Review</td>
<td>4. Reviewed no/comment</td>
</tr>
<tr>
<td></td>
<td>3. Information</td>
<td>3. Disapproved w/comment</td>
</tr>
<tr>
<td></td>
<td>5. Post-Review</td>
<td>5. Reviewed w/comment</td>
</tr>
<tr>
<td></td>
<td>6. Dist. (Receipt Acknow. Required)</td>
<td>6. Receipt acknowledged</td>
</tr>
</tbody>
</table>

17. SIGNATURE/DISTRIBUTION

<table>
<thead>
<tr>
<th>Reason</th>
<th>Disp.</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
<th>Reason</th>
<th>Disp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>GA Ritter</td>
<td></td>
<td></td>
<td></td>
<td>R Akita</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Cog. Mgr.</td>
<td></td>
<td></td>
<td></td>
<td>J Greenberg</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>ML McElroy</td>
<td></td>
<td></td>
<td></td>
<td>RL Guthrie</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td>KP Mortensen</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>BA Crew</td>
<td></td>
<td></td>
<td></td>
<td>MD Clements</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>EJ Berglin</td>
<td></td>
<td></td>
<td></td>
<td>JR Thielges</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>WJ Kennedy</td>
<td></td>
<td></td>
<td></td>
<td>KOL ENKL</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

19. C. E. Hanson
Authorized Representative Date for Receiving Organization

20. C. E. Hanson
Cognizant/Project Engineer's Manager

21. DOE APPROVAL (if required)
Ltr. No.
- Approved
- Approved w/comments
- Disapproved w/comments

BD-7400-172-2 (07/91) GEFO97
RELEASE AUTHORIZATION

Document Number: WHC-SD-WM-WP-303, Rev. 0

Document Title: HALF-LITER SUPERNATANT SAMPLER SYSTEM ENGINEERING WORK PLAN

Release Date: 6/6/95

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

Chris Willingham
C. Willingham

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from: U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650

A-6001-400.2 (09/94) WEF256

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER
Half-Liter Supernatant Sampler System Engineering Work Plan

Key Words
- characterization
- initial pretreatment module
- supernatant
- sampling
- work plan
- waste tanks

Abstract
This work plan defines the tasks associated with the development of a half-liter supernatant sampler system. Specifically, this work plan will define the scope of work, identify organizational responsibilities, identify major technical requirements, describe configuration control and verification requirements, and provide estimated costs and schedule. The sampler system will be fully operational including trained staff and operating procedures upon completion of this task.

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

OFFICIAL RELEASE
BY WHC
DATE JUN 06 1995
35 Station 21
CONTENTS

1.0 INTRODUCTION ... 1

2.0 SCOPE .. 1
 2.1 OBJECTIVES ... 1
 2.2 DELIVERABLES ... 2

3.0 DESCRIPTION ... 3
 3.1 PHYSICAL DESCRIPTION .. 3
 3.2 VERIFICATION ... 7
 3.4 PROCUREMENT TASKS .. 7
 3.5 FABRICATION TASKS .. 7
 3.6 PRE-OPERATIONAL AND OPERATIONAL TESTS 8
 3.7 INSTALLATION TASKS ... 8

4.0 ORGANIZATION .. 8
 4.1 CHARACTERIZATION NEW EQUIPMENT 9
 4.2 CHARACTERIZATION PLANT ENGINEERING 10
 4.3 IPM PROGRAM/TECHNICAL INTEGRATION 10
 4.4 TWRS SAFETY ENGINEERING .. 10
 4.5 NUCLEAR PHYSICS AND SHIELDING 11
 4.6 SPENT NUCLEAR FUEL EVALUATIONS 11
 4.7 TWRS SAR ENGINEERING ... 11
 4.8 ENVIRONMENTAL SERVICES .. 11
 4.9 PACKAGING SAFETY ENGINEERING 11
 4.10 CHARACTERIZATION PROJECT ESQ 12
 4.11 TWRS NUCLEAR SAFETY ... 12
 4.12 ICF KAISER HANFORD COMPANY SPECIAL PROJECTS DESIGN SERVICES .. 12
 4.13 EQUIPMENT DEVELOPMENT - 306E 12
 4.14 HOT CELL AND SAMPLE PREPARATION 13
 4.15 CHARACTERIZATION PROJECT RAD CONTROL 13
 4.16 CHARACTERIZATION OPERATIONS/FIELD SAMPLING 13

5.0 SCHEDULE .. 14

6.0 COST ESTIMATE .. 14

7.0 QUALITY ASSURANCE ... 14

8.0 REFERENCES ... 14
LIST OF TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABU</td>
<td>acceptance for beneficial use</td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>ATP</td>
<td>acceptance test procedure</td>
</tr>
<tr>
<td>ATR</td>
<td>acceptance test report</td>
</tr>
<tr>
<td>ECN</td>
<td>engineering change notice</td>
</tr>
<tr>
<td>EDT</td>
<td>engineering data transmittal</td>
</tr>
<tr>
<td>ESQ</td>
<td>environmental, safety, and quality</td>
</tr>
<tr>
<td>HLSSS</td>
<td>Half-Liter Supernatant Sampler System</td>
</tr>
<tr>
<td>ICF-KH</td>
<td>ICF-Kaiser Hanford Company</td>
</tr>
<tr>
<td>IPM</td>
<td>initial pretreatment module</td>
</tr>
<tr>
<td>OMM</td>
<td>operation and maintenance manual</td>
</tr>
<tr>
<td>ORR</td>
<td>operational readiness review</td>
</tr>
<tr>
<td>OTC</td>
<td>onsite transfer cask</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RWP</td>
<td>radiation work permit</td>
</tr>
<tr>
<td>SAR</td>
<td>safety analysis report</td>
</tr>
<tr>
<td>SARP</td>
<td>safety analysis report for packaging</td>
</tr>
<tr>
<td>SDD</td>
<td>system design description</td>
</tr>
<tr>
<td>TWRS</td>
<td>Tank Waste Remediation System</td>
</tr>
<tr>
<td>USQ</td>
<td>unreviewed safety question</td>
</tr>
<tr>
<td>WHC</td>
<td>Westinghouse Hanford Company</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1 Waste Tank and Sampler System Schematic 16
2 Onsite Transfer Cask Truck and Tiedown Arrangement 17
3 Schedule for Half-Liter Supernatant Sampler System Development 18
4 Budget for the Half-Liter Supernatant Sampler System 21
HALF-LITER SUPERNATANT SAMPLER SYSTEM
ENGINEERING WORK PLAN

1.0 INTRODUCTION

The Tank Waste Remediation System (TWRS) pretreatment facility project W-236B, known as the Initial Pretreatment Module (IPM), requires samples of supernatants and sludges from 200 Area tank farms for planned hot testing work in support of IPM design. Sample size capabilities required to support the current IPM testing scope range from 10 mL up to 4,000 L (WHC 1995). Several other Hanford Site programs also have a need for waste tank supernatant samples including Characterization, Safety, Retrieval, and Operations for evaporator feed, tank farm transfers, and Resource, Conservation, and Recovery Act (RCRA) compliance. Current Hanford Site sampling capabilities are limited to 300 mL samples of supernate, sludge, or salt cake using a core-drilling system, and 100 mL supernate and soft sludge samples using a "bottle-on-a-string" technique. There is no waste sampling capability or handling infrastructure to support the larger bench-scale testing needs of the IPM project.

The IPM project has proposed the development of several new sampler systems. These systems include a 0.5-L supernatant sampler, 3-L and 25-L supernatant and sludge samplers, and a 4000-L sampler system. The 0.5-L sampler will support IPM sampling needs in the 1 to 3 L range starting in late fiscal year 1995. This sampler is intended to be used in conjunction with the existing 100 mL bottle-on-a-string. The 3-L and 25-L systems will be based on the Savannah River Site's sampler system and will support IPM sampling needs in the 3 to 100 L range. Most of the hot testing required for design of the IPM must be accomplished in the next 3 years.

This work plan defines the tasks associated with the development of a 0.5-L sampler system. This system will be referred to as the Half-Liter Supernatant Sampler System (HLSSS). Specifically, this work plan will define the scope of work, identify organizational responsibilities, identify major technical requirements, describe configuration control and verification requirements, and provide estimated costs and schedule. The sampler system will be fully operational, including trained staff and operating procedures, upon completion of this task.

2.0 SCOPE

2.1 OBJECTIVES

The primary objectives of this development activity are as follows:

- Provide all necessary engineering and staff to support the planning, design, fabrication, testing, and implementation of the HLSSS
- Maximize use of existing designs, equipment, and procedures to reduce development time and cost
Design the HLSSS to minimize exposure and contamination to operations personnel and the environment

Coordinate with all users and user support groups, including IPM engineering and the 222-S Laboratory, to obtain concurrence on the design

Obtain all necessary permits required for operation of the sampler system on the Hanford Site

Provide training procedures and support training of operations staff

Provide a sampler system with a sufficient number of samplers and casks to obtain an accumulative sample of up to 3 L of supernatant from a double-shell or single-shell tank. This sample will be transferred to the 222-S Laboratory for recovery, repackaging, and shipment to the users.

2.2 DELIVERABLES

The following deliverables will be provided:

- This work plan, including the functions and requirements section, to document the approved functional requirements of the HLSSS

- System design description (SDD), in accordance with Standard Engineering Practices, WHC-CM-6-1, to provide a complete description of the HLSSS design

- Structural analysis report to assure that tank damage does not occur from operation of the HLSSS

- Material compatibility study to verify that the HLSSS materials are compatible with the tank waste

- Safety assessment/unreviewed safety questions (USQ) screening and environmental permits documenting that the HLSSS conforms to Westinghouse Hanford Company (WHC) safety standards and other applicable regulations

- Updated safety analysis report for packaging (SARP) to approve transportation of the sampler with the existing on site transfer cask (OTC)

- As-built engineering drawings and data package for HLSSS safety class components that includes weld records, material certifications, quality control (QC) inspections, etc.

- Acceptance test procedure (ATP), and acceptance test report (ATR), in accordance with WHC-CM-6-1, to document the procedures and results of qualification testing of the HLSSS

- Operation and maintenance manual (OMM) for the HLSSS and unloading procedures for the 222-S Laboratory
Training plan and procedures

Radiation work permit (RWP), ALARA (as low as reasonably achievable) management worksheets, and shielding analysis report (with dose rate projections)

Field installation work plans, packages, and procedures

Acceptance for beneficial use (ABU) forms accepted by Operations Engineering prior to turning equipment over to operations.

Upon completion of the above deliverables, the final deliverable will be

One fully assembled and tested HLSSS ready for field operation to deliver 0.5 to 3 liters of supernatant samples to the 222-S hot cells. A total of 6 casks and 15 disposable samplers will be provided.

3.0 DESCRIPTION

3.1 PHYSICAL DESCRIPTION

The current conceptual design for the HLSSS is a system consisting of three major components: sampler, controller, and transfer mechanism. The HLSSS will mate with a waste tank riser that is 4 inches or larger. The sampler will then be lowered and immersed in supernatant waste, filled in a controlled manner, and withdrawn by the controller into a shielded receiver. The transfer mechanism will be used to transfer the sampler from the controller into the OTC. The OTC will have a liner that is compatible with the sampler. The existing OTC truck will transport the cask with sample to the 222-S Laboratory, which is the designated receiving laboratory. Existing tooling and fixturing at the laboratory will handle the sampler including transfer of the contents into designated receivers, and disposal of the samplers. New tooling may need to be designed and fabricated if existing tooling is not compatible. From the 222-S Laboratory, the samples can be repackaged and shipped to various facilities for hot testing.

3.1.1 System Components

A conceptual sketch of the HLSSS is given in Figure 1. In this concept, the transfer mechanism is a simple A-Frame with trolley and power hoist for maneuvering the controller between the waste tank's riser and the OTC. Figure 2 shows the existing OTC truck and transport arrangement to be used with the HLSSS.

The HLSSS will consist of the following components:

- Sampler to acquire supernatant sample from Hanford Site 200 Areas waste tanks
- Controller mechanism to interface sampler with a waste tank's riser (4-in. minimum) and control deployment of the sampler
Transfer mechanism to transfer the sample from the controller to the OTC.

3.1.2 Functions and Requirements

The HLSSS must satisfy the functions and requirements listed in the following sections. It should be noted that the HLSSS will not be designed for the following:

- Sampling sludge
- Penetrating thick crust or wastebergs
- Using with the existing core drilling truck
- Determining the sludge/supernatant interface (assumed to be known)
- Sampling supernatant waste with depth less than sampler height plus margin (approximately 1 - 2 ft).

3.1.2.1 Performance Requirements

- The HLSSS will obtain one nominal 0.5-L supernatant sample per evolution (0.45 L < sample volume < 0.5 L) using a disposable sampler.
- Maximum set-up and take-down time with a crew of three to four personnel in a non radioactive environment shall be 1 day.
- Minimum sample rate shall be one sample per 2 hours in a non radioactive environment.
- Sampler shall not alter either the physical or the chemical properties of the sampled material.
- Sampler must prevent dilution of sample as it is withdrawn.
- Sampler must have high reliability, recovering at least 90% of the sample volume 90% of the time.
- System shall be simple in design and cost-effective in operation.
- System shall be reusable, mobile, and maintainable (sampler may be disposable if cost-effective).
- All sampling hardware must be retrievable from the tank after completion of sampling activities.

3.1.2.2 Mechanical and Material Requirements

- Sampler must withstand a hydrostatic head of up to 3 atm.
- The HLSSS must be capable of obtaining a sample from any depth in the supernatant waste (with restriction given above).
Controller shall continuously provide relative sampler position to within ± 6 in.

Controller shall provide a means to control air inleakage to the tank when connected to the tank.

Sampler shall not be capable of releasing pressure into the OTC liner that would pressurize the liner to greater than 38 psia.

Maximum weight of the sampler (full of waste) shall be 20 lbs (WHC 1992).

Sampler shall consist of materials that are compatible with the tank environment, shipping casks, and laboratory hot cells.

Sampler shall be designed to contain waste material with activity levels as specified in Tank Waste Compositions and Atmospheric Dispersion Coefficients for use in ASA Consequence Assessments, WHC-SD-WM-SARR-016.

Sampler must obtain waste samples with temperatures up to 90 °C, and an OH concentration of up to 4 M.

Sampler must withstand radiation doses of 2,000 R/h with no loss of integrity.

3.1.2.3 Safety

Radiation dose to workers shall be minimized in accordance with ALARA principles and in compliance with the Hanford Site Radiological Controls Manual, HSRCM-1.

Controller shall provide a means of removing most of the surface contamination from the sampler before it is placed in the OTC for transport to the laboratory.

System operation shall be in compliance with riser and tank load limits.

Transfer mechanism will be designed to maintain adequate shielding based on a worst case scenario as the sample is lowered from the controller into the OTC.

System shall minimize the spread or release of radioactive or hazardous materials into the environment.

System must operate safely in an environment potentially containing explosive gases (for samplers to be inserted into flammable gas watch list tanks).

3.1.2.4 Interfaces

Sampler and controller must interface with waste tank 4-in. or larger risers.
The HLSSS may use existing double-shell tank farm air (100 psi, 10 scfm minimum), water (60 psi, 5 gpm minimum), and electrical (115 V, 60 Hz, 20 A) utilities.

- Sampler and liner must fit within the existing OTC, which consists of a 2.375 in. diameter by 42.75 in. long cavity.
- The HLSSS must interface with the existing transport truck for shipping the OTC between the 200 Areas waste tank farms and the 222-S Laboratory.
- The HLSSS must interface with decontamination and packaging equipment for reuse or disposal.

3.1.3 Codes and Standards

The activities outlined in this work plan shall be performed in accordance with the WHC manuals and procedures listed in the following table as applicable.

<table>
<thead>
<tr>
<th>MANUALS/PROCEDURES</th>
<th>WHC DOCUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>306E Facility Equipment Operating Procedures</td>
<td>WHC-IP-0550</td>
</tr>
<tr>
<td>306E Facility Operating Procedures</td>
<td>WHC-IP-0793</td>
</tr>
<tr>
<td>306E Facility Administration Manual</td>
<td>WHC-IP-0882</td>
</tr>
<tr>
<td>Quality Assurance Manual</td>
<td>WHC-CM-4-2</td>
</tr>
<tr>
<td>Nondestructive Test Procedures</td>
<td>WHC-CM-4-38</td>
</tr>
<tr>
<td>Standard Engineering Practices</td>
<td>WHC-CM-6-1</td>
</tr>
<tr>
<td>Procurement Manual and Procedures</td>
<td>WHC-CM-2-1</td>
</tr>
<tr>
<td>Hazardous Material Packaging & Shipping</td>
<td>WHC-CM-2-14</td>
</tr>
<tr>
<td>Work Management Manual</td>
<td>WHC-CM-1-8</td>
</tr>
<tr>
<td>Environmental Compliance</td>
<td>WHC-CM-7-5</td>
</tr>
<tr>
<td>Management Requirements and Procedures</td>
<td>WHC-CM-1-3</td>
</tr>
<tr>
<td>Hanford Site Radiological Controls Manual</td>
<td>HSRCM-1</td>
</tr>
<tr>
<td>ALARA Program Manual</td>
<td>WHC-CM-4-11</td>
</tr>
<tr>
<td>Industrial Safety Manual</td>
<td>WHC-CM-4-3</td>
</tr>
<tr>
<td>Industrial Hygiene Manual</td>
<td>WHC-CM-4-40</td>
</tr>
<tr>
<td>Standard Operating Practices</td>
<td>WHC-CM-1-5</td>
</tr>
</tbody>
</table>
The HLSSS will be designed using the English system of units. The sampler system cannot be designed to the Hanford Metric Implementation Plan because the system must interface with casks, tank risers, and other hardware that were designed to the English system.

3.2 ENGINEERING TASKS

Westinghouse Hanford Company Characterization Projects is responsible for the overall coordination of the project including all tasks outlined in this work plan. The engineering tasks along with supporting work required by other organizations are described in detail in section 4.0.

3.3 VERIFICATION

Design verification of the HLSSS shall be performed in accordance with WHC-CM-6-1, EP-4.1. Design in progress reviews (30%), where required, will be informal reviews. Final design reviews (90%) will be independent technical reviews in accordance with the direction of the cognizant engineer and manager. Qualification testing of prototype HLSSS components in a non-radioactive environment will also be performed to verify compliance with the design criteria specified in Section 3.1.2 of this work plan.

3.4 PROCUREMENT TASKS

All materials and components shall be procured in accordance with the Procurement Manual and Procedures, WHC-CM-2-1. Material certifications, in accordance with the applicable material standards of the American Society for Testing and Materials (ASTM) and of the American Society of Mechanical Engineers (ASME), shall be required for Safety Class 3 purchased raw material and weld filler metal. Material certifications shall be traceable to the material heat or lot number. Traceability to the material certifications shall be maintained during fabrication as noted by the associated drawing, sketch, or specification.

Quality assurance (QA) inspection will be performed on Safety Class 3 raw material procurements to assure identification and traceability in accordance with the Quality Assurance Manual, WHC-CM-4-2.

Advanced procurements are encouraged. It is accepted that some equipment procured may not be used in the final assembly because of the developmental nature of the task.

3.5 FABRICATION TASKS

Fabrication of components shall meet the requirements specified on the drawings and in this work plan. Design and fabrication of the HLSSS shall be in accordance with Standard Engineering Practices, WHC-CM-6-1, EP-2.4, "Development Control." The requirements to be followed are those for hardware with facility-use potential.
Drawings, sketches, and specifications shall be identified as "Development Control" in accordance with WHC-CM-6-1, EP-2.4. Two complete, independent sets of these fabrication drawings shall be maintained with identical information and updated on a daily basis (if drawing changes are required). One set is to be in the cognizant engineer's possession, and one set is to be with the fabrication package. Changes, additions, or deletions to development control drawings, sketches, or specifications shall be controlled either by marking the change in red ink or by preparing additional pages or sketches and identifying traceability to the affected drawing, sketch, or specification. A logbook of drawing changes and their locations is to be maintained with the drawings. For all drawing modifications, the affected area shall be clouded in red, signed, and dated by the cognizant engineer or his designee.

At the end of fabrication, all development control changes shall be incorporated into the appropriate engineering documents. Engineering drawings shall be prepared and released as H-series drawings in accordance with WHC-CM-6-1, EP-1.3. Engineering specifications shall be prepared and released in accordance with WHC-CM-6-1, EP-1.2. All subsequent changes to released drawings shall be controlled using the engineering change notice (ECN) process in accordance with WHC-CM-6-1, EP-2.2.

3.6 PRE-OPERATIONAL AND OPERATIONAL TESTS

A preoperational test in the form of a qualification test in a non-radioactive environment will be performed as specified in Section 3.3 above. Testing will be in accordance with an approved qualification test plan. Testing in 306E shall be conducted by the cognizant test engineer/test director and performed in accordance with WHC-IP-0882, "306E Facility Administration Manual." An ABU form will be completed prior to installation or operation in a tank farm.

3.7 INSTALLATION TASKS

Plant Engineering is responsible for preparing and documenting, in accordance with tank farm procedures, the field installation work plan. The installation work plan and work package will be tracked through the Job Control System.

4.0 ORGANIZATION

The task descriptions and responsibilities are outlined in the following sections. Signatures on the engineering data transmittal (EDT) form for this document indicate agreement for the task responsibility, schedule, and estimated costs by the responsible organization.
4.1 CHARACTERIZATION NEW EQUIPMENT

Manager: J. W. Lentsch
Engineering Manager: C. E. Hanson
Lead Project Engineer: G. A. Ritter (matrixed from Nuclear Analysis and Characterization)
Organization code: 8M720/75400

- Provide overall planning, scheduling, budgeting, and coordination of the project.
- Prepare this work plan including the design criteria specified in Section 3.1.2.
- Prepare the SDD in accordance with WHC-CM-6-1 and support design of the HLSSS.
- Coordinate and support the fabrication of all components of the HLSSS.
- Prepare and approve procurement documents as cognizant engineer and manager.
- Prepare the ATP and ATR in accordance with WHC-CM-6-1 and coordinate qualification testing of the HLSSS.
- Prepare the OMM for the HLSSS.
- Prepare training plan and procedures and support training to operators.
- Prepare ABU forms to be accepted by Operations Engineering prior to turning equipment over to operations.
- Determine safety class of all components of the HLSSS.
- Approve all engineering and safety documentation.
- Provide lead project engineer and manager responsibilities through design, procurement, fabrication, and acceptance testing, prior to turning equipment over to operations as shown in the matrix below. During field installation and through operation, the New Equipment group will provide support to the Plant Engineering organization.

<table>
<thead>
<tr>
<th></th>
<th>Design</th>
<th>Procurement</th>
<th>Fabrication</th>
<th>ATP</th>
<th>Field Installation</th>
<th>OTP</th>
<th>ABU</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char New Equip</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Char Plant Engr</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

L: lead engineer/manager responsibilities
S: support engineer/manager responsibilities
4.2 CHARACTERIZATION PLANT ENGINEERING

Manager: J. S. Schofield
Engineer: TBD
Organization code: 75210

- Assume cognizant engineer and cognizant manager responsibilities after turning equipment over to operations as shown in the matrix above.
- Sign documentation as the cognizant engineer and cognizant manager. Procurement approvals are delegated to the design engineering organization.
- Review and approve functions and requirements, design, training, operation and maintenance, and safety documents as required.
- Determine requirements for ABU.
- Prepare field installation work plans and support the preparation, planning, scheduling, and performance of the Job Control System work packages in the tank farms.

4.3 IPM PROGRAM/TECHNICAL INTEGRATION

Manager: S. A. Barker
Engineer: E. J. Berglin
Organization code: 8K430

- Review and approve HLSSS design criteria specified in Section 3.1.2.
- Provide coordination between the various sampling programs, and establish tank farm sampling schedule to meet the needs of IPM hot testing work.

4.4 TWRS SAFETY ENGINEERING

Manager: E. J. Lipke
Engineer: B. A. Crea
Organization code: 74220

- Provide design support for the HLSSS.
- Support HLSSS prototype fabrication and testing activities.
- Assist in preparation of engineering documentation including the SDD, ATP, ATR, OMM, and training plans and procedures.
4.5 NUCLEAR PHYSICS AND SHIELDING
Manager: J. Greenborg
Engineer: R. A. Schwarz
Organization code: 8M730

- Prepare report to include results of dose rate calculations for determining shielding required for the HLSSS components and to support ALARA planning.

4.6 SPENT NUCLEAR FUEL EVALUATIONS
Manager: R. P. Omberg
Engineer: S. L. Hecht
Organization code: 8M710

- Prepare report to include results of stress analysis to assure there will be no tank damage from operation of the HLSSS.
- Design impact limiter for HLSSS as required by results of above calculations.

4.7 TWRS SAR ENGINEERING
Manager: R. L. Schlosser
Engineer: R. L. Guthrie
Organization code: 8M110

- Prepare safety analysis/USQ screening of the HLSSS as it relates to installation, operation, and removal from the tank farm waste tanks.
- Provide design support as related to safety issues and attend status meetings to participate in design decisions.

4.8 ENVIRONMENTAL SERVICES
Manager: W. T. Dixon
Primary Contact: R. J. Swan
Organization code: 01800

- Obtain environmental permits for operation of the HLSSS if not already covered under existing permits.

4.9 PACKAGING SAFETY ENGINEERING
Manager: J. G. Field
Engineer: M. D. Clements
Organization code: 84100

- Provide updated SARP to approve transportation of the sampler with the existing OTC.
4.10 CHARACTERIZATION PROJECT ESQ

Manager: J. C. Midgett
Engineer: M. L. McElroy
Organization code: 3E200

- Review and approve engineering documentation as required.
- Perform the necessary inspection activities to ensure conformance to the appropriate documents and procedures during fabrication.
- Perform design verification activities to ensure that the as-built engineering documentation reflects the final system configuration.
- Support operational readiness review (ORR) and field operation of equipment.

4.11 TWRS NUCLEAR SAFETY

Manager: M. N. Islam
Engineer: L. S. Krogsrud
Organization code: 31N30

- Review and approve engineering documentation as required.
- Review and approve safety class designations.
- Coordinate all required safety reviews (i.e., Industrial Health and Safety, Fire Safety, and Health Physics).
- Support ORR and field operation of equipment.

4.12 ICF KAISER HANFORD COMPANY SPECIAL PROJECTS DESIGN SERVICES

Manager: R. L. Romine
Lead Designer: TBD
Organization code: 5A611

- Provide mechanical design and checking support and prepare as-built H-series drawings for the HLSSS.

4.13 EQUIPMENT DEVELOPMENT - 306E

Manager: J. R. Thielges
Fabrication Engineer: T. A. Delucchi
Cognizant Technician: TBD
Organization code: OM520

- Provide fabrication support for the HLSSS.
- Maintain a quality "traveler" package to allow final equipment QA inspection and green tagging (typical contents: assembly
instructions, weld records, material certifications, QC inspections).

- Compile an as-built data package and vendor files (owner's manuals, cut sheets, calibrational certifications, etc).
- Perform/support proof-of-principle and qualification testing of the HLSSS.
- Support equipment operation in the field during training and turn over to operations.

4.14 HOT CELL AND SAMPLE PREPARATION

Manager: R. Akita
Engineer: TBD
Organization code: 75910

- Support the design of hot cell tooling and fixtures for recovering the sample from the sampler as required.
- Provide procedures for receiving, unloading, manipulating, and disposal of samples at the 222-S laboratory.

4.15 CHARACTERIZATION PROJECT RAD CONTROL

Manager: K. D. Haggerty
Engineer: K. P. Mortensen
Organization code: 3E120

- Assist the job control system (JCS) planner in the preparation of ALARA management worksheets and RWP.
- Provide Health Physics review of HLSSS design and documentation as required.
- Review and approve field work plans and work packages as required.
- Support ORR and field operation of HLSSS.

4.16 CHARACTERIZATION OPERATIONS/FIELD SAMPLING

Manager: R. Ni
Field Manager: W. J. Kennedy
Organization code: 75150

- Provide operations review of HLSSS design and documentation as required.
- Review and approve field work plans and work packages as required.
- Support ORR and field operation of HLSSS.
Supervise the installation, operation, removal, and storage of equipment in the tank farms.

5.0 SCHEDULE

The schedule for the development of the HLSSS is shown in Figure 3. A summary of the primary activities is given below.

- Complete HLSSS detailed design and review: June 20, 1995
- Complete HLSSS prototype fabrication: July 20, 1995
- Complete HLSSS qualification testing: August 3, 1995
- Complete operations training for HLSSS: August 28, 1995
- Install and operate HLSSS in the field: September 15, 1995

6.0 COST ESTIMATE

The detailed cost estimate by organization for fiscal year 1995 is provided in Figure 4. The total estimated costs, including overhead, are $585,000.

7.0 QUALITY ASSURANCE

Quality assurance requirements for the activities in this work plan shall be in accordance with 10 CFR 830.120, and the WHC Quality Assurance Manual, WHC-CM-4-2. The approval designator shall be a minimum of SQ for all documents.

8.0 REFERENCES

Figure 1. Waste Tank and Sampler System Schematic.
Figure 2. Onsite Transfer Cask Truck and Tiedown Arrangement.
Figure 3. Schedule for Half-Liter Supernatant Sampler System Development.
<table>
<thead>
<tr>
<th>ACTIVITY ID</th>
<th>EARLY START</th>
<th>EARLY FINISH</th>
<th>ORIG DUR</th>
<th>REM DUR</th>
<th>DUR</th>
<th>DUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN4J200022</td>
<td>21 JUN 95</td>
<td>20 JUL 95</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>IN4J200037</td>
<td>21 JUN 95</td>
<td>28 AUG 95</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>IN4J200039</td>
<td>21 JUN 95</td>
<td>20 JUL 95</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>IN4J200040</td>
<td>21 JUN 95</td>
<td>20 JUL 95</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>IN4J200020</td>
<td>28 JUN 95</td>
<td>13 JUL 95</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IN4J200030</td>
<td>28 JUN 95</td>
<td>21 AUG 95</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>IN4J200033</td>
<td>28 JUN 95</td>
<td>20 JUL 95</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>IN4J200007</td>
<td>2 JUN 95</td>
<td>3 AUG 95</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>IN4J200010</td>
<td>21 JUL 95</td>
<td>10 AUG 95</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>IN4J200029</td>
<td>21 JUL 95</td>
<td>17 AUG 95</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>IN4J200034</td>
<td>21 JUL 95</td>
<td>3 AUG 95</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IN4J200041</td>
<td>21 JUL 95</td>
<td>17 AUG 95</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>IN4J200043</td>
<td>21 JUL 95</td>
<td>22 SEP 95</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>IN4J200044</td>
<td>21 JUL 95</td>
<td>10 AUG 95</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>IN4J200035</td>
<td>4 AUG 95</td>
<td>17 AUG 95</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IN4J200025</td>
<td>11 AUG 95</td>
<td>17 AUG 95</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>IN4J200027</td>
<td>11 AUG 95</td>
<td>31 AUG 95</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>IN4J200045</td>
<td>11 AUG 95</td>
<td>31 AUG 95</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>IN4J200036</td>
<td>18 AUG 95</td>
<td>21 AUG 95</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IN4J200042</td>
<td>22 AUG 95</td>
<td>28 AUG 95</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>IN4J200028</td>
<td>1 SEP 95</td>
<td>8 SEP 95</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

NEW EQUIPMENT DESIGN AND FABRICATION
HALF LITER SAMPLER (RITTER)

- STRESS ANALYSIS
- OPERATIONS TRAINING
- PREPARE OSH MANUAL
- 222-S UNLOADING PROCEDURES
- TEST FIXTURES FAB
- TESTING
- PREPARE ATP
- SAFETY ASSESSMENT / USO SCREENING
- AS-BUILTS
- FIFTEEN ADDITIONAL SAMPLERS
- PERFORM ATP
- PREPARE TRAINING PLAN AND PROCEDURES
- DEPLOY TO FIELD
- PREPARE FIELD WORK PLAN
- PREPARE ATR
- RELEASE DRAWINGS
- PREPARE FIELD WORK PACKAGE
- ALARA MANAGEMENT WORK SHEET / RWP
- GREEN tag SYSTEM
- PERFORM OPERATOR TRAINING
- SCHEDULE FIELD WORK
<table>
<thead>
<tr>
<th>ACTIVITY ID</th>
<th>EARLY START</th>
<th>EARLY FINISH</th>
<th>ORIG DUR</th>
<th>REM DUR</th>
<th>DUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN4J200031</td>
<td>11SEP95</td>
<td>15SEP95</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>IN4J200049</td>
<td>18SEP95</td>
<td>22SEP95</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

NEW EQUIPMENT DESIGN AND FABRICATION C. HANSON

HALF LITER SAMPLER (RITTER)

INSTALL AND OPERATE HLSS

ABU

Plot Date: 22MAY95

Date Date: BMA795

Project Start: 10C192

Project Finish: 25MAR97

(c) Primavera Systems, Inc.
Figure 4. Budget for the Half-Liter Supernatant Sampler System.

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Resource</th>
<th>Org Code</th>
<th>Mat Proc</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management</td>
<td>Nuc Anal & Characterization</td>
<td>8M720</td>
<td></td>
<td>80</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA/USO Screening</td>
<td>TWRS SAR Engineering</td>
<td>8M110</td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARP</td>
<td>Packaging Safety Engineering</td>
<td>84100</td>
<td></td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EANOC</td>
<td>Environmental Services</td>
<td>O1800</td>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Safety</td>
<td>TWRS Nuclear Safety</td>
<td>31N30</td>
<td></td>
<td>20</td>
<td>40</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td>Characterization Project ESQ</td>
<td>3E200</td>
<td></td>
<td>20</td>
<td>16</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release Station</td>
<td>Configuration Documentation</td>
<td>66620</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design/Drafting</td>
<td>TWRS SP Design Services</td>
<td>5A611</td>
<td></td>
<td>160</td>
<td>160</td>
<td>240</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design support</td>
<td>TWRS Safety Engineering</td>
<td>71410</td>
<td></td>
<td>160</td>
<td>160</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielding Analysis</td>
<td>Nuclear Physics & Shielding</td>
<td>8M730</td>
<td></td>
<td>40</td>
<td>160</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Analysis</td>
<td>Spent Nuclear Fuel Evaluations</td>
<td>8M710</td>
<td></td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabrication/Procurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prototype Fabrication</td>
<td>Equipment Development (306E)</td>
<td>0M620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>Cask, Sampler Fab</td>
<td>Fabrication Services</td>
<td>52100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proof of Principal, ATP</td>
<td>Equipment Development (306E)</td>
<td>0M620</td>
<td></td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>Characterization Operations</td>
<td>75150</td>
<td></td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training procedures</td>
<td>Tech Support Training</td>
<td>7CM30</td>
<td></td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222-S Unloading procedures</td>
<td>Hot Cell & Sample Preparation</td>
<td>75910</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deploy to Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release Station</td>
<td>Configuration Documentation</td>
<td>66620</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Safety</td>
<td>TWRS Nuclear Safety</td>
<td>31N30</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td>Characterization Project ESQ</td>
<td>3E200</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALARA M/W/RWP</td>
<td>Characterization Rad Control</td>
<td>3E120</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Plan</td>
<td>Characterization Plant Engr</td>
<td>75210</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Package</td>
<td>200W Planner/Scheduler</td>
<td>72200</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Support</td>
<td>Industrial Health & Safety</td>
<td>31N10</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Support</td>
<td>Health Physics</td>
<td>33322</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Materials/Procurement</td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td>$270,000</td>
<td>80</td>
<td>560</td>
<td>1048</td>
<td>1496</td>
</tr>
</tbody>
</table>

Grand Total Manhours: 4208
Grand Total $$: 585,600