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Abstract 
The goal of assembly sequencing is to plan a feasible series of operations to construct a prod- 

uct from its individual parts. Previous research has thoroughly investigated assembly sequencing 
under the assumption that parts have nominal geometry. This paper considers the case where 
parts have toleranced geometry. Its main contribution is an efficient procedure that decides if a 
product admits an assembly sequence with infinite translations that is feasible for all possible 
instances of the components within the specified tolerances. If the product admits one such 
sequence, the procedure can also generate it. For the cases where there exists no such assembly 
sequence, another procedure is proposed which generates assembly sequences that are feasible 
only for some values of the toleranced dimensions. If this procedure produces no such sequence. 
then no instance of the product is assemblable. Finally, this paper analyzes the relation between 
assembly and disassembly sequences in the presence of toleranced parts. This work assumes a 
simple, but non-trivial tolerance language that falls short of capturing all imperfections of a 
manufacturing process. Hence, it is only one step toward assembly sequencing with toleranced 
parts. 
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blocking graph. 
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- 
Figure 1: Example of an assembly sequence 

1 Introduction 
An assembly product is described by a geometric model of its parts and spatial relations defining 
their relative placement in the product. The goal of assembly sequencing is t o  plan a feasible 
partial ordering of operations to  construct this product from its individual parts. Each operation 
generates a new subassembly by merging individual parts and/or subassemblies constructed by 
previous operations. The outcome of the final operation is the desired product. Each operation 
is specified by the subassemblies it merges and their relative motions. These motions should not 
lead any two parts to  collide (contacts are allowed. however). Figure 1 shows an imaginary product 
made of four parts and the ordering (here. a total one) of an assembly sequence for this product. 
When parts are rigid, which is assumed here, assembly and disassembly sequences are the inverse 
of one another. Hence, in most of this paper, the two terms are used interchangeably. 

In assembly sequencing it is usually assumed that parts and subassemblies are free-flying objects 
that execute perfect motions. Issues such as grasping, fixturing. stability, sensing and control are 
ignored. Despite these assumptions, an assembly sequencer can be very useful. For instance. it 
allows the detection of undesired geometric interferences among parts while a product is being 
designed. As efficient products require more parts to be densely packed together, the risk of such 
interferences, along with the need to automatically detect them at an early stage, increases. 

There has been a significant amount of research on assembly sequencing during the past decade 
(e.g., [4, 5, 6, 11, 19, 20, 21, 22, 26, 27, 39, 40, 43, 44, 451). Early assembly sequencers were 
mainly interactive sequence editors; geometric reasoning was supplied by a human who answered 
questions asked by the system [6, 111. Automated geometric reasoning was then added to answer 
these questions automatically [4, 20, 22, 441. This development first resulted in generate-and-test 
sequencers, with a module guessing candidate sequences and geometric reasoning modules checking 
their feasibility [22, 391. More efficient techniques were later proposed to  replace time-consuming 
generate-and-test [3, 401. Research on “separability problems” in Computational Geometry is also 
related to  assembly sequencing [9, 17, 29, 31, 34, 361. 

Various forms of assembly sequencing have been shown to be computationally intractable [23,24, 
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28,441. This result has led researchers to  consider restricted, but still interesting subsets of assembly 
sequences, such as monotone sequences (where each operation generates a final subassembly) and 
two-handed sequences (every operation merges exactly two subassemblies). Often motions are 
also limited to  translations. Though such restrictions vary slightly among the various assembly 
sequencers proposed so far, one is made in all of them: Parts are uniquely defined by their nominal 
geometry. In this paper we depart from this assumption by investigating assembly sequencing when 
parts have toleranced geometry. This work has been motivated by the fact that for many products 
tolerances have a crucial effect on assembly sequences and manufacturing costs. 

Part tolerancing addresses the fact that manufacturing processes are inherently imprecise and 
produce parts of variable shapes [33, 371. A large body of work has been aimed at developing 
tolerance languages (e.g., the American Y14.5 standard [l, 381) to provide designers with symbolic 
means to  specify acceptable variations. One important goal is to  guarantee part interchangeabil- 
ity in an assembly product [37]: Given any set of parts manufactured according to  the specified 
tolerances, they should assemble satisfactorily. Unfortunately, existing tolerance languages. which 
have evolved from shop practice, suffer from informality. They also allow tolerances that interact 
among themselves. As a result, the basic tolerance analysis problem, which is to  accurately deter- 
mine where the boundary of a part might be located in a. given coordinate system [8, 13, 18, 301, is 
intractable. Proposed solutions to  this problem are incomplete or approximate, and often deal with 
an idealized subset of the tolerance language. Checking pa.rt interchangeability is even harder. Pre- 
vious work on this problem has focused on checking the geometric feasibility of the assembled state 
(i.e.: Does there exist an assembled state in which no two parts overlap?), using stack-up: optiniiza- 
tion, constraint propagation, statistical analysis, and/or Monte Carlo techniques [2, 10, 12, 14, 301. 

In this paper we go beyond the mere existence of an assembled state. We propose an efficient 
procedure that decides whether a product made of toleranced parts admits a guaranteed assembly 
sequence, i.e., a sequence that is feasible for all possible instances of the parts. This procedure can 
also generate all such sequences. The existence of an assembled state is not explicitly tested, but is 
implied by the existence of an assembly sequence (the converse is not true, however). For the cases 
where no guaranteed assembly sequence exists, we also propose another procedure that generates 
non-guaranteed assembly sequences, i.e., sequences that are only feasible for some instances of the 
parts. This procedure returns no such sequence if and only if the product is never assemblable. 
Our procedures assume a simple, but non-trivial tolerance language which does not model some 
important imperfections of manufacturing processes. The work reported in this paper is therefore 
only one limited step toward assembly sequencing with toleranced parts. Nevertheless, we believe 
it contributes to the much-needed understanding of what sort of tolerance language is suitable for 
assembly sequencing. Such understanding is of major interest to the community of researchers who 
are trying to improve the mathematical foundations of tolerancing [32, 351. 

Section 2 describes the assembly-description language accepted by our algorithms. Section 3 
gives appropriate technical background for the rest of the paper. It summarizes results previously 
reported in [40, 41, 421, including the concept of the non-directional blocking graph ( N D B G )  of a 
nomhal product, an algorithm to compute NDBGS, and a procedure to  generate assembly sequences 
from an NDBG. Section 4 develops the concept of a strong NDBG for products made of toleranced 
parts; this NDBG represents all possible blocking interferences between parts when their dimensions 
span the tolerance zones. It can be used in the same way as a “classical” N D B G  to generate guar- 
anteed assembly sequences. Section 5 describes in detail the algorithm enabling the construction 
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of the strong NDBG.  The main difficulty faced here is that variations in the dimensions of the parts 
also cause the relative positions of the parts in the products to vary. Section 6 proposes the concept 
of a weak NDBG,  which represents necessary blocking interferences between parts; this NDBG can 
be used to  generate non-guaranteed assembly sequences. Section 7 analyzes some subtle aspects 
of the relation between assembly and disassembly sequences when parts have toleranced geometry. 
Finally, Section 8 presents several extensions of the algorithms described in Sections 4, 5 ,  and 6. 

2 Description of an Assembly Product 
There are many ways to specify an assembly with toleranced parts. As we will see, some reduce 
assembly sequencing to  the case where all parts have nominal geometry, but they usually yield 
a poor representation of reality. Others provide a comprehensive account of the imperfections of 
the manufacturing processes, but then assembly sequencing has daunting complexity. Here we 
propose an assembly-description language that lies between these two extremes; we also discuss 
shortcomings of this language. In Section 8 we will extend our planning algorithms and eliminate 
some of these shortcomings. 

We consider a planar assembly product A made of h’ parts PI , .  . . , PN. It is described by a 
geometric model of the parts and spatial relations defining their relative placements. 

We assume that each part P, is a polygon manufactured such that all instances of P, have 
perfectly straight edges, the same topology, i.e., the same sequence of edges, and the same angles 
between edges; but each edge may have different lengths in the various instances. The geometry of 
Pa is defined by its sequence of edges, with each edge specified by the orientation of its supporting 
line relative to  some coordinate system and the interval of acceptable distances from the origin of 
this system to the supporting line. 

We will refer to  the coordinate system used to specify the geometry of P, as the coordinate 
system of Pi. We denote its origin by p,. The distance between pi and the line supporting an 
edge of Pa is called a variational parameter and the interval of acceptable values for this distance a 
tolerance zone. The tolerance zones of the variational parameters of each part P; should be small 
enough to  guarantee that all instances of P, have the same topology. A sufficient condition is that 
no vertex falls into the intersection of more than two stripes swept by edge-supporting lines when 
the variational parameters span the tolerance zones. 

Figure 2 illustrates the description of a part with seven edges. It shows a particular instance 
of the part in bold contour, the variational parameters d l ,  . . . , d?, and the extreme positions of the 
edge-supporting lines. 

The orientation of an edge-supporting line is defined by its angle in [0, T )  with the z-axis of P2’s 
coordinate system. The distance from pt to  this line is a signed real; the sign is set as follows: If 
the outer normal to the corresponding edge points in the direction of p , ,  the distance is negative; 
otherwise it is positive. For example, in Figure 2 all variational parameters, except d g ,  are positive. 
This _convention has two advantages: 
- It allows p; to  lie without ambiguity in the stripe swept by an edge-supporting line when the 
corresponding variational parameter spans its tolerance zone. 
- There is one instance of Pi that contains all other (called M M P ,  for Maximal Material Part). With 
our convention, it is obtained when all variational parameters are maximal. 
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Figure 2: Part description 

The relative placement of the N parts in A is defined by a set of spatial relations. Each relation 
R uniquely defines the relative placement of two particular parts. This means that for every possible 
instance of these two parts, a single relative position of their coordinate systems achieves R. We 
assume that R consists of two elementary relations: one stating that two edges. one from each 
part, are parallel, with their outer normals pointing in either the same or opposite directions and a 
signed distance between the lines supporting the two edges; the other stating that a vertex of one 
part is at some signed distance of the line supporting an edge of the other part. This definition 
of spatial relations subsumes normal contact relationships between parts: One specifies a contact 
between two edges by setting the distance between them to zero. We assume zero tolerances in the 
distance values of the spatial relations. 

Figure 3 illustrates a spatial relation between two parts P, and PJ. Edges e and f are parallel. 
with their normals pointing in the same direction, at some distance of each other (the distance, 
not given in the figure, is negative to  indicate that e is ahead of f along the direction of the outer 
normals). The vertex w is at some distance of the edge g (again, the value of this distance has been 
omitted in the figure). 

By complete, we mean that if 
one r-andomly picks a geometry for every component of A within the tolerance zones, the relations 
determine a unique geometry for A (such an assembly is said to  be “static” [30]). By non-redundant, 
we mean that removing any one of the relations makes the set incomplete. In order for the set 
of relations to  be complete and non-redundant, it is necessary and sufficient that the undirected 
graph whose nodes are the components of A and whose links are the spatial relations be connected 

The set of relations must be complete and non-redundant. 
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Figure 3: Spatial relation between two parts 

and without cycles. We call this graph the relation graph of A .  
The set of elementary relations used to specify the spatial relation between two parts could 

easily be enriched. For example, we could allow relations stating that two edges are perpendicular, 
that two edges are parallel (without specifying any distance), or that two vertices are at some 
distance from each other. It suffices that each elementary relation completely removes one or 
several degrees of freedom between the two parts and that the set of elementary relations forming 
a spatial relation be complete (i.e., remove all three degrees of freedom between the two related 
parts) and non-redundant. The first condition means in particular that a relation stating that 
two edges are perpendicular should also specify the angle (either or -$) between their outer 
normals. The second condition implies that there can be no more than three elementary relations 
in a spatial relation. Allowing all such elementary relations is straightforward, but would lengthen 
several sections of this paper. 

We refer to  the achievement of a spatial relation between two parts P; and Pj as the relative 
placement of these two parts, and to  the position of p ,  in the coordinate system of P, as their 
relative position. While the relative placement of any pair of parts in two instances of A is unique, 
the relative positions of these parts may differ due to  variations in the lengths of the edges of the 
parts. The same variational parameter may influence both the shape of a part and the position 
of this part relative to  other parts. On the other hand, the relative orientations of the coordinate 
systems are fixed. 

Let q; designate the number of edges of P, ( i  = 1 to Ai). Q = 41 + . . . + QN is the total number 
of edges in the parts of A.  The geometry of any particular instance of A is defined by a single 
value of the tuple ( d l ,  . . ., d ~ )  of variational parameters. The space spanned by this tuple is a 
Q-dimensional hyper-parallelepiped V ,  the Cartesian cross-product of the tolerance zones. We call 
V the variational space of A.  In the following, the same notation P; (resp. A )  will be used to  
desigkate both the variational class of parts (resp. assemblies) determined by V and any instance 
in that class. Whenever some ambiguity may arise, we will explicitly mention t o  which we refer. 

At this point, there is no requirement that an assembly product specified as above be feasible. 
Perhaps no assembly sequences allow the product to  be put together. Or the product may even be 
impossible, because some parts overlap in the assembled state. It will be the task of an assembly 
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Figure 4: Pa.rt with imperfect edges 

sequencer to  determine that. 

Discussion: We now briefly discuss some of the shortcomings of our assembly-description language. 
We focus on tolerancing, since this is the main theme of this paper. 

First, let us remark that the assembly sequencing problem depends intimately on how we 
describe an assembly A .  We noticed before that each part admits an M M P .  Suppose that, instead 
of using spatial relations, we had defined the relative placement of every two parts in A by the 
relative position of their coordinate systems. Then assembly sequencing would trivially reduce 
to assembly planning with MMPS. This does not seem to make much sense, however. Indeed. 
contacts and/or clearances between parts are crucial in assemblies. When the relative positions 
of the coordinate systems are directly provided in the description of the product, contacts can 
only be achieved at the ends of tolerance zones (otherwise parts could overlap); similarly clearance 
constraints are only met for some values of the variational parameters. 

The most blatant assumption in our language is that edges are perfectly straight. Such edges 
are impossible to  manufacture. However, the assumption is not really needed. Consider a part- 
with imperfectly shaped edges as illustrated in bold contour in Figure 4.a. We can bring a straight 
line, called a datum [30], into two-point contact with each edge and replace the imperfect edges by 
the perfect ones defined by the datums (Figure 4.b). Our algorithms apply to  the parts defined by 
these virtual edges. 

In the Y14.5 standard, specifying a distance between two edges e and f leads to  associating a 
datum with one edge, say e .  The tolerance zone defines the region (a  stripe in 2D) within which 
the other edge, f ,  should lie. In our case, the tolerance zone defines the locus of the virtual edge. 
The constraint expressed in Y14.5 entails ours, but the converse is not true. Although the relative 
weakness of our constraint would matter if we wanted to ensure that parts be interchangeable 
in function, it does not affect their interchangeability in assembly, which is our only concern in 
this paper. Said otherwise, the constraint expressed in Y14.5 can be translated into our language 
without affecting part interchangeability in assembly. 

Another important limitation is that edges are cut with perfect angles between them (which now 
only means that the virtual edges make perfect angles). Perfect angles are not possible in practice, 
even between datums. Tolerancing angles would allow the relative orientation of parts to  vary, thus 
seriously complicating assembly sequencing. In Section 8 we will show that our algorithms can 
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handle toleranced distances in spatial relations between parts, but by no means does this ability 
completely eliminate the above limitation. See also the conclusion for a short discussion of how 
this limitation could be removed. 

The coordinate system of a part P; can be located anywhere. In practice, dimensions are 
specified relative to  datums associated with edges. Then we could choose Pi’s coordinate system 
such that one of its axes is aligned with an edge and its origin coincides with one extremity of that 
edge. But using a single “central” coordinate system may be a limitation, since it often happens 
that datums in a single part are “chained” by distance specifications. We will see in Section 8 that 
we can adapt our algorithms to  handle multiple coordinate systems per part. 

The fact that we only consider planar assemblies is one important limitation not directly related 
to  tolerancing. Again, in Section 8 we will see‘that some of our algorithms extend to 3D polyhedral 
assemblies. 

3 Background 

Let the assembly A be described as above, but with zero-length tolerance zones. Hence, all parts 
and subassemblies are nominal. In this section we briefly review previous techniques that generate 
monotone two-handed assembly sequences for A. In particular we present the concept of the NDBG 
of A for infinite translations. This concept is central to the work presented in the following sections. 

An assembly sequence is a partial ordering on operations of the form: “Merge SI and SZ into S 
by translating S1 along t.” Its inverse, a disassembly sequence, is obtained by reversing the ordering 
and replacing each operation, such as the above; by: “Break S into SI and S2 by translating SI 
along t + T.” In fact, under the assumption that. parts are rigid (which is the case here), the inverse 
map is a bijection between the assembly and the disassembly sequences. Any assembly sequence can 
thus be produced by first generating a disassembly sequence and then inverting it. A disassembly 
sequence is intuitively easier to  produce since it starts from the highly constrained assembled state, 
in which spatial relations may directly suggest candidate disassembly motions. 

Let p a r t i t i o n  be a procedure that takes the description of an assembly S as input and generates 
two subassemblies SI and 5’2 (&US2 = S), along with a direction t such that 5’1 can be removed from 
S and transIated arbitrarily far along t without colliding with Sa. Whenever such subassemblies 
and direction don’t exist, the procedure returns failure. Disassembly sequences are generated by 
applying p a r t i t i o n  to A and. recursively, to  the generated subassemblies that are not individual 
parts. Let disassemble designate this recursive procedure. 

In several early assembly sequence planners, p a r t  it ion was based on a generate-and-test tech- 
nique. Given S, this technique enumerates all candidate partitions {S1,S,} of S, until it finds a 
direction t that separates 5’2 from SI without disturbing S1. Finding t often consists of inferring 
it from spatial relations between parts (mainly from contacts), computing the region that will be 
swept by Sa, and checking that this region does not intersect 5’1. But this technique can be very 
slow, Indeed, the number of candidate partitions is always exponential in the number of parts in S, 
while the number of feasible partitions is usually much smaller. The non-directional blocking graph, 
NDBG for short, was introduced to avoid the combinatorial trap of generate-and-test [40, 41, 421. 
The idea is to  precompute a structure, the N D B G ,  that represents all blocking interferences among 
the parts in A,  and to  query this structure to generate one, several, or all disassembly sequences. As 
we will see, the NDBG yields a more efficient implementation of p a r t i t i o n  than generate-and-test. 



Figure 5: Examples of directional blocking graphs 

Consider two parts Pi and Pj in their rela.tive position in A. Ignore all other parts. The 
direction t is a feasible infinite translation for Pi relative to Pj if one can translake P; to  infinity 
along t without colliding with Pj. The 
directiona,l bZocking graph, or DBG,  of A for t is the directed graph whose nodes are the parts of A 
and whose arcs are all pairs of parts (Pi,  P j )  such that. t is not a feasible infinite translation of P; 
relative to  Pj. Figure 5 shows DBGS of a simple assembly for two directions t l  and t 2 .  

In two dimensions the set of all directions is represented by the unit circle SI. The set of feasible 
infinite translations of Pi relative to  Pj is a cone C;j that det.ermines an arc in SI. Hence, all the 
cones C;j, i , j  E [l, .Ar], i # j ,  partition SI into 0(S2)  arcs such that the DBG of A remains constant. 
over each arc. The sequence of arcs and their DBGS form the non-directional blocking graph of A. 

We assume for simplification that there are no tight insertions in A. Each cone C;j can then be 
constructed by erecting the two extreme rays originating at pi  (the origin of the coordinate system 
of P;) and tangent to  Pj 8 P; (the Minkowski difference of Pj and Pi). See Figure 6, where t,he 
polygon in bold contour is Pj 8 Pi. If P; and Pj touch each other, then p;  lies on the boundary 
of Pj Pi. If they overlap (in which case, A is not a. possible assembly), pi lies in the interior of 
Pj 8 Pi. (If we allowed Pi to be tightly inserted into Pj, we would have to be more careful, since 
the set of positions where P; touches Pj would then be a superset of the boundary of Pj 6 Pi.) 

If P; and Pj are non-convex polygons with y; and y j  edges, we can decompose them into convex 
components, which we denote by P;k (k = 1: 2 , .  . .) and Pj ( I  = 1 ,2 , .  . .)? respectively. We have: 
Pj 8 P; = Uk, l  P,' 8 P;k. A trapezoidalization of Pi and Pj yields O(q;) and O(qj )  components, each 
of constant complexity, in times O(y;logy;) and O(yj1ogqj) [as]. Each region Pj e PF is a convex 
polygon of constant complexity that takes constant time to  compute. Let C t  be the cone formed 
by the two rays stemming from pi and tangent to  Pj e P;k. We have: Cij = nk,l C z .  All cones 
C&' are computed in time O(y;qj). They determine O(q;qj) arcs in S1. The computation of the arc 
where Cij intersects S1 is thus done in total time O(q;yj + q; log yi + qj log yj). 

Let q be the maximal number of edges in a single part of A .  The 0(N2) cones Cij are computed 
in ti&e O ( ( ~ y q ) ~ ) .  They determine O ( N 2 )  points in S1 that are sorted in time O(N210gN). The 
DBG in any arc can be obtained in time O ( N 2 ) .  However, between any two adjacent arcs, the DBG 
undergoes a small number of changes that can be computed in constant time. Thus, once a DBG has 
been computed, all other DBGS can be computed in total time O ( N 2 )  by scanning the sequence of 
arcs in S1 and, for each arc, modifying the DBG constructed for the previous arc 1401. The complete 

Now consider the full assembly A and a direction t .  
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Cij 

Figure 6: Construction of a cone of feasible infinite translations 

NDBG takes time O(N2(logN + q 2 ) )  to  compute. 
Consider now the DBG G of A for some direction t .  A can be partitioned into two subassemblies 

SI and Sz by translating SI along t if and only if there exists no arc in G connecting a part of 
SI to  a part of 5’2.  Hence. A can be partitioned by a translation dong t if and only if G is not 
strongly connected. The strong components of G yield all possible partitionings of A. Notice also 
that the NDBG of any subassembly S of A is obtained by restricting every DBG to  the parts of S 
and merging adjacent arcs of S1 having the same DBGS. Hence, given the NDBG of A ,  p a r t i t i o n  
can be implemented as follows: 

procedure p a r t  it ion( S); 
for every arc c in the NDBG of S do: 

if the DBG associated with c is not strongly connected 
then return c and a feasible partition of S ;  

return failure; 

Computing the strong components of a DBG takes time O ( N 2 ) .  (A better bound, O(N1.38), can be 
obtained by taking advantage of the fact that any two successive DBGS differ by a small amount [25 ] . )  
Hence, p a r t i t i o n  runs in time O(N4) and disassemble generates an assembly sequence in time 

The procedures p a r t i t i o n  and disassemble can easily be modified to  generate all feasible 
assembly sequences [40]. In the worst case, however, the number of these sequences is exponential 
in N .  

o ( ~ 5 ) .  
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Remark: The above presentation has focused on planar assemblies and infinite translations. How- 
ever, X D B G S  have been successfully extended both to deal with 3D assemblies and to generate more 
complicated motions (e.g., rotational motions [42, 151 and multiple extended translations [43]). This 
requires adapting the definition of a feasible motion of P, relative to P,. Another planning approach, 
based on “monotone paths,” has been proposed to  avoid the combinatorial trap of generate-and-test 
for assemblies of polygons in the plane [3]. But, so far, this approach has only been proposed to 
generate translational assembly sequences for planar polygonal assemblies. Attempts to  efficiently 
generalize it to  3D assemblies and/or rotational motions have failed. 

4 Strong NDBG 
From now on let the assembly A be made of toleranced parts, as described in Section 2. While the 
question “Does there exist an assembly sequence to construct A?” had only two possible answers, 
“yes” and “no)), when parts in A had nominal geometry, it now has three possible answers, “yes”, 
“no” and “maybe”. Moreover, if the answer is “yes”, two cases are possible: There may, or may not 
exist an assembly sequence that is feasible for all values of the variational parameters. We call such 
a sequence a guaranteed assembly sequence, and a sequence that is only feasible in a non-empty 
subset of the variational space V a non-guaranteed sequence. 

In this section we focus on guaranteed assembly sequences. We propose an extension of the 
NDBG concept to  represent all possible blocking interferences among parts of A for infinite trans- 
lations, when the variational parameters span V .  We call this extension the strong NDBG. The 
procedures partition and disassemble apply to this N D B G  without modification. The proce- 
dure disassemble now produces guaranteed assembly sequences. whenever such sequences exist; 
it returns failure otherwise. 

Consider any two parts in A .  Due to possible variations in their geometry and relative position, 
the cone of feasible infinite translations of one part relative to the other is not constant. Therefore, 
at each point in the variational space V ,  one may compute a distinct NDBG.  To be sure that A 
can be partitioned into two subassemblies by translating one to infinity along some direction, this 
partitioning must be feasible in all NDBGS over 1;. 

Since computing all NDBGS over Y is generally impractical. we propose to “project” these NDBGS 
onto SI. This projection associates a set of DBGS with every direction t of SI. This set consists of 
all distinct DBGS for direction t ,  when the variational parameters span Y .  Usually, if two directions 
tl and t 2  are very close to  each other, the same set of DBGS is associated with both directions. 
Indeed, translating each component of A along tl is likely to yield collisions with the same parts as 
a translation along t 2 .  This is not true, however, for some directions where a translated part collides 
with a new part or stops colliding with a part. These critical directions partition S1 into arcs such 
that a single set of DBGS is associated with every arc. We call this structure the multi-valued N D B G  
of A.  

For every value of the 
variational parameters, we can compute a cone C;, of feasible infinite translations of P, relative 
to P,. Let us intersect all cones C;j when the variational parameters span their tolerance zones. 
The result is the possibly empty cone SC,, of infinite translations that are feasible for all values of 
the variational parameters. We call it the small cone of feasible translations of P, relative to PJ. 
Similarly, the union LC,, of all cones Ci, is the cone of all infinite translations that are feasible for 

To make this concept clearer, consider two parts Pi and P, in A. 
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(c) 

Figure 7: Multi-valued NDBG for two parts 

Figure 8: Influence of variational parameters on feasible translations 

at least one value of the variational parameters (LC,, may have a 27~ angle). We call it the large 
cone. Inverting SC,, and LC,, yields SC,, and LC,,, respectively. The four cones SC,,, LCtJ7 SC,,, 
and LC,, partition S1 into at most 8 arcs, such that a single set of DBGS reduced to  P, and P, is 
associated with each cell. The set of arcs and the associated sets of DBGS form the multi-valued 
NDBG of the subassembly made of P, and PJ.  See Figure 7, where the small (resp. large) cones are 
bounded by plain (resp. dashed) lines. 

In the example of Fig. 7, the small and large cones are respectively obtained for the maximal 
material parts (Fig. 7.a) and least material parts (Fig. 7.b). But this is not always the case. For 
example, Fig. 8 shows a 3-part assembly with two variational parameters d l  and dz .  When dl is 
minimal and d2 maximal, the peg P3 can’t be translated vertically. When dl is maximal and d2 
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Figure 9: Strong NDBG for two parts 

minimal, this translation is feasible. 
Scanning all pairs of parts in A leads to  partitioning S* into O ( N 2 )  arcs. But in the worst case 

the set of DBGS associated with one arc has size 0(2'v2>. For this reason. we replace this set by the 
union of the DBGS it contains. The result is called the strong DBG.  The N D B G  whose cells are labeled 
by strong DBGS is called the strong NDBG. As mentioned above, it describes all possible blocking 
interferences among the parts of A when the variational parameters span V .  Figure 9 shows the 
strong NDBG derived from the multi-valued N D B G  of Figure 7. Notice that several adjacent DBGS 
are identical; so, the corresponding arcs should be merged. As a result, only the small cones are 
needed to construct the strong NDBG.  

At the core of the computation of the strong NDBG is the algorithm that generates the small 
cone SC;, for any two parts P, and PJ. In the nest section we will propose an algorithm that 
computes all cones SC;, in time O ( N 2 n ( q 2  + log n) ) ,  where n < N is the maximal length of a path 
in the relation graph of A and q < Q is the maximal number of edges in a part of A. In general. 
n << N and q << Q. As in the nominal-geometry case, the DBGS associated with two adjacent arcs 
in the strong N D B G  differ by a small amount. Hence, the DBG for one arc can still be computed 
in constant time by slightly modifying the DBG computed for the previous arc. The total time to 
construct the strong NDBG is O(N210g AT -I- N2n(q2  + log n)) .  111 most practical cases, this time is 
O(hT2nq2). 

When applied to  the strong NDBG,  the procedure disassemble generates guaranteed sequences, 
whenever such sequences exist. If it returns failure, then the product may still be assemblable in 
all ca,_ses, but with several sequences depending on the values of the variational parameters, or it 
may be assemblable only for some values of these parameters, or it may never be assemblable. 

Discussion: An alternative to the computation and exploitation of the strong NDBG would be to 
compute the nominal N D B G  of the assembly A and then perform sensitivity analysis on a nominal 
assembly plan. However, our approach gives a much stronger result: While sensitivity analysis 
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Figure 10: Parameters influencing the relative position of two part.s 

would usually not be able to  formally prove that a particular sequence is feasible for all instances of 
the parts, our approach checks the existence of a guaranteed sequence and, if one exists, produces 
it. Moreover, sensitivity analysis could be very time consuming. Indeed; the number of ,variational 
parameters is often large and the number of feasible nominal sequences can be exponential in the 
number of parts. Instead, the time complexity of our method is both well-bounded and reasonable. 

In this paper the only assembly motions we consider are infinite translations. As indicated 
earlier, “classical” NDBGS have been applied to  other types of motions. We hope that the work 
reported here will also be eventually extended to  produce assembly sequences with various motions. 
Notice, however, that it is often desirable that products be manufacturable with translations only. 
The algorithms described here are directly relevant to that case. 

5 Computation of Small Cones 

In this section we describe an algorithm to compute the small cone SC,, of feasible infinite trans- 
lations of P, relative to  P2. 

Recall from Section 3 that ,  if the geometrv and relative position of P, and P, are uniquely 
defined, then the cone of feasible infinite translations of P, relative to PJ is identical t o  the cone of 
feasible translations of the point p ,  (the origin of the coordinate system of P,) relative to P, 8 P,. 
Here, both the geometry and the relative position of P, and P, are functions of the variational 
parameters d l ,  . . . , d ~ .  Thus, the small cone SC,, is the cone of feasible translations of p ,  relative 
to  the region Uv(P, e P,) swept by P, e P, when (&,. . . , d ~ )  spans the variational space V .  

Tp compute &(P, 8 Pt) ,  we first remark that it only depends on a subset of variational pa- 
rameters. Indeed, the geometries of P, and P, depend on q, and q, parameters, respectively. On 
the other hand, recall that the spatial relation between two parts consists of two elementary rela- 
tions: one states that two edges, one in each part, are parallel a t  a given distance; the other states 
that a vertex of one part is at some distance from an edge of the other part. Hence, the relative 
position of two parts linked by a spatial relation depends on at most 5 variational parameters: 2 
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are contributed by the distance between two parallel edges: and are the variational parameters of 
these two edges; the other 3 are contributed by the distance between an edge and a vertex, and are 
the variational parameters of this edge and the two edges intersecting at this vertex. For example, 
in Figure 10, the relative position of PI and Pz depends on d l ,  . . . , d5. The relative position of P; 
and PJ thus depends on 5rZJ variational parameters, at most, where rZJ is the number of spatiai 
relations defining the relative placement of P, and PJ (i.e., r,) is the length of the path between 
P, and P, in the relation graph of A ) .  Moreover, among the r t j  relations. one defines the relative 
placement of P, and another part. Out of the 5 (or less) variational parameters that influence the 
relative position of these two parts, 2 or 3 also affect the geometry of P,. The same remark holds 
for PJ. Therefore, a maximum of q, + qJ + 5rz3 - 4 variational parameters influence the cone of 
feasible translations of P, relative to PJ. 

- J contains the variational parameters of P, and PJ that do not influence the relative position of 
the two parts. We call them the shape parameters. 
- li contains all parameters that are not variational parameters of P, or PJ; hence, they only affect 
the relative position of P, and PJ. We call them the position parameters. 
- L contains the variational parameters of P, and PJ that do influence the relative position of the 
two parts; it contains at most G parameters. We call them the shape-position parameters. 
(We strongly advise the reader to  memorize these definitions, since the sets J .  li. and L will be 
used extensively in the rest of this section, as well as in the next section.) 

We divide these remaining parameters into three disjoint subsets, J ,  li, and L: 

We now consider the above three sets in sequence: 

Shape parameters ( J ) :  Assume that we fix the parameters in A’ U L to some arbitrary value in 
their tolerance zones, while we let the parameters in J span their domains. Let UJ(P3 8 Pz)  denote 
the region swept by PJ @ P,. 

The value of the parameters in J affects the shapes of P, and PJ, but not their relative position. 
Let P, and Pj stand for the regions swept by P, and P’, respectively, in the coordinate systems 
of P; and P,. P, (resp. P J )  is exactly equal to P, (resp. PJ)  when the parameters in J have their 
maximal values, the parameters in K U L being set as above. Thus, we have: 

We can also interpret UJ(P,  @ p,) as follows: When the parameters in J vary, the parameters in 
A’ U L being fixed, the small cone of feasible translations of P, relative to  P, is the cone of feasible 
translations of P, relative to  PJ. 
Position parameters (IC): h’ow let the parameters in J U li span their domains, while the 
parameters in L keep the arbitrary value given above. U J , K ( P ,  8 P,) denotes the region swept by 
UJ(P3 8 Pt)  as the parameters in li vary. 

By definition, the parameters in K do not affect the shapes of P, and PJ. However, when 
the parameters in K vary, the origin p ,  of the coordinate system of P3 spans a region W in the 
coordinate system of P,. The geometry of W is independent of the values of the parameters in 
J U L. If rZ3 = 1, K is empty and W reduces to a single point. If rZJ = 2, W is a convex polygon 
of constant complexity. which also takes constant time to  compute (see Figure 11, where W is 
shown gray). If rt3 > 2, W is a convex polygon of complexity 0 ( r z j ) ,  which is computed in time 
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Figure 11: Locus of p i  with respect to p; when ~ ; j  = 2 

0 ( r z J  log r,,) by a divide-and-conquer technique as the convolution of rZJ - 1 convex polygons of 
constant complexity 1161. Thus, while P, is fixed. PI sweeps the region W @ PJ.  We have: 

UJ,jy(PJ E P,) = T/t' 63 PJ €3 P,. 
We can also interpret UJ,K(PJ 8 P,) as follows: When the parameters in J U I< vary, the variational 
parameters in L being fixed, the small cone of feasible translations of P, relative to  P, is the cone 
of feasible translations of P, relative to  W e PJ.  

Shape-position parameters ( L ) :  We now obtain Uv(PJ 8 P,) by letting the parameters in L 
span their domain and constructing the region swept by u,,(P, e Pz). The difficulty here is that 
the parameters in L affect both the relative position and the shapes of Pt and Pj .  

For any value of the parameters in L ,  U,,(P, e P,) is exactly the region bounded by the outer 
contour of the union of the polygons 4k' = Wee: @ e : ,  where et ( k  = 1,2 , .  . .) and e: (I = 1 ,2 , .  . .) 
denote the edges of P, and P,, respectively. 

As the parameters in L vary, P, and P, keep the "same" edges. Therefore the region swept 
by UJ,K(PJ 8 Pi) is bounded by the outer contour of the union of the regions swept by the sets 
4". Since the geometry of W and the orientations of the edges of P, and P, are independent of 
the parameters in L ,  each @* also keeps the "same" edges with the same orientations. Moreover, 
the coordinates of every vertex w in every 4'' are linear functions of the parameters in L ,  whose 
domain is a hyper-parallelepiped. Hence, w spans a convex polygon whose vertices are attained 
when the parameters in L take extreme values (i.e., are at vertices of their domain). Consider two 
consecutive vertices 01 and v2 of any g5k1. The region swept by the edge connecting 211 and v2 is 
exactly the convex hull of the two polygons spanned by w1 and 02. It follows that the region swept 
by a i y  4'' is the convex hull of the polygons spanned by its vertices. 

To obtain SC,,, however, we do not need to  explicitly compute Uv(P, el',). Indeed, let SC;' be 
the cone of feasible translations of p ,  relative to  the region swept by 4''. We have: SC,, = nk,l "4'. 

Each 4'' has O(T,)) vertices and is computed in time 0 ( r z J ) .  The number of extreme values of 
the parameters in L is exponential in the size of L ,  which is at most 6; hence, this number is O(1). 
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(a) 

By exploiting the fact that 

(b) 
Figure 12: Large cone a.nd extreme rays 

he edges of +kl keep constant orientations, we compute 

~ ~~ 

he convex hull 
of the polygons spanned by the vertices of dk' in time O ( T ~ , ) .  Thus: SC,, is computed in total time 
O(r;,(q;qj + log T; , ) ) .  The logarithmic term comes from the computation of W .  

Let q denote the maximal number of vertices in a part of A and n the length of the longest 
path in the relation graph of A. The O(Ar2) small cones necessary to the construction of the strong 
NDBG of A are computed in time O ( N 2 n ( q 2  + logn)). 

6 Weak NDBG 

In Section 4 we defined the strong NDBG by replacing the set of DBGS associated with each arc of 
the multi-valued NDBG by the union of these DBGS. We now replace this set by the intersection of 
the DBGS. We get another NDBG,  which we call the weak N D B G .  It describes blocking interferences 
that necessarily occur between the parts of A, whatever the value of the variational parameters. 

Assume that the strong NDBG yields no guaranteed assembly sequence. Then the procedures 
partition and disassemble applied to the weak NDBG generate non-guaranteed assembly se- 
quences whenever there exists an instance of A that can be assembled. A failure of disassemble 
now means that no instance of A can be assembled. 

- There exists no guaranteed sequence: One may wish to generate non-guaranteed sequences to 
estimate their probability of success using, say, Monte Carlo techniques. 
- Some parts in an  assembly are sealed together: For safety purposes (e.g., the product is a toy), 
one may wish to check that the resulting assembly cannot be disassembled. 

To construct the weak NDBG,  we must first compute the large cones LC;j of feasible translations 
of P, relative to P3, for all pairs of parts in A.  In general, if Pi and P, are not convex, LCiJ is not 
equal to  the cone of feasible translations of pi relative to  the intersection of all the regions PJ 8 P; 
when the parameters in J U K U L span their domain. This leads us to directly form the union of 
the cones C;, of feasible translations of p ,  relative to P, @ P, when the parameters in J U K U L 

The weak NDBG is interesting in several ways. For example: 
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vary. But there is another, more basic difficulty: Neither of the two rays bounding LC,, may be 
passing through a vertex of F, e P,, at a position attained b y  this vertex when the parameters in 
L have extreme values. This point is illustrated in Figure 12, where we assume for simplification 
that d E L is the only variational parameter (i.e., the tolerance zone of every other parameter has 
length zero), We consider two rays erected from p,, one passing through vertex u, the other through 
vertex v. In Figure 12.a) the value of d is chosen in its tolerance zone (depicted by the gray area) 
so that both rays are aligned. Figures 12.b and 12.c show the rays [dotted lines} with the most 
counterclockwise orientations when d takes its extreme values (the ray with long dashes is identical 
to  the one in Figure 12.a; it is reproduced to facilitate comparison with the other rays). As d varies, 
the two rays rotate in opposite directions. They form one side of LC,, for the value of d where they 
coincide; this value is neither maximal, nor minimal. More generally, let the parameters in L vary 
linearly. The vertices of P, e P, then move along straight-line segments (some may remain fixed, 
however), but these segments may have different orientations and different lengths. ConsequentIy. 
the rays erected from p ,  and passing through the vertices of P, e P, rotate in different directions 
at different rates. Each side of LC,, may be obtained when two rays coincide. 

In the rest of this section we present an algorithm to compute LC,,. Since dealing with the 
parameters in J and li is relatively easy, we first consider the parameters in L .  

Shape-position parameters ( L ) :  We assume here that the parameters in J and I< are fixed to 
some arbitrary value. Let U L  C,, be the union of all cones C,, when the parameters in L span their 
domain (which we will designate by V L ) .  Without loss of generality, we assume that the parameters 
in L are d l ,  . . . , d6 (though there may be less than 6). 

We denote the edges of P, and P, by f,k (k = 1, 2. . . .) and f; ( 2  = 1 ,2 , .  . .), respectively. Let Ct‘ 
be the cone of feasible translations of p ,  relative to qkl = f f  e f,k. For any value of the variational 
parameters, we have: C,, = nk,! C t .  We call a ray erected from p z  and passing through a vertex v 
of a region Q k l  a vertex ray and we denote it by p ( v ) .  \$-e refer to as the defining vertex of p(v ) .  
When the parameters in L span V L ,  every $ l k l  keeps the “same” edges with the same orientations. 
and the coordinates of its vertices are linear functions of d l .  . . . , d g .  

Our goal is to select a finite set of points in V L  such that each of the two sides of ULCz, is 
a side of the cone C,, computed at one of these points. We generate this set as the union of two 
sets. H I  and Ha. H I  is the set of all points where a vertex ray achieves an extreme orientation. 
We initially define Hz as the set of all points where two or more coinciding vertex rays achieve an 
extreme orientation (we will trim this conservative definition later). Note that H2 is not a subset 
of HI:  An extreme orientation for one ray, while it coincides with other rays, is usually not an 
extreme orientation for that same ray, when no coincidence is required. No point in VL\(HI U Ha) 
can contribute a side of U L  C;, that is not already contributed by the points in H1 U Hz.  

Since the coordinates of the vertices of the regions &,lC‘ are linear functions of d l ,  . , . d6, the 
extreme orientations of every vertex ray are obtained at vertices of VL.  These vertices are all the 
point2 of H I .  They are constant in number. 

The construction of H2 is more involved. Consider any two vertices q and 29. The vertex rays 
p(v1)  and p ( v 2 )  are aligned (i.e., either coincide or points in exactly opposite directions) when the 
coordinates (21, y1) of q and (22, y 2 )  of 212 satisfy the equation: 



Let us pose: 
2 =6 3=6 

x, = a,,d, + Q,O and ya = O,,d, + P,O. for i = 1,2.  
3=1 J=1 

where all coefficients a;j and p;j are constants. Equation (1) becomes: 

where F is a second-degree multivariate polynomial. Equation (2)  describes a hyper-surface S .  

or the boundary of VL:  
- In the interior of V L ,  they are obtained when: 

The extreme orientations of p ( q ) ,  while it coincides with p(vz), can be attained in the interior 

a(Y1 /x1) = 0 ,  k =  1, . . .  , 5 ,  
ddk ( 3 )  

where d6 is an implicit function of d l . .  . . , ds defined by Equation (2). Thus, we must solve a 
system of six polynomial equations in d l ,  . . ., de: Equation ( a ) ,  which has degree 2, and the five 
Equations (3), which have degree 4 each. This takes time exponential in the number of variables 
and polynomial in the maximal degree of the polynomials [7]. Here, this time is O(1). 
- To get the extreme orientations of p(v1) when S intersects a face of Y L  of dimension p E [l, 51, we 
must also solve a system of six polynomial equations. This system consists of: Equation (2), the 
6 - p equations defining the face, and p - 1 equations of the form of Equations (3) ,  in which 6 - p 
variational parameters are determined by the equations of the face and one other parameter is an 
implicit function of the remaining p - 1 parameters through Equation (2). When p = 1. the face is 
a one-dimensional edge and there is no equation of this last type. Each of these systems also takes 
time O(1) to  solve. 
In total, there is a constant number of systems to solve. Hence, the computation of the points of 
YL where p( VI) achieves extreme orientations while coinciding with p( v2) has constant complexity. 

Up to  6 vertex rays may coincide simultaneously. The alignment of m rays (rn E [2,6]) yields 
the intersection of m hyper-surfaces such as S. The extrema1 orientations of these rays while they 
coincide are still solutions of systems each having 6 polynomial equations of constant degree in 
dl, . . . , d6. Again, such a system can be solved in constant time. 

By considering all combinations of m E [2,6] vertices of the regions $k', we obtain a set Hz 
of size O((q,yj)'). This size can be reduced as follows: We notice that, when d l ,  . . . , d6 vary, the 
supporting lines of at most 3 edges of P, translate; hence, at most O(1) vertices move; we refer 
to  them as the special vertices of P,. Similarly, the supporting lines of all edges in P2,  except a 
maximum of 3, translate by the same amount relative to  P2; hence, all vertices, except O(1) of 
them, to which we refer as the special vertices of P2) move in the same way. Every vertex of a 
region is of the form v2 e w,, where w, and vJ are vertices of P; and PJ)  respectively. We divide 
the vertices of all the regions q ! ~ ~ '  into two subsets: One contains all vertices wj w; where neither w; 
nor vJ is special; its size is O(y;qJ). The other contains all the other vertices; its size is O(y, + e). 
All vertices in the first subset move the same. So, if ZI and v' are two vertices of this subset and the 
rays p(v )  and p(u') coincide, this coincidence cannot create a side of L,j. Therefore, to  construct 
Ha, it is sufficient to consider all combinations of nz E [2,6] vertices such that at most one belongs 
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to the first subset. Posing q = max{y2,y,}. this remark reduces the size of H 2  and the time to 
compute it to O(q7). 

H2 still contains too many points. For example, a point need not be included in H2 if, at this 
point: 
- Two coinciding rays have opposite directions. (Equation (1) allows that to  happen.) 
- One of the coinciding rays is not tangent to the region 
- Two of the coinciding rays achieve different contacts, clockwise and counterclockwise, with the 
regions of their defining vertices. 
However, these additional reductions do not change the worst-case asymptotic size of H z .  

M‘e now have H1 and H a .  We can compute the union UHl,H2 C,, of all the cones obtained at 
the points of HI U Hz.  If this union is a connected cone. it is UL C,,. If, instead, it consists of 
several disjoint cones (only connected at their common apex), it remains to  determine which are 
the two sides of these cones that also bound U r  C,,. For that purpose. we consider the complement 
of the union in 5’’ and we slightly perturb the points of H1 U H2 within VL.  along the axes of V L .  
Eventually, all cones in S I \  UHI,H2 C,, will shrink a bit. except one, which is SI\ U L  e,,. Hence, 
U L  C,, is computed in time 0 ( y 9 ) .  

Shape parameters ( J ) :  Now, let the parameters in J vary. Let P, (resp. P,) stand for P, 
(resp. P,) when all the parameters in J are minimal. For any value of the parameters in L ,  P, is 
included in every other instance of P,. The same holds for P,. Hence, when the parameters in both 
J and L vary, we obtain the union UJ,LC,, of all cones C,, by performing the same computation 
as above, with P i  and P, substituted for P, and P,, respectively. 

of its defining vertex. 

Position parameters ( K ) :  When the parameters in li vary, the polygon P, 8 P, keeps a constant 
shape, but pJ  spans the constant-shape polygon 14’ (see previous section). For any value of the 
parameters in J and L ,  the extreme orientations of the vertex rays are obtained when p ,  is at 
vertices of IV. Hence, when all parameters in J U Ii U L vary, we perform the above computation 
with p:, successively located at every vertex of IT’. Since IV has size O(T,,), we obtain 0 ( r , , )  cones 
UJ,L CtJ. If their union consists of a single cone. this cone is LC,,; otherwise, we identify LC,, by 
slightly perturbing the position of p,  at each vertex of TV (within 137). LC,, is thus obtained in  
total time 0(r,,q9). 

Computing the O ( N 2 )  large cones needed to  construct the weak NDBG of A takes time 
O(K2n(q9  -t logn)). While polynomial, this bound is too large for a practical implementation. 
Further effort is needed to  reduce it, either by a tighter count of Ha (which we believe is possible), 
or by finding a suitable approximation algorithm. 

7 Inverting Disassembly Sequences 

So far, our presentation has assumed that assembly and disassembly sequences are inverse of one 
another. This is clearly true when parts have nominal geometry (and are rigid). When parts have 
toleranced geometry the relation between the two types of sequences is less obvious. In this section 
we analyze this relation. 

Consider an assembly A of two parts PI and P2 linked by a relation R. Let “Break A into {PI} 
and {P2} by translating {PI} along t” be a feasible disassembly operation. The inverse operation, 
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Figure 13: An N-part product requiring N hands to  assemble 

as defined in Section 3, is not truly an assembly operation: We do not know where to exactly 
position PI prior to  translating it,  since we do not accurately knob17 in advance the relative position 
that PI and Pz will have in A. In the disassembly operation, this issue does not arise, because PI 
and Pz are de facto appropriately positioned prior to the translation. It does not arise either under 
the nominal-geometry assumption, since the unique relative position of the two parts in A and the 
direction d + ST then determine the line on which p1 (the origin of PI’S coordinate system) should 
lie prior to  the translation of PI. 

We can get rid of this difficulty by assuming that some sensing operation locates the edges 
and vertices of PI and P2 involved in R with sufficient accuracy. 147e can then compute where to 
place p1 prior to  translating Pl. In doing so, we make an assumption that is not required by the 
disassembly operation. Because PI and Pz are available prior to  merging them, this assumption 
seems reasonable. Furthermore, whatever assumptions are made in assembly sequencing, the actual 
execution of the assembly operation will require some sensing and/or passive compliance to actually 
succeed. 

However, this sensing assumption may not be sufficient for assemblies made of more than two 
parts. Let D be a disassembly sequence of A that produces a subassembly S whose relation graph 
(the subgraph obtained by restricting the relation graph of A to the parts in 5’) contains two 
connected components, or more. We call the subset of parts contained in each such component 
a float. While the relative positions of parts in a float are uniquely determined by the parts in 
that float, the relative position of any two floats in S depends on parts in A\S. Here, we do not 
extend the above sensing assumption, because it would require the availability of parts that are 
not involved in the merging operation that produces 5’. Therefore, this operation does not have a 
uniquely defined outcome: It can only produce a temporary S. The relative positions of the floats 
in 5’ will later have to be re-adjusted, when S is merged with other subassemblies. D still induces 
an assembly sequence, but this assembly sequence is non-monotone in the sense that it produces 
non-final subassemblies. It is also multi-handed since some assembly operations require more than 
two hands to hold the various floats and adjust their relative positions. 

To illustrate this discussion, consider the product of Figure 1, with spatial relations between 
parts 1 and 3, 1 and 4, and 2 and 4. The interlocking between parts 3 and 4 requires disassembly to 
eventually produce the subassembly {3,4}, whose geometry depends on part 1. The corresponding 
assembly sequence generates a temporary subassembly {3,4} with two floats (3 and 4), and later 
merges this subassembly with part 1. This merging operation requires three hands to  hold the 
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Figure 14: Ternary spatial rela.tion 

three floats ( 3 ,  4, and 1) and adjust their relative positions. As another example, consider the 
product of Figure 13, with spatial relations between 1 and 2, 1 and 3 ,  ... , and 1 and A-. The first 
operation in any disassembly sequence partitions the product into 1 and {2,. . . , K } .  The second 
subassembly consists of N - 1 floats. The corresponding assembly operation requires N hands to 
separately adjust the positions of parts 2,3, .  . . , A- relative to part 1. 

In general, one would like to generate a two-handed disassembly sequence that yields a 
minimally-handed assembly sequence, since this assembly sequence is likely to  be more easily exe- 
cuted than one that is not minimally-handed. If A admits a disassembly sequence D yielding an 
m-handed assembly sequence, every subset of A (not just those produced by 0)  admits a disas- 
sembly sequence yielding a p-handed assembly sequence with p 5 m. Therefore, we can modify 
p a r t i t i o n  into a greedy algorithm so that disassemble only constructs disassembly sequences 
yielding minimally-handed assembly sequences. The new p a r t i t i o n  always scans the entire NDBG 
of the (sub)assembly S passed as argument, and selects a partitioning of S into two subassemblies 
such that the total number of floats in these subassemblies is minimal. On the average, this variant 
takes more time t o  run, but it has the same worst-case complexity as the original procedure. 

8 Generalizations 

The algorithms of Sections 4, 5, and 6 can be extended to handle several generalizations of the 
problem stated in Section 2. 

Spatial relations involving more than two parts: To define some assemblies we may need 
spatial relations involving more than two parts. Figure 14 shows such an assembly: While the 
relative placement of parts 1 and 2 is defined by a spatial relation between them, the placement 
of part 3 is defined relative to  parts 1 and 2 by a relation involving features of both parts 1 and 
2. We call the relation between 1 and 2 a binary relation and the relation between 3 and { 1,2} a 
ternary relation. 

Although we could be even more general, let the relative placements of the parts in A be 
described by binary and ternary spatial relations such that, if a part Pi is connected to  two other 
parts PJ and Pk by a ternary relation, then PJ and Pk are connected by a chain of binary relations. 
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(a) 

Figure 15: Part with multiple coordinate systems 

Let B be the undirected graph whose nodes are the parts of A and whose links are the binary 
relations. Let T be the undirected graph whose nodes are the connected components of B and 
whose links are the ternary relations (more precisely. let X1 and X2 be any two nodes of T :  if a 
ternary spatial relation defines the placement of a part in XI relative to  two parts in Xa,  then X1 
and Xz are connected by a link). The set of all spatial relations is complete if and only if T is 
connected. It is non-redundant if and only if neither B nor T contain cycles and no two nodes of 
T are connected by more than one ternary relation. 

Allowing ternary spatial relations requires little change in our algorithms. The only difference 
is in the identification of the variational parameters that affect the relative position of P, and P,, 
prior to computing each cone SC,, and LC,,. But this identification remains straightforward and 
the generated parameters can still be separated between the two sets J and L defined in Section 5 .  
The maximal size of L remains 6 (this is important since the algorithms take time exponential in 
this number). The size of J is now O(IL'), instead of O ( n ) ,  but previously n. could be as large as 
N - 1 in the worst case. The locus of p ,  relative to p ,  when the paxameters in J vary is thus a 
polygon W of complexity O(Ar). The rest is unchanged. The computation of the strong and weak 
NDBGs takes time O ( N 3 ( q 2  + log N ) )  and O(N3(q4  + log A')), respectively. 

Assigning multiple coordinate systems to a part: Consider the part P of Figure 15.a. The 
distance between edges a and b is 10 i c l ,  the distance between edges b and c is 10 k €2, and the 
distance between edges c and d is 10 f € 3 .  (Ignore the other distances for a while.) To express 
such tolerance constraints by assigning a single coordinate system to P ,  we would have to rewrite 
them into, say, three constraints relating a to b,  a to c, and a to d. But these constraints would be 
stronger than the original ones. Instead, we can decompose P into two fictitious components P' 
and PI', and assign a coordinate system to each of these two "parts" (Figure 15.b). The origin of 
the system of 3" (resp. P") lies a t  the intersection of edges a and f (resp. c and 9). The tolerance 
zone defining the distance between a and b is specified in the system of P', while the tolerance 
zones defining the distances between b and c, c and d ,  and g and h are described in PI'. (Continue 
ignoring the distance between f, g ,  and e . )  Moreover. a spatial relation is defined between PI and 

23 



P” to  achieve their relative placement in P. In more complicated cases, the decomposition of a 
part may yield overlapping fictitious components. 

The strong and weak NDBGS of an assembly A containing part P (or several such parts) can be 
generated using the algorithms presented in Sections 4, 5 ,  and 6. To compute the small and large 
cones, we replace P by its fictitious components. Identifying the variational parameters that affect 
the relative position of any two parts remains straightforward. For any pair of parts, the set of 
parameters that affect both their geometry and relative position (set L )  is still of size 6, at most. 
Thus, the cost of computing the small and large cones is unchanged. (Note in passing that there is 
no need to  compute the small and large cones for any pair of fictitious parts deriving from P ,  since 
these parts will not be moved separately.) Once the relevant cones have been computed, the strong 
and weak NDBGS are generated as before, with P yielding a single node in each DBG: Any arc that 
is not a set of feasible directions for some component of P is also not a set of feasible directions for 
P. Beyond this step, the decomposition of P is forgotten. 

Finally, in the example of Figure 15, we deal with the fact that f and g are aligned. i.e.. lie at 
the same distance of e,  by simply requiring that the distances between f and e’ in P’ and between 
g and e‘/ in PI’ be equal. This means that the two variational parameters are collapsed into one. 

Tolerancing distances in spatial relations: Our algorithms can deal with toleranced distances 
in spatial relations, by treating these distances as additional variational parameters with their own 
tolerance zones. None of them influence the shapes of the parts, but they may affect the relative 
position of some pairs of parts. For any two parts P, and P,. the set J of parameters used in the 
computation of the cones SC,, and LC,, should include the toleranced distances involved in the 
spatial relations that determine the relative placement of P, and P,. Since there are at most two 
toleranced distances per spatial relation, the complexity of the algorithms is unchanged. 

In the same way, our algorithms can deal with some “floating” assemblies. Such assemblies 
differ from the “static” assemblies considered so far by the fact that the relative placement of two 
or more subsets of parts is allowed to vary within some bounded range [30]. We can describe such 
assemblies by assigning intervals of values to distances in some spatial relations. Each such interval 
is then treated as a tolerance zone, though it has a completely different meaning and is usually 
larger. 

Three-dimensional polyhedral assemblies: Let now A be an assembly made of N polyhedral 
parts. The language of spatial relations between parts is extended accordingly, but this raises no 
serious difficulty. There are only more ways to  express spatial relations. The variational parameters 
of every part Pi in A are the distances between p ,  and the planes supporting the faces of P,. The 
tolerance zones are small enough to guarantee that any two instances of the same part have the 
same topology. 

Let us first assume that A has nominal geometry. In 3D, directions span the unit sphere S2. 
The cone C;j of feasible infinite translations of a part P, relative to a part PJ is still the cone of all 
translations erected from pi and intersecting P, 8 P,. The region Pj 8 P, is a polyhedron. Hence, 
Ci, is’ a polyhedral cone whose intersection with the unit sphere centered at its apex is a “polygon” 
bounded by arcs of great circles. The arcs obtained with all the cones C;, create an arrangement 
of regions in S2 such that the DBG of A remains constant over each one. This arrangement a,nd 
the associated DBGS form the N D B G  of A. A system implementing this computation is presented 
in [40]. 
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The computation does not require the explicit construction of the 3D region defined by PJ @ P,. 
We need only project its edges into S2, as follows: first. we compute the Minkowski difference of 
every pair of faces of P; and Pj using the algorithm given in [16]; next, we project the edges of all 
computed differences into S2. We get more arcs than actually needed. but in the worst case their 
asymptotic number is the same. Let q be the maximal number of vertices in a part of A. Each pair 
of parts contributes O(q4) arcs of the arrangement on S2. The total arrangement has size O(Ar2q4) 
and is computed in time O(N2q410g(Nq)). In every region the DBG is computed in time O ( N 2 ) .  
The total NDBG is constructed in time O ( ( N Q ) ~  + N2q410g(Nq)). Each DBG has O ( N 2 )  arcs, so 
that finding its strong components takes time O ( N 2 ) .  Hence, p a r t i t i o n  has complexity O ( ( N q ) 4 ) .  

If A is made of toleranced parts: all small cones SC,, can be computed as suggested in Section 5: 
U ( P j e P 2 )  is constructed by computing afinite number (more than 6, however) of regions UJ,],-(P,Q 
P,). None of these regions need to be explicitly constructed in 3D. For each of them, we decompose 
P, and Pj into convex components P: and Pi and we project the edges of UJ,,(P: 8 P,”) = 14: @ 

P,”GP,” into S2.  Each pair of parts yields O ( n 2 q 4 )  arcs in the arrangement on S2.  The arrangement 
defining the strong N D B G  has size O( (A’TL)~~*)  and is computed in time O((Xn)2q41~g(A7q)). The 
procedure p a r t i t i o n  has complexity O(N4n2q4). The computation of the large cones and therefore 
the weak NDBG seems much more problematic, however. 

9 Conclusion 

Previous research has thoroughly investigated assembly sequencing under the assumption that parts 
and products have nominal geometry. It has produced useful algorithms to detect undesirable 
geometric interferences among parts. But these algorithms cannot help designers analyze the effect 
of their tolerancing decisions on the assembly process. As product quality and manufacturing 
automation increase, such analysis becomes critical. This paper is a first attempt to fill this need. 
It describes algorithms to generate assembly sequences for products made of toleranced parts. 
These algorithms could be embedded in an interactive CAD environment to  assist designers in the 
selection of appropriate tolerance values. 

Our approach to assembly sequencing with toleranced parts derives from the NDBG-based ap- 
proach previously proposed in [40]. Two non-directional blocking graphs, the strong and the weak, 
are precomputed. They respectively represent possible and necessary blocking interferences among 
parts in an assembly. These NDBGS are then exploited in a query phase to  generate assemblx se- 
quences. Using the strong NDBG we determine if a product accepts an assembly sequence that is 
always feasible, independent of the values of the variational parameters in their tolerance zones. 
Using the weak NDBG we determine if a product is never assemblable, or if it accepts non-guaranteed 
assembly sequences. One may use Monte Carlo techniques to  estimate the probability of success of 
non-guaranteed sequences. 

At the core of this approach are two algorithms to compute cones of feasible infinite translations 
of one part P; relative to  another Pj, when both parts have toleranced geometry and their relative 
position varies due to  the toleranced geometry of parts lying between them. The key fact underlying 
these two algorithms is that the number of variational parameters that affect both the shapes of 
P; and Pj and their relative position is constant, Le., independent of the complexity of pZ, P3, and 
the total assembly. This fact is crucial because the time complexity of the algorithms depends 
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exponentially on this number, while it is polynomial in all other measures of the size of the input 
data. It is preserved in several generalizations presented in the last section of this paper. 

Another finding reported in this paper is that. unlike in the nominal-geometry case, assembly 
sequences are not the strict inverses of disassembly sequences. Although our algorithms generate 
monotone two-handed disassembly sequences, the corresponding assembly sequences may be non- 
monotone and multi-handed due to  the presence of multiple floats in some subassemblies. The 
relative position of two floats in a subassembly S is not entirely determined by the pa.rts in S. 
The initial construction of this subassembly achieves a temporary relative position of the two floats 
(arbitrarily selected in the set of possible positions). This temporary position is later adjusted 
when S is merged with other subassemblies. We have proposed a simple algorithm to generate 
disassembly sequences that minimize the number of floats at any one step. 

The tolerance language used to  describe assemblies is simple and falls short of modeling all 
imperfections of a manufacturing process. It nevertheless captures several important features of 
the Y14.5 standard. Its main limitation is that it assumes perfect angles between edges. To remove 
this limitation, we could associate a tolerance zone with the orientration of every line supporting 
an edge of a part. However, this would lead parts to have different relative orientations in various 
instances of the assembly. One ad hoc way to deal with this difficulty would be to  discretize the 
angular tolerance zones and treat each set of discrete values as perfect angles. One could also 
perform some sort of Monte-Carlo sensitivity analysis on guaranteed assembly sequences around 
the nominal orientations of the edges. However: we believe that additional research should make it 
possible to  provide an exact solution (at least for planar assemblies). 

Another topic for future research is to go beyond infinite translations and allow motions made 
of several extended translations (as in [43]). as well as motions combining translation and rotation. 
The computation of large cones in 3D seems a challenging issue as well. 

References 

Dimensioning and Toleruncing, ANSI Yl4.5Aif-1982, ASME, United Engineering Center, New 
York, IVY, 1982. 

Altschul, R.E. and Scholz, F.W., Statistical Tolerancing: A Case Study, Proc. Intl. Forum on 
Dimensional Toleruncing and Metrology, ASME, New York, NY, 1993. 

Arkin, E.M., Connelly, R., and Mitchell, J.S.B., On Monotone Paths Among Obstacles with 
Applications to Planning Assemblies, Proc. 5th ACM Symp. on Computational Geometry, 
334-343, 1989. 

Baldwin, D.F., Algorithmic Methods and Software Tools for the Generation of Mechanical 
Assembly Sequences, Master’s Thesis, MIT, 1990. 

Baldwin, D.F., Abell, T.E., Lui, M.C., De Fazio, T.L., and Whitney, D.E., An Integrated 
Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical Products, 
IEEE Tr. on Robotics and Automation, 7(1), 78-94, 1991. 

26 



[6] Bourjault, A., Contribution a une Approche Me'thodologique de I'Assemblage Automatise': Elab- 
oration Automatique de Skquences Opkratoires. Thkse d'Etat, Facult6 des Sciences et des Tech- 
niques de I'Universit4 de Franche-Comt6, Besanson. France, 1984. 

[73 Canny, J.F. The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, 1988. 

[8] Chase, K.W. and Greenwood, W.H., Design Issues in Mechanical Tolerance Analysis, Manu- 
facturing Review, 1, 50-59, 1988. 

[9] Chazelle, B., Ottmann, T.A., Soisalon-Soininen, E., and Wood, D., The Complexity and 
Decidability of SEPARATION, Lecture Notes in Computer Science, Vol. 172, Springer Verlag. 
New York, N Y ,  119-127, 1984. 

[lo] C l h e n t ,  A., Desrochers, A., and Rivikre, A., Theory and Practice of 3D Tolerancing for 
Assembly, Proc. CIRP Seminar on Computer Aided Tolerancing. Penn State Univ., May 1991. 

[113 De Fazio, T.L. and Whitney, D.E., Simplified Generation of All Mechanical Assembly Se- 
quences, IEEE Tr. on Robotics and Automation, 3(6), 640-658, 1987. 

[12] Fleming, A., Analysis of Uncertainties and Geometric Tolerances in Assemblies of Parts, PhD 
Thesis, Dept. of Computer Science, Univ. of Edinburgh, 1987. 

[13] Frants, L., Automating Tolerance Analysis in Computer Aided Design, PhD Thesis, Dept. of 
Computer Science, Stanford Univ., 1995 (to appear). 

[14] Giordano, M. and Duret, D., Clearance Space and Deviation Space. Application to Three- 
Dimensional Chain of Dimensions and Positions, Proc. 3rd CIRP Seminar on Computer Aided 
Tolerancing, Editions Eyrolles, Paris. April 1993. 

[15] Guibas, L., Halperin, D., Hirukawa, H., Latombe, J.C., and Wilson, R.H.. A Simple and 
Efficient Procedure for Polyhedral Assembly Partitioning under Infinitesimal Motions, Proc. of 
the IEEE Intl. Conf. on Robotics and Automation, Nagoya, Japan, May 1995 (to appear). 

[16] Guibas, L. and Seidel, R., Computing Convolution by Reciprocal Search, Proc. ACM Symp. on 
Computational Geometry, Yorktown Heights, NY, 90-99, 1986. 

[17] Guibas, L. and Yao, F., On Translating a Set of Rectangles. in Computational Geometry, 
Preparata, F.P. (ed.), Advances in Computing Research 1, JAI Press, London, 61-77, 1983. 

[18] Guilford, J. and Turner, J., Advanced Analysis and Synthesis for Geometric Tolerances, Man- 
ujucturing Review, 6(4), 305-313, Dec. 1993. 

[19] Hoffman, R.L., A Common Sense Approach to Assembly Sequence Planning, in [all, 289-314, 
1991. 

[20] Homem de MeUo, L.S., Task Sequence Planning for Robotic Assembly, PhD Thesis, Carnegie 
Mellon University, 1989. 

[all Homem de Mello, L.S. and Lee, S. (eds.), Computer-Aided Mechanical Assembly Planning, 
Kluwer Academic Publishers, Boston, 1991. 

27 



1221 Homem de Mello, L.S. and Sanderson, A.C.. A Correct and Complete Algorithm for the 
Generation of Mechanical Assembly Sequences. IEEE Tr. on Robotics and Automation, 7(2), 
228-240, 1991. 

[23] Hopcroft, J.E., Schwartz, J.T., and Sharir, M., On the Complexity of Motion Planning for Mul- 
tiple Independent Objects: PSPACE-Hardness of the ‘Warehouseman’s Problem’, The Intl. J .  of 
Robotics Research, 3(4), 76-88, 1984. 

[24] Kavraki, L., Latombe, J.C., and Wilson. R.H., On the Complexity of Assembly Partitioning, 
Information Processing letters, 48, 229-235, 1993. 

[25] Khanna, S., Motwani, R., and Wilson, R.H., Dynamic Strong Connectivity with a Look-Ahead, 
in preparation. 

[2G] Krishnan, S.S. and Sanderson, A.C.. Path Planning Algorithms for Assembly Sequence Plan- 
ning, Proc. IEEE Intl. Conf. on Intelligent Robotics, 428-439, 1991. 

[27] Lee, S. and Shin, Y.G., Assembly Planning Based on Geometric Reasoning, Computation and 
Graphics, 14(2), 237-250, 1990. 

[2S] Natarajan, B.K., On Planning Assemblies. Proc. ACM Symp. on Computational Geometry, 
299-308, 1988. 

[29] O’Rourke, J., Computational Geometry i i 2  C. Cambridge Univ. Press, New York, NY, 1994. 

[30] Parratt, S.W., A Theory of One-Dimensional Tolerancing for Assembly, PhD Thesis, Sibley 
School of Mechanical and Aerospace Eng., Cornel1 Univ., 1993. 

[31] Pollack, R., Sharir, M.. and Sifrony, S., Separating Two Polygons by a Sequence of Transla- 
tions, Discrete and Computational Geometry, 3, 123-136, 1988. 

[32] Requicha, A.A.G ., Mathematical Definition of Tolerance Specifications, Manufacturing Review, 
6(4), 269-274, 1993. 

[33] Requicha, A.A.G, Representation of Tolerances in Solid Modeling: Issues and Alternative 
Approaches, in Solid Modeling by Computers: From Theory to Applications, Pickett, M.S. and 
Boyse, J.W. (eds.), Plenum Press, New York, 3-22, 1984. 

[34] Snoeyink, J. and Stolfi, J., Objects that Cannot be Taken Apart with Two Hands, Proc. 9th 
ACM Symp. on Computational Geometry, 247-256, 1993. 

[35] Srinivasan, V., Recent Efforts in Mathematization of ASME/ANSI Y14.5M Standard, 
Proc. 3rd CIRP Seminars on Computer Aided Tolerancing, Editions EyroUes, Paris, 223-232, 
April 1993. - 

[36] Toussaint, G.T., Movable Separability of Sets, in Computational Geometry, Toussaint, 
G.T. (ed.), North-Holland, Amsterdam, Netherlands, 335-375, 1985. 

[37] Voelcker, H., A Current Perspective on Tolerancing and Metrology, Manufacturing Review, 
6(4), 258-268, Dec. 1993, 

28 



[38] Walker, R.K. and Srinivasan, V.. Creation and Evolution of the ASME Y14.5.l Standard. 
Manufacturing Review, 7( I), 1994. 

[39] Wilson, R.H. and Rit, J.F., Maintaining Geometric Dependencies in an Assembly Planner. 
Proc. IEEE Intl. Conf. on Robotics and Automation. Scottsdale. AZ, 890-895, 1990. 

[40] Wilson, R.H., On Geometric Assembly Pdanning. PhD Thesis. Dept. of Computer Science, 
Stanford Univ., 1992. 

[41] Wilson, R.H. and Latombe, J.C., On the Qualitative Structure of a Mechanical Assembly. 
Proc. A A A I  Nat. Conf. on Artificial Intelligence. San Jose, CA, 69’7-702, 1992. 

[42] VC’ilson, R.H. and Latombe, J.C., Geometric Reasoning About Mechanical Assembly, Artificial 
Intelligence, 71(2), 371-396, 1994. 

[43] Wilson, R.H.. Kavraki, L., Lozano-Phrez. T., and Latombe, J.C., Two-Handed Assembly Se- 
quencing, Tech. Rep. No. STAN-CS-93-1478. Dept. of Computer Science, Stanford Univ., June 
1993. To appear in Intl. J .  of Robotics Research. 

[44] Wolter, J.D., On the Automatic Generation of Plans for Mechanical Assembly, PhD Thesis. 
Univ. of Michigan, 1988. 

[45] Wolter, J., Chakrabarty, S.. and Tsao, J., Mating Constraint Languages for Assembly Sequence 
Planning. Proc. IEEE Intl. Conf. on Robotics and Automation, Nice, France, 2367-2374,1992. 

29 



Distribution for SAND94-3 124: 

MS9018 Central Technical Files, 8523-2 (1) 
MS 0899 Technical Library, 13414 ( 5 )  
MS 0619 Technical Publications, 1261 5 (1) 
MS 0100 Document Processing for DOE/OSTI, 7613-2 (2) 
MS 0951 Randy Wilson, 2121 (10) 

30 


