
.
c
is SANDIA REPORT

SAND94-3124 UC-705
Unlimited Release
Printed April 1995

Assembly Sequencing with Toleranced Parts

Jean-Claude Latombe, Randall H. Wilson

Prepared by

Livermore, California 94550

Approved for public release

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply i ts
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SANDlA REPORT
SAND94-3124 UC-705
Unlimited Release
Printed April 1995

Assembly Sequencing with Toleranced Parts

Jean-Claude Latombe, Randall H. Wilson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 871 85 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

SAND94-3124
Unlimited Release
Printed April 199.5

Distribution
Category UC-705

Assembly Sequencing with Toleranced Parts

Jean-Claude Latombe
Robotics Laboratory

Department of Computer Science
Stanford University
Stanford, CA 94305

Randall H. Wilson
Intelligent Systems and Robotics Center

Sandia Kational Laboratories
Albuquerque, NM 87185

February 21. 1995

Abstract
The goal of assembly sequencing is to plan a feasible series of operations to construct a prod-

uct from its individual parts. Previous research has thoroughly investigated assembly sequencing
under the assumption that parts have nominal geometry. This paper considers the case where
parts have toleranced geometry. Its main contribution is an efficient procedure that decides if a
product admits an assembly sequence with infinite translations that is feasible for all possible
instances of the components within the specified tolerances. If the product admits one such
sequence, the procedure can also generate it. For the cases where there exists no such assembly
sequence, another procedure is proposed which generates assembly sequences that are feasible
only for some values of the toleranced dimensions. If this procedure produces no such sequence.
then no instance of the product is assemblable. Finally, this paper analyzes the relation between
assembly and disassembly sequences in the presence of toleranced parts. This work assumes a
simple, but non-trivial tolerance language that falls short of capturing all imperfections of a
manufacturing process. Hence, it is only one step toward assembly sequencing with toleranced
parts.

Keywords: assembly planning, assembly sequencing, solid modeling, tolerancing, non-directional
blocking graph.

Acknowledgments: This work was supported by NSF/ARPA grant IRI-9306544, a grant from the Stanford In-
tegrated Manufacturing Association (SIMA), and Sandia National Laboratories under DOE contract DE-ACO4-
94AL85000. Par t of this work was done while J.C. Latombe was a University Summer Faculty employee at Sandia
National Laboratories. The work has benefited from early comments by Randy Brost, Matt Mason, and Vijay
Srinivasan.

DlSTRtBUTtON O f THIS DOCUMENT IS UNClMtTED 4 5

4

-
Figure 1: Example of an assembly sequence

1 Introduction
An assembly product is described by a geometric model of its parts and spatial relations defining
their relative placement in the product. The goal of assembly sequencing is t o plan a feasible
partial ordering of operations to construct this product from its individual parts. Each operation
generates a new subassembly by merging individual parts and/or subassemblies constructed by
previous operations. The outcome of the final operation is the desired product. Each operation
is specified by the subassemblies it merges and their relative motions. These motions should not
lead any two parts to collide (contacts are allowed. however). Figure 1 shows an imaginary product
made of four parts and the ordering (here. a total one) of an assembly sequence for this product.
When parts are rigid, which is assumed here, assembly and disassembly sequences are the inverse
of one another. Hence, in most of this paper, the two terms are used interchangeably.

In assembly sequencing it is usually assumed that parts and subassemblies are free-flying objects
that execute perfect motions. Issues such as grasping, fixturing. stability, sensing and control are
ignored. Despite these assumptions, an assembly sequencer can be very useful. For instance. it
allows the detection of undesired geometric interferences among parts while a product is being
designed. As efficient products require more parts to be densely packed together, the risk of such
interferences, along with the need to automatically detect them at an early stage, increases.

There has been a significant amount of research on assembly sequencing during the past decade
(e.g., [4, 5, 6, 11, 19, 20, 21, 22, 26, 27, 39, 40, 43, 44, 451). Early assembly sequencers were
mainly interactive sequence editors; geometric reasoning was supplied by a human who answered
questions asked by the system [6, 111. Automated geometric reasoning was then added to answer
these questions automatically [4, 20, 22, 441. This development first resulted in generate-and-test
sequencers, with a module guessing candidate sequences and geometric reasoning modules checking
their feasibility [22, 391. More efficient techniques were later proposed to replace time-consuming
generate-and-test [3, 401. Research on “separability problems” in Computational Geometry is also
related to assembly sequencing [9, 17, 29, 31, 34, 361.

Various forms of assembly sequencing have been shown to be computationally intractable [23,24,

2

28,441. This result has led researchers to consider restricted, but still interesting subsets of assembly
sequences, such as monotone sequences (where each operation generates a final subassembly) and
two-handed sequences (every operation merges exactly two subassemblies). Often motions are
also limited to translations. Though such restrictions vary slightly among the various assembly
sequencers proposed so far, one is made in all of them: Parts are uniquely defined by their nominal
geometry. In this paper we depart from this assumption by investigating assembly sequencing when
parts have toleranced geometry. This work has been motivated by the fact that for many products
tolerances have a crucial effect on assembly sequences and manufacturing costs.

Part tolerancing addresses the fact that manufacturing processes are inherently imprecise and
produce parts of variable shapes [33, 371. A large body of work has been aimed at developing
tolerance languages (e.g., the American Y14.5 standard [l, 381) to provide designers with symbolic
means to specify acceptable variations. One important goal is to guarantee part interchangeabil-
ity in an assembly product [37]: Given any set of parts manufactured according to the specified
tolerances, they should assemble satisfactorily. Unfortunately, existing tolerance languages. which
have evolved from shop practice, suffer from informality. They also allow tolerances that interact
among themselves. As a result, the basic tolerance analysis problem, which is to accurately deter-
mine where the boundary of a part might be located in a. given coordinate system [8, 13, 18, 301, is
intractable. Proposed solutions to this problem are incomplete or approximate, and often deal with
an idealized subset of the tolerance language. Checking pa.rt interchangeability is even harder. Pre-
vious work on this problem has focused on checking the geometric feasibility of the assembled state
(i.e.: Does there exist an assembled state in which no two parts overlap?), using stack-up: optiniiza-
tion, constraint propagation, statistical analysis, and/or Monte Carlo techniques [2, 10, 12, 14, 301.

In this paper we go beyond the mere existence of an assembled state. We propose an efficient
procedure that decides whether a product made of toleranced parts admits a guaranteed assembly
sequence, i.e., a sequence that is feasible for all possible instances of the parts. This procedure can
also generate all such sequences. The existence of an assembled state is not explicitly tested, but is
implied by the existence of an assembly sequence (the converse is not true, however). For the cases
where no guaranteed assembly sequence exists, we also propose another procedure that generates
non-guaranteed assembly sequences, i.e., sequences that are only feasible for some instances of the
parts. This procedure returns no such sequence if and only if the product is never assemblable.
Our procedures assume a simple, but non-trivial tolerance language which does not model some
important imperfections of manufacturing processes. The work reported in this paper is therefore
only one limited step toward assembly sequencing with toleranced parts. Nevertheless, we believe
it contributes to the much-needed understanding of what sort of tolerance language is suitable for
assembly sequencing. Such understanding is of major interest to the community of researchers who
are trying to improve the mathematical foundations of tolerancing [32, 351.

Section 2 describes the assembly-description language accepted by our algorithms. Section 3
gives appropriate technical background for the rest of the paper. It summarizes results previously
reported in [40, 41, 421, including the concept of the non-directional blocking graph (N D B G) of a
nomhal product, an algorithm to compute NDBGS, and a procedure to generate assembly sequences
from an NDBG. Section 4 develops the concept of a strong NDBG for products made of toleranced
parts; this NDBG represents all possible blocking interferences between parts when their dimensions
span the tolerance zones. It can be used in the same way as a “classical” N D B G to generate guar-
anteed assembly sequences. Section 5 describes in detail the algorithm enabling the construction

3

of the strong NDBG. The main difficulty faced here is that variations in the dimensions of the parts
also cause the relative positions of the parts in the products to vary. Section 6 proposes the concept
of a weak NDBG, which represents necessary blocking interferences between parts; this NDBG can
be used to generate non-guaranteed assembly sequences. Section 7 analyzes some subtle aspects
of the relation between assembly and disassembly sequences when parts have toleranced geometry.
Finally, Section 8 presents several extensions of the algorithms described in Sections 4, 5 , and 6.

2 Description of an Assembly Product
There are many ways to specify an assembly with toleranced parts. As we will see, some reduce
assembly sequencing to the case where all parts have nominal geometry, but they usually yield
a poor representation of reality. Others provide a comprehensive account of the imperfections of
the manufacturing processes, but then assembly sequencing has daunting complexity. Here we
propose an assembly-description language that lies between these two extremes; we also discuss
shortcomings of this language. In Section 8 we will extend our planning algorithms and eliminate
some of these shortcomings.

We consider a planar assembly product A made of h’ parts PI , . . . , PN. It is described by a
geometric model of the parts and spatial relations defining their relative placements.

We assume that each part P, is a polygon manufactured such that all instances of P, have
perfectly straight edges, the same topology, i.e., the same sequence of edges, and the same angles
between edges; but each edge may have different lengths in the various instances. The geometry of
Pa is defined by its sequence of edges, with each edge specified by the orientation of its supporting
line relative to some coordinate system and the interval of acceptable distances from the origin of
this system to the supporting line.

We will refer to the coordinate system used to specify the geometry of P, as the coordinate
system of Pi. We denote its origin by p,. The distance between pi and the line supporting an
edge of Pa is called a variational parameter and the interval of acceptable values for this distance a
tolerance zone. The tolerance zones of the variational parameters of each part P; should be small
enough to guarantee that all instances of P, have the same topology. A sufficient condition is that
no vertex falls into the intersection of more than two stripes swept by edge-supporting lines when
the variational parameters span the tolerance zones.

Figure 2 illustrates the description of a part with seven edges. It shows a particular instance
of the part in bold contour, the variational parameters d l , . . . , d?, and the extreme positions of the
edge-supporting lines.

The orientation of an edge-supporting line is defined by its angle in [0, T) with the z-axis of P2’s
coordinate system. The distance from pt to this line is a signed real; the sign is set as follows: If
the outer normal to the corresponding edge points in the direction of p , , the distance is negative;
otherwise it is positive. For example, in Figure 2 all variational parameters, except d g , are positive.
This _convention has two advantages:
- It allows p; to lie without ambiguity in the stripe swept by an edge-supporting line when the
corresponding variational parameter spans its tolerance zone.
- There is one instance of Pi that contains all other (called M M P , for Maximal Material Part). With
our convention, it is obtained when all variational parameters are maximal.

4

7
Figure 2: Part description

The relative placement of the N parts in A is defined by a set of spatial relations. Each relation
R uniquely defines the relative placement of two particular parts. This means that for every possible
instance of these two parts, a single relative position of their coordinate systems achieves R. We
assume that R consists of two elementary relations: one stating that two edges. one from each
part, are parallel, with their outer normals pointing in either the same or opposite directions and a
signed distance between the lines supporting the two edges; the other stating that a vertex of one
part is at some signed distance of the line supporting an edge of the other part. This definition
of spatial relations subsumes normal contact relationships between parts: One specifies a contact
between two edges by setting the distance between them to zero. We assume zero tolerances in the
distance values of the spatial relations.

Figure 3 illustrates a spatial relation between two parts P, and PJ. Edges e and f are parallel.
with their normals pointing in the same direction, at some distance of each other (the distance,
not given in the figure, is negative to indicate that e is ahead of f along the direction of the outer
normals). The vertex w is at some distance of the edge g (again, the value of this distance has been
omitted in the figure).

By complete, we mean that if
one r-andomly picks a geometry for every component of A within the tolerance zones, the relations
determine a unique geometry for A (such an assembly is said to be “static” [30]). By non-redundant,
we mean that removing any one of the relations makes the set incomplete. In order for the set
of relations to be complete and non-redundant, it is necessary and sufficient that the undirected
graph whose nodes are the components of A and whose links are the spatial relations be connected

The set of relations must be complete and non-redundant.

5

Figure 3: Spatial relation between two parts

and without cycles. We call this graph the relation graph of A .
The set of elementary relations used to specify the spatial relation between two parts could

easily be enriched. For example, we could allow relations stating that two edges are perpendicular,
that two edges are parallel (without specifying any distance), or that two vertices are at some
distance from each other. It suffices that each elementary relation completely removes one or
several degrees of freedom between the two parts and that the set of elementary relations forming
a spatial relation be complete (i.e., remove all three degrees of freedom between the two related
parts) and non-redundant. The first condition means in particular that a relation stating that
two edges are perpendicular should also specify the angle (either or -$) between their outer
normals. The second condition implies that there can be no more than three elementary relations
in a spatial relation. Allowing all such elementary relations is straightforward, but would lengthen
several sections of this paper.

We refer to the achievement of a spatial relation between two parts P; and Pj as the relative
placement of these two parts, and to the position of p , in the coordinate system of P, as their
relative position. While the relative placement of any pair of parts in two instances of A is unique,
the relative positions of these parts may differ due to variations in the lengths of the edges of the
parts. The same variational parameter may influence both the shape of a part and the position
of this part relative to other parts. On the other hand, the relative orientations of the coordinate
systems are fixed.

Let q; designate the number of edges of P, (i = 1 to Ai). Q = 41 + . . . + QN is the total number
of edges in the parts of A. The geometry of any particular instance of A is defined by a single
value of the tuple (d l , . . ., d ~) of variational parameters. The space spanned by this tuple is a
Q-dimensional hyper-parallelepiped V , the Cartesian cross-product of the tolerance zones. We call
V the variational space of A. In the following, the same notation P; (resp. A) will be used to
desigkate both the variational class of parts (resp. assemblies) determined by V and any instance
in that class. Whenever some ambiguity may arise, we will explicitly mention t o which we refer.

At this point, there is no requirement that an assembly product specified as above be feasible.
Perhaps no assembly sequences allow the product to be put together. Or the product may even be
impossible, because some parts overlap in the assembled state. It will be the task of an assembly

6

Figure 4: Pa.rt with imperfect edges

sequencer to determine that.

Discussion: We now briefly discuss some of the shortcomings of our assembly-description language.
We focus on tolerancing, since this is the main theme of this paper.

First, let us remark that the assembly sequencing problem depends intimately on how we
describe an assembly A . We noticed before that each part admits an M M P . Suppose that, instead
of using spatial relations, we had defined the relative placement of every two parts in A by the
relative position of their coordinate systems. Then assembly sequencing would trivially reduce
to assembly planning with MMPS. This does not seem to make much sense, however. Indeed.
contacts and/or clearances between parts are crucial in assemblies. When the relative positions
of the coordinate systems are directly provided in the description of the product, contacts can
only be achieved at the ends of tolerance zones (otherwise parts could overlap); similarly clearance
constraints are only met for some values of the variational parameters.

The most blatant assumption in our language is that edges are perfectly straight. Such edges
are impossible to manufacture. However, the assumption is not really needed. Consider a part-
with imperfectly shaped edges as illustrated in bold contour in Figure 4.a. We can bring a straight
line, called a datum [30], into two-point contact with each edge and replace the imperfect edges by
the perfect ones defined by the datums (Figure 4.b). Our algorithms apply to the parts defined by
these virtual edges.

In the Y14.5 standard, specifying a distance between two edges e and f leads to associating a
datum with one edge, say e . The tolerance zone defines the region (a stripe in 2D) within which
the other edge, f , should lie. In our case, the tolerance zone defines the locus of the virtual edge.
The constraint expressed in Y14.5 entails ours, but the converse is not true. Although the relative
weakness of our constraint would matter if we wanted to ensure that parts be interchangeable
in function, it does not affect their interchangeability in assembly, which is our only concern in
this paper. Said otherwise, the constraint expressed in Y14.5 can be translated into our language
without affecting part interchangeability in assembly.

Another important limitation is that edges are cut with perfect angles between them (which now
only means that the virtual edges make perfect angles). Perfect angles are not possible in practice,
even between datums. Tolerancing angles would allow the relative orientation of parts to vary, thus
seriously complicating assembly sequencing. In Section 8 we will show that our algorithms can

7

handle toleranced distances in spatial relations between parts, but by no means does this ability
completely eliminate the above limitation. See also the conclusion for a short discussion of how
this limitation could be removed.

The coordinate system of a part P; can be located anywhere. In practice, dimensions are
specified relative to datums associated with edges. Then we could choose Pi’s coordinate system
such that one of its axes is aligned with an edge and its origin coincides with one extremity of that
edge. But using a single “central” coordinate system may be a limitation, since it often happens
that datums in a single part are “chained” by distance specifications. We will see in Section 8 that
we can adapt our algorithms to handle multiple coordinate systems per part.

The fact that we only consider planar assemblies is one important limitation not directly related
to tolerancing. Again, in Section 8 we will see‘that some of our algorithms extend to 3D polyhedral
assemblies.

3 Background

Let the assembly A be described as above, but with zero-length tolerance zones. Hence, all parts
and subassemblies are nominal. In this section we briefly review previous techniques that generate
monotone two-handed assembly sequences for A. In particular we present the concept of the NDBG
of A for infinite translations. This concept is central to the work presented in the following sections.

An assembly sequence is a partial ordering on operations of the form: “Merge SI and SZ into S
by translating S1 along t.” Its inverse, a disassembly sequence, is obtained by reversing the ordering
and replacing each operation, such as the above; by: “Break S into SI and S2 by translating SI
along t + T.” In fact, under the assumption that. parts are rigid (which is the case here), the inverse
map is a bijection between the assembly and the disassembly sequences. Any assembly sequence can
thus be produced by first generating a disassembly sequence and then inverting it. A disassembly
sequence is intuitively easier to produce since it starts from the highly constrained assembled state,
in which spatial relations may directly suggest candidate disassembly motions.

Let p a r t i t i o n be a procedure that takes the description of an assembly S as input and generates
two subassemblies SI and 5’2 (&US2 = S), along with a direction t such that 5’1 can be removed from
S and transIated arbitrarily far along t without colliding with Sa. Whenever such subassemblies
and direction don’t exist, the procedure returns failure. Disassembly sequences are generated by
applying p a r t i t i o n to A and. recursively, to the generated subassemblies that are not individual
parts. Let disassemble designate this recursive procedure.

In several early assembly sequence planners, p a r t it ion was based on a generate-and-test tech-
nique. Given S, this technique enumerates all candidate partitions {S1,S,} of S, until it finds a
direction t that separates 5’2 from SI without disturbing S1. Finding t often consists of inferring
it from spatial relations between parts (mainly from contacts), computing the region that will be
swept by Sa, and checking that this region does not intersect 5’1. But this technique can be very
slow, Indeed, the number of candidate partitions is always exponential in the number of parts in S,
while the number of feasible partitions is usually much smaller. The non-directional blocking graph,
NDBG for short, was introduced to avoid the combinatorial trap of generate-and-test [40, 41, 421.
The idea is to precompute a structure, the N D B G , that represents all blocking interferences among
the parts in A, and to query this structure to generate one, several, or all disassembly sequences. As
we will see, the NDBG yields a more efficient implementation of p a r t i t i o n than generate-and-test.

Figure 5: Examples of directional blocking graphs

Consider two parts Pi and Pj in their rela.tive position in A. Ignore all other parts. The
direction t is a feasible infinite translation for Pi relative to Pj if one can translake P; to infinity
along t without colliding with Pj. The
directiona,l bZocking graph, or DBG, of A for t is the directed graph whose nodes are the parts of A
and whose arcs are all pairs of parts (Pi, P j) such that. t is not a feasible infinite translation of P;
relative to Pj. Figure 5 shows DBGS of a simple assembly for two directions t l and t 2 .

In two dimensions the set of all directions is represented by the unit circle SI. The set of feasible
infinite translations of Pi relative to Pj is a cone C;j that det.ermines an arc in SI. Hence, all the
cones C;j, i , j E [l, .Ar], i # j , partition SI into 0(S2) arcs such that the DBG of A remains constant.
over each arc. The sequence of arcs and their DBGS form the non-directional blocking graph of A.

We assume for simplification that there are no tight insertions in A. Each cone C;j can then be
constructed by erecting the two extreme rays originating at pi (the origin of the coordinate system
of P;) and tangent to Pj 8 P; (the Minkowski difference of Pj and Pi). See Figure 6, where t,he
polygon in bold contour is Pj 8 Pi. If P; and Pj touch each other, then p; lies on the boundary
of Pj Pi. If they overlap (in which case, A is not a. possible assembly), pi lies in the interior of
Pj 8 Pi. (If we allowed Pi to be tightly inserted into Pj, we would have to be more careful, since
the set of positions where P; touches Pj would then be a superset of the boundary of Pj 6 Pi.)

If P; and Pj are non-convex polygons with y; and y j edges, we can decompose them into convex
components, which we denote by P;k (k = 1: 2 , . . .) and Pj (I = 1 ,2 , . . .)? respectively. We have:
Pj 8 P; = Uk, l P,' 8 P;k. A trapezoidalization of Pi and Pj yields O(q;) and O(qj) components, each
of constant complexity, in times O(y;logy;) and O(yj1ogqj) [as]. Each region Pj e PF is a convex
polygon of constant complexity that takes constant time to compute. Let C t be the cone formed
by the two rays stemming from pi and tangent to Pj e P;k. We have: Cij = nk,l C z . All cones
C&' are computed in time O(y;qj). They determine O(q;qj) arcs in S1. The computation of the arc
where Cij intersects S1 is thus done in total time O(q;yj + q; log yi + qj log yj).

Let q be the maximal number of edges in a single part of A . The 0(N2) cones Cij are computed
in ti&e O ((~ y q) ~) . They determine O (N 2) points in S1 that are sorted in time O(N210gN). The
DBG in any arc can be obtained in time O (N 2) . However, between any two adjacent arcs, the DBG
undergoes a small number of changes that can be computed in constant time. Thus, once a DBG has
been computed, all other DBGS can be computed in total time O (N 2) by scanning the sequence of
arcs in S1 and, for each arc, modifying the DBG constructed for the previous arc 1401. The complete

Now consider the full assembly A and a direction t .

9

Cij

Figure 6: Construction of a cone of feasible infinite translations

NDBG takes time O(N2(logN + q 2)) to compute.
Consider now the DBG G of A for some direction t . A can be partitioned into two subassemblies

SI and Sz by translating SI along t if and only if there exists no arc in G connecting a part of
SI to a part of 5’2. Hence. A can be partitioned by a translation dong t if and only if G is not
strongly connected. The strong components of G yield all possible partitionings of A. Notice also
that the NDBG of any subassembly S of A is obtained by restricting every DBG to the parts of S
and merging adjacent arcs of S1 having the same DBGS. Hence, given the NDBG of A , p a r t i t i o n
can be implemented as follows:

procedure p a r t it ion(S);
for every arc c in the NDBG of S do:

if the DBG associated with c is not strongly connected
then return c and a feasible partition of S ;

return failure;

Computing the strong components of a DBG takes time O (N 2) . (A better bound, O(N1.38), can be
obtained by taking advantage of the fact that any two successive DBGS differ by a small amount [25] .)
Hence, p a r t i t i o n runs in time O(N4) and disassemble generates an assembly sequence in time

The procedures p a r t i t i o n and disassemble can easily be modified to generate all feasible
assembly sequences [40]. In the worst case, however, the number of these sequences is exponential
in N .

o (~ 5) .

10

Remark: The above presentation has focused on planar assemblies and infinite translations. How-
ever, X D B G S have been successfully extended both to deal with 3D assemblies and to generate more
complicated motions (e.g., rotational motions [42, 151 and multiple extended translations [43]). This
requires adapting the definition of a feasible motion of P, relative to P,. Another planning approach,
based on “monotone paths,” has been proposed to avoid the combinatorial trap of generate-and-test
for assemblies of polygons in the plane [3]. But, so far, this approach has only been proposed to
generate translational assembly sequences for planar polygonal assemblies. Attempts to efficiently
generalize it to 3D assemblies and/or rotational motions have failed.

4 Strong NDBG
From now on let the assembly A be made of toleranced parts, as described in Section 2. While the
question “Does there exist an assembly sequence to construct A?” had only two possible answers,
“yes” and “no)), when parts in A had nominal geometry, it now has three possible answers, “yes”,
“no” and “maybe”. Moreover, if the answer is “yes”, two cases are possible: There may, or may not
exist an assembly sequence that is feasible for all values of the variational parameters. We call such
a sequence a guaranteed assembly sequence, and a sequence that is only feasible in a non-empty
subset of the variational space V a non-guaranteed sequence.

In this section we focus on guaranteed assembly sequences. We propose an extension of the
NDBG concept to represent all possible blocking interferences among parts of A for infinite trans-
lations, when the variational parameters span V . We call this extension the strong NDBG. The
procedures partition and disassemble apply to this N D B G without modification. The proce-
dure disassemble now produces guaranteed assembly sequences. whenever such sequences exist;
it returns failure otherwise.

Consider any two parts in A . Due to possible variations in their geometry and relative position,
the cone of feasible infinite translations of one part relative to the other is not constant. Therefore,
at each point in the variational space V , one may compute a distinct NDBG. To be sure that A
can be partitioned into two subassemblies by translating one to infinity along some direction, this
partitioning must be feasible in all NDBGS over 1;.

Since computing all NDBGS over Y is generally impractical. we propose to “project” these NDBGS
onto SI. This projection associates a set of DBGS with every direction t of SI. This set consists of
all distinct DBGS for direction t , when the variational parameters span Y . Usually, if two directions
tl and t 2 are very close to each other, the same set of DBGS is associated with both directions.
Indeed, translating each component of A along tl is likely to yield collisions with the same parts as
a translation along t 2 . This is not true, however, for some directions where a translated part collides
with a new part or stops colliding with a part. These critical directions partition S1 into arcs such
that a single set of DBGS is associated with every arc. We call this structure the multi-valued N D B G
of A.

For every value of the
variational parameters, we can compute a cone C;, of feasible infinite translations of P, relative
to P,. Let us intersect all cones C;j when the variational parameters span their tolerance zones.
The result is the possibly empty cone SC,, of infinite translations that are feasible for all values of
the variational parameters. We call it the small cone of feasible translations of P, relative to PJ.
Similarly, the union LC,, of all cones Ci, is the cone of all infinite translations that are feasible for

To make this concept clearer, consider two parts Pi and P, in A.

11

(c)

Figure 7: Multi-valued NDBG for two parts

Figure 8: Influence of variational parameters on feasible translations

at least one value of the variational parameters (LC,, may have a 27~ angle). We call it the large
cone. Inverting SC,, and LC,, yields SC,, and LC,,, respectively. The four cones SC,,, LCtJ7 SC,,,
and LC,, partition S1 into at most 8 arcs, such that a single set of DBGS reduced to P, and P, is
associated with each cell. The set of arcs and the associated sets of DBGS form the multi-valued
NDBG of the subassembly made of P, and PJ. See Figure 7, where the small (resp. large) cones are
bounded by plain (resp. dashed) lines.

In the example of Fig. 7, the small and large cones are respectively obtained for the maximal
material parts (Fig. 7.a) and least material parts (Fig. 7.b). But this is not always the case. For
example, Fig. 8 shows a 3-part assembly with two variational parameters d l and dz . When dl is
minimal and d2 maximal, the peg P3 can’t be translated vertically. When dl is maximal and d2

12

Figure 9: Strong NDBG for two parts

minimal, this translation is feasible.
Scanning all pairs of parts in A leads to partitioning S* into O (N 2) arcs. But in the worst case

the set of DBGS associated with one arc has size 0(2'v2>. For this reason. we replace this set by the
union of the DBGS it contains. The result is called the strong DBG. The N D B G whose cells are labeled
by strong DBGS is called the strong NDBG. As mentioned above, it describes all possible blocking
interferences among the parts of A when the variational parameters span V . Figure 9 shows the
strong NDBG derived from the multi-valued N D B G of Figure 7. Notice that several adjacent DBGS
are identical; so, the corresponding arcs should be merged. As a result, only the small cones are
needed to construct the strong NDBG.

At the core of the computation of the strong NDBG is the algorithm that generates the small
cone SC;, for any two parts P, and PJ. In the nest section we will propose an algorithm that
computes all cones SC;, in time O (N 2 n (q 2 + log n)) , where n < N is the maximal length of a path
in the relation graph of A and q < Q is the maximal number of edges in a part of A. In general.
n << N and q << Q. As in the nominal-geometry case, the DBGS associated with two adjacent arcs
in the strong N D B G differ by a small amount. Hence, the DBG for one arc can still be computed
in constant time by slightly modifying the DBG computed for the previous arc. The total time to
construct the strong NDBG is O(N210g AT -I- N2n(q2 + log n)) . 111 most practical cases, this time is
O(hT2nq2).

When applied to the strong NDBG, the procedure disassemble generates guaranteed sequences,
whenever such sequences exist. If it returns failure, then the product may still be assemblable in
all ca,_ses, but with several sequences depending on the values of the variational parameters, or it
may be assemblable only for some values of these parameters, or it may never be assemblable.

Discussion: An alternative to the computation and exploitation of the strong NDBG would be to
compute the nominal N D B G of the assembly A and then perform sensitivity analysis on a nominal
assembly plan. However, our approach gives a much stronger result: While sensitivity analysis

13

Figure 10: Parameters influencing the relative position of two part.s

would usually not be able to formally prove that a particular sequence is feasible for all instances of
the parts, our approach checks the existence of a guaranteed sequence and, if one exists, produces
it. Moreover, sensitivity analysis could be very time consuming. Indeed; the number of ,variational
parameters is often large and the number of feasible nominal sequences can be exponential in the
number of parts. Instead, the time complexity of our method is both well-bounded and reasonable.

In this paper the only assembly motions we consider are infinite translations. As indicated
earlier, “classical” NDBGS have been applied to other types of motions. We hope that the work
reported here will also be eventually extended to produce assembly sequences with various motions.
Notice, however, that it is often desirable that products be manufacturable with translations only.
The algorithms described here are directly relevant to that case.

5 Computation of Small Cones

In this section we describe an algorithm to compute the small cone SC,, of feasible infinite trans-
lations of P, relative to P2.

Recall from Section 3 that , if the geometrv and relative position of P, and P, are uniquely
defined, then the cone of feasible infinite translations of P, relative to PJ is identical t o the cone of
feasible translations of the point p , (the origin of the coordinate system of P,) relative to P, 8 P,.
Here, both the geometry and the relative position of P, and P, are functions of the variational
parameters d l , . . . , d ~ . Thus, the small cone SC,, is the cone of feasible translations of p , relative
to the region Uv(P, e P,) swept by P, e P, when (&,. . . , d ~) spans the variational space V .

Tp compute &(P, 8 Pt) , we first remark that it only depends on a subset of variational pa-
rameters. Indeed, the geometries of P, and P, depend on q, and q, parameters, respectively. On
the other hand, recall that the spatial relation between two parts consists of two elementary rela-
tions: one states that two edges, one in each part, are parallel a t a given distance; the other states
that a vertex of one part is at some distance from an edge of the other part. Hence, the relative
position of two parts linked by a spatial relation depends on at most 5 variational parameters: 2

14

are contributed by the distance between two parallel edges: and are the variational parameters of
these two edges; the other 3 are contributed by the distance between an edge and a vertex, and are
the variational parameters of this edge and the two edges intersecting at this vertex. For example,
in Figure 10, the relative position of PI and Pz depends on d l , . . . , d5. The relative position of P;
and PJ thus depends on 5rZJ variational parameters, at most, where rZJ is the number of spatiai
relations defining the relative placement of P, and PJ (i.e., r,) is the length of the path between
P, and P, in the relation graph of A) . Moreover, among the r t j relations. one defines the relative
placement of P, and another part. Out of the 5 (or less) variational parameters that influence the
relative position of these two parts, 2 or 3 also affect the geometry of P,. The same remark holds
for PJ. Therefore, a maximum of q, + qJ + 5rz3 - 4 variational parameters influence the cone of
feasible translations of P, relative to PJ.

- J contains the variational parameters of P, and PJ that do not influence the relative position of
the two parts. We call them the shape parameters.
- li contains all parameters that are not variational parameters of P, or PJ; hence, they only affect
the relative position of P, and PJ. We call them the position parameters.
- L contains the variational parameters of P, and PJ that do influence the relative position of the
two parts; it contains at most G parameters. We call them the shape-position parameters.
(We strongly advise the reader to memorize these definitions, since the sets J . li. and L will be
used extensively in the rest of this section, as well as in the next section.)

We divide these remaining parameters into three disjoint subsets, J , li, and L:

We now consider the above three sets in sequence:

Shape parameters (J) : Assume that we fix the parameters in A’ U L to some arbitrary value in
their tolerance zones, while we let the parameters in J span their domains. Let UJ(P3 8 Pz) denote
the region swept by PJ @ P,.

The value of the parameters in J affects the shapes of P, and PJ, but not their relative position.
Let P, and Pj stand for the regions swept by P, and P’, respectively, in the coordinate systems
of P; and P,. P, (resp. P J) is exactly equal to P, (resp. PJ) when the parameters in J have their
maximal values, the parameters in K U L being set as above. Thus, we have:

We can also interpret UJ(P, @ p,) as follows: When the parameters in J vary, the parameters in
A’ U L being fixed, the small cone of feasible translations of P, relative to P, is the cone of feasible
translations of P, relative to PJ.
Position parameters (IC): h’ow let the parameters in J U li span their domains, while the
parameters in L keep the arbitrary value given above. U J , K (P , 8 P,) denotes the region swept by
UJ(P3 8 Pt) as the parameters in li vary.

By definition, the parameters in K do not affect the shapes of P, and PJ. However, when
the parameters in K vary, the origin p , of the coordinate system of P3 spans a region W in the
coordinate system of P,. The geometry of W is independent of the values of the parameters in
J U L. If rZ3 = 1, K is empty and W reduces to a single point. If rZJ = 2, W is a convex polygon
of constant complexity. which also takes constant time to compute (see Figure 11, where W is
shown gray). If rt3 > 2, W is a convex polygon of complexity 0 (r z j) , which is computed in time

15

Figure 11: Locus of p i with respect to p; when ~ ; j = 2

0 (r z J log r,,) by a divide-and-conquer technique as the convolution of rZJ - 1 convex polygons of
constant complexity 1161. Thus, while P, is fixed. PI sweeps the region W @ PJ. We have:

UJ,jy(PJ E P,) = T/t' 63 PJ €3 P,.
We can also interpret UJ,K(PJ 8 P,) as follows: When the parameters in J U I< vary, the variational
parameters in L being fixed, the small cone of feasible translations of P, relative to P, is the cone
of feasible translations of P, relative to W e PJ.

Shape-position parameters (L) : We now obtain Uv(PJ 8 P,) by letting the parameters in L
span their domain and constructing the region swept by u,,(P, e Pz). The difficulty here is that
the parameters in L affect both the relative position and the shapes of Pt and Pj .

For any value of the parameters in L , U,,(P, e P,) is exactly the region bounded by the outer
contour of the union of the polygons 4k' = Wee: @ e : , where et (k = 1,2 , . . .) and e: (I = 1 ,2 , . . .)
denote the edges of P, and P,, respectively.

As the parameters in L vary, P, and P, keep the "same" edges. Therefore the region swept
by UJ,K(PJ 8 Pi) is bounded by the outer contour of the union of the regions swept by the sets
4". Since the geometry of W and the orientations of the edges of P, and P, are independent of
the parameters in L , each @* also keeps the "same" edges with the same orientations. Moreover,
the coordinates of every vertex w in every 4'' are linear functions of the parameters in L , whose
domain is a hyper-parallelepiped. Hence, w spans a convex polygon whose vertices are attained
when the parameters in L take extreme values (i.e., are at vertices of their domain). Consider two
consecutive vertices 01 and v2 of any g5k1. The region swept by the edge connecting 211 and v2 is
exactly the convex hull of the two polygons spanned by w1 and 02. It follows that the region swept
by a i y 4'' is the convex hull of the polygons spanned by its vertices.

To obtain SC,,, however, we do not need to explicitly compute Uv(P, el',). Indeed, let SC;' be
the cone of feasible translations of p , relative to the region swept by 4''. We have: SC,, = nk,l "4'.

Each 4'' has O(T,)) vertices and is computed in time 0 (r z J) . The number of extreme values of
the parameters in L is exponential in the size of L , which is at most 6; hence, this number is O(1).

16

(a)

By exploiting the fact that

(b)
Figure 12: Large cone a.nd extreme rays

he edges of +kl keep constant orientations, we compute

~ ~~

he convex hull
of the polygons spanned by the vertices of dk' in time O (T ~ ,) . Thus: SC,, is computed in total time
O(r;,(q;qj + log T; ,)) . The logarithmic term comes from the computation of W .

Let q denote the maximal number of vertices in a part of A and n the length of the longest
path in the relation graph of A. The O(Ar2) small cones necessary to the construction of the strong
NDBG of A are computed in time O (N 2 n (q 2 + logn)).

6 Weak NDBG

In Section 4 we defined the strong NDBG by replacing the set of DBGS associated with each arc of
the multi-valued NDBG by the union of these DBGS. We now replace this set by the intersection of
the DBGS. We get another NDBG, which we call the weak N D B G . It describes blocking interferences
that necessarily occur between the parts of A, whatever the value of the variational parameters.

Assume that the strong NDBG yields no guaranteed assembly sequence. Then the procedures
partition and disassemble applied to the weak NDBG generate non-guaranteed assembly se-
quences whenever there exists an instance of A that can be assembled. A failure of disassemble
now means that no instance of A can be assembled.

- There exists no guaranteed sequence: One may wish to generate non-guaranteed sequences to
estimate their probability of success using, say, Monte Carlo techniques.
- Some parts in an assembly are sealed together: For safety purposes (e.g., the product is a toy),
one may wish to check that the resulting assembly cannot be disassembled.

To construct the weak NDBG, we must first compute the large cones LC;j of feasible translations
of P, relative to P3, for all pairs of parts in A. In general, if Pi and P, are not convex, LCiJ is not
equal to the cone of feasible translations of pi relative to the intersection of all the regions PJ 8 P;
when the parameters in J U K U L span their domain. This leads us to directly form the union of
the cones C;, of feasible translations of p , relative to P, @ P, when the parameters in J U K U L

The weak NDBG is interesting in several ways. For example:

17

vary. But there is another, more basic difficulty: Neither of the two rays bounding LC,, may be
passing through a vertex of F, e P,, at a position attained b y this vertex when the parameters in
L have extreme values. This point is illustrated in Figure 12, where we assume for simplification
that d E L is the only variational parameter (i.e., the tolerance zone of every other parameter has
length zero), We consider two rays erected from p,, one passing through vertex u, the other through
vertex v. In Figure 12.a) the value of d is chosen in its tolerance zone (depicted by the gray area)
so that both rays are aligned. Figures 12.b and 12.c show the rays [dotted lines} with the most
counterclockwise orientations when d takes its extreme values (the ray with long dashes is identical
to the one in Figure 12.a; it is reproduced to facilitate comparison with the other rays). As d varies,
the two rays rotate in opposite directions. They form one side of LC,, for the value of d where they
coincide; this value is neither maximal, nor minimal. More generally, let the parameters in L vary
linearly. The vertices of P, e P, then move along straight-line segments (some may remain fixed,
however), but these segments may have different orientations and different lengths. ConsequentIy.
the rays erected from p , and passing through the vertices of P, e P, rotate in different directions
at different rates. Each side of LC,, may be obtained when two rays coincide.

In the rest of this section we present an algorithm to compute LC,,. Since dealing with the
parameters in J and li is relatively easy, we first consider the parameters in L .

Shape-position parameters (L) : We assume here that the parameters in J and I< are fixed to
some arbitrary value. Let U L C,, be the union of all cones C,, when the parameters in L span their
domain (which we will designate by V L) . Without loss of generality, we assume that the parameters
in L are d l , . . . , d6 (though there may be less than 6).

We denote the edges of P, and P, by f,k (k = 1, 2. . . .) and f; (2 = 1 ,2 , . . .), respectively. Let Ct‘
be the cone of feasible translations of p , relative to qkl = f f e f,k. For any value of the variational
parameters, we have: C,, = nk,! C t . We call a ray erected from p z and passing through a vertex v
of a region Q k l a vertex ray and we denote it by p (v) . \$-e refer to as the defining vertex of p(v) .
When the parameters in L span V L , every $ l k l keeps the “same” edges with the same orientations.
and the coordinates of its vertices are linear functions of d l , d g .

Our goal is to select a finite set of points in V L such that each of the two sides of ULCz, is
a side of the cone C,, computed at one of these points. We generate this set as the union of two
sets. H I and Ha. H I is the set of all points where a vertex ray achieves an extreme orientation.
We initially define Hz as the set of all points where two or more coinciding vertex rays achieve an
extreme orientation (we will trim this conservative definition later). Note that H2 is not a subset
of HI: An extreme orientation for one ray, while it coincides with other rays, is usually not an
extreme orientation for that same ray, when no coincidence is required. No point in VL\(HI U Ha)
can contribute a side of U L C;, that is not already contributed by the points in H1 U Hz.

Since the coordinates of the vertices of the regions &,lC‘ are linear functions of d l , . , . d6, the
extreme orientations of every vertex ray are obtained at vertices of VL. These vertices are all the
point2 of H I . They are constant in number.

The construction of H2 is more involved. Consider any two vertices q and 29. The vertex rays
p(v1) and p (v 2) are aligned (i.e., either coincide or points in exactly opposite directions) when the
coordinates (21, y1) of q and (22, y 2) of 212 satisfy the equation:

Let us pose:
2 =6 3=6

x, = a,,d, + Q,O and ya = O,,d, + P,O. for i = 1,2.
3=1 J=1

where all coefficients a;j and p;j are constants. Equation (1) becomes:

where F is a second-degree multivariate polynomial. Equation (2) describes a hyper-surface S .

or the boundary of VL:
- In the interior of V L , they are obtained when:

The extreme orientations of p (q) , while it coincides with p(vz), can be attained in the interior

a(Y1 /x1) = 0 , k = 1, . . . , 5 ,
ddk (3)

where d6 is an implicit function of d l , ds defined by Equation (2). Thus, we must solve a
system of six polynomial equations in d l , . . ., de: Equation (a) , which has degree 2, and the five
Equations (3), which have degree 4 each. This takes time exponential in the number of variables
and polynomial in the maximal degree of the polynomials [7]. Here, this time is O(1).
- To get the extreme orientations of p(v1) when S intersects a face of Y L of dimension p E [l, 51, we
must also solve a system of six polynomial equations. This system consists of: Equation (2), the
6 - p equations defining the face, and p - 1 equations of the form of Equations (3) , in which 6 - p
variational parameters are determined by the equations of the face and one other parameter is an
implicit function of the remaining p - 1 parameters through Equation (2). When p = 1. the face is
a one-dimensional edge and there is no equation of this last type. Each of these systems also takes
time O(1) to solve.
In total, there is a constant number of systems to solve. Hence, the computation of the points of
YL where p(VI) achieves extreme orientations while coinciding with p(v2) has constant complexity.

Up to 6 vertex rays may coincide simultaneously. The alignment of m rays (rn E [2,6]) yields
the intersection of m hyper-surfaces such as S. The extrema1 orientations of these rays while they
coincide are still solutions of systems each having 6 polynomial equations of constant degree in
dl, . . . , d6. Again, such a system can be solved in constant time.

By considering all combinations of m E [2,6] vertices of the regions $k', we obtain a set Hz
of size O((q,yj)'). This size can be reduced as follows: We notice that, when d l , . . . , d6 vary, the
supporting lines of at most 3 edges of P, translate; hence, at most O(1) vertices move; we refer
to them as the special vertices of P,. Similarly, the supporting lines of all edges in P2, except a
maximum of 3, translate by the same amount relative to P2; hence, all vertices, except O(1) of
them, to which we refer as the special vertices of P2) move in the same way. Every vertex of a
region is of the form v2 e w,, where w, and vJ are vertices of P; and PJ) respectively. We divide
the vertices of all the regions q ! ~ ~ ' into two subsets: One contains all vertices wj w; where neither w;
nor vJ is special; its size is O(y;qJ). The other contains all the other vertices; its size is O(y, + e).
All vertices in the first subset move the same. So, if ZI and v' are two vertices of this subset and the
rays p(v) and p(u') coincide, this coincidence cannot create a side of L,j. Therefore, to construct
Ha, it is sufficient to consider all combinations of nz E [2,6] vertices such that at most one belongs

19

to the first subset. Posing q = max{y2,y,}. this remark reduces the size of H 2 and the time to
compute it to O(q7).

H2 still contains too many points. For example, a point need not be included in H2 if, at this
point:
- Two coinciding rays have opposite directions. (Equation (1) allows that to happen.)
- One of the coinciding rays is not tangent to the region
- Two of the coinciding rays achieve different contacts, clockwise and counterclockwise, with the
regions of their defining vertices.
However, these additional reductions do not change the worst-case asymptotic size of H z .

M‘e now have H1 and H a . We can compute the union UHl,H2 C,, of all the cones obtained at
the points of HI U Hz. If this union is a connected cone. it is UL C,,. If, instead, it consists of
several disjoint cones (only connected at their common apex), it remains to determine which are
the two sides of these cones that also bound U r C,,. For that purpose. we consider the complement
of the union in 5’’ and we slightly perturb the points of H1 U H2 within VL. along the axes of V L .
Eventually, all cones in S I \ UHI,H2 C,, will shrink a bit. except one, which is SI\ U L e,,. Hence,
U L C,, is computed in time 0 (y 9) .

Shape parameters (J) : Now, let the parameters in J vary. Let P, (resp. P,) stand for P,
(resp. P,) when all the parameters in J are minimal. For any value of the parameters in L , P, is
included in every other instance of P,. The same holds for P,. Hence, when the parameters in both
J and L vary, we obtain the union UJ,LC,, of all cones C,, by performing the same computation
as above, with P i and P, substituted for P, and P,, respectively.

of its defining vertex.

Position parameters (K) : When the parameters in li vary, the polygon P, 8 P, keeps a constant
shape, but pJ spans the constant-shape polygon 14’ (see previous section). For any value of the
parameters in J and L , the extreme orientations of the vertex rays are obtained when p , is at
vertices of IV. Hence, when all parameters in J U Ii U L vary, we perform the above computation
with p:, successively located at every vertex of IT’. Since IV has size O(T,,), we obtain 0 (r , ,) cones
UJ,L CtJ. If their union consists of a single cone. this cone is LC,,; otherwise, we identify LC,, by
slightly perturbing the position of p, at each vertex of TV (within 137). LC,, is thus obtained in
total time 0(r,,q9).

Computing the O (N 2) large cones needed to construct the weak NDBG of A takes time
O(K2n(q9 -t logn)). While polynomial, this bound is too large for a practical implementation.
Further effort is needed to reduce it, either by a tighter count of Ha (which we believe is possible),
or by finding a suitable approximation algorithm.

7 Inverting Disassembly Sequences

So far, our presentation has assumed that assembly and disassembly sequences are inverse of one
another. This is clearly true when parts have nominal geometry (and are rigid). When parts have
toleranced geometry the relation between the two types of sequences is less obvious. In this section
we analyze this relation.

Consider an assembly A of two parts PI and P2 linked by a relation R. Let “Break A into {PI}
and {P2} by translating {PI} along t” be a feasible disassembly operation. The inverse operation,

20

l 2 1 1 3 1 1 4 I

Figure 13: An N-part product requiring N hands to assemble

as defined in Section 3, is not truly an assembly operation: We do not know where to exactly
position PI prior to translating it, since we do not accurately knob17 in advance the relative position
that PI and Pz will have in A. In the disassembly operation, this issue does not arise, because PI
and Pz are de facto appropriately positioned prior to the translation. It does not arise either under
the nominal-geometry assumption, since the unique relative position of the two parts in A and the
direction d + ST then determine the line on which p1 (the origin of PI’S coordinate system) should
lie prior to the translation of PI.

We can get rid of this difficulty by assuming that some sensing operation locates the edges
and vertices of PI and P2 involved in R with sufficient accuracy. 147e can then compute where to
place p1 prior to translating Pl. In doing so, we make an assumption that is not required by the
disassembly operation. Because PI and Pz are available prior to merging them, this assumption
seems reasonable. Furthermore, whatever assumptions are made in assembly sequencing, the actual
execution of the assembly operation will require some sensing and/or passive compliance to actually
succeed.

However, this sensing assumption may not be sufficient for assemblies made of more than two
parts. Let D be a disassembly sequence of A that produces a subassembly S whose relation graph
(the subgraph obtained by restricting the relation graph of A to the parts in 5’) contains two
connected components, or more. We call the subset of parts contained in each such component
a float. While the relative positions of parts in a float are uniquely determined by the parts in
that float, the relative position of any two floats in S depends on parts in A\S. Here, we do not
extend the above sensing assumption, because it would require the availability of parts that are
not involved in the merging operation that produces 5’. Therefore, this operation does not have a
uniquely defined outcome: It can only produce a temporary S. The relative positions of the floats
in 5’ will later have to be re-adjusted, when S is merged with other subassemblies. D still induces
an assembly sequence, but this assembly sequence is non-monotone in the sense that it produces
non-final subassemblies. It is also multi-handed since some assembly operations require more than
two hands to hold the various floats and adjust their relative positions.

To illustrate this discussion, consider the product of Figure 1, with spatial relations between
parts 1 and 3, 1 and 4, and 2 and 4. The interlocking between parts 3 and 4 requires disassembly to
eventually produce the subassembly {3,4}, whose geometry depends on part 1. The corresponding
assembly sequence generates a temporary subassembly {3,4} with two floats (3 and 4), and later
merges this subassembly with part 1. This merging operation requires three hands to hold the

21

3

Figure 14: Ternary spatial rela.tion

three floats (3 , 4, and 1) and adjust their relative positions. As another example, consider the
product of Figure 13, with spatial relations between 1 and 2, 1 and 3 , ... , and 1 and A-. The first
operation in any disassembly sequence partitions the product into 1 and {2,. . . , K } . The second
subassembly consists of N - 1 floats. The corresponding assembly operation requires N hands to
separately adjust the positions of parts 2,3, . . . , A- relative to part 1.

In general, one would like to generate a two-handed disassembly sequence that yields a
minimally-handed assembly sequence, since this assembly sequence is likely to be more easily exe-
cuted than one that is not minimally-handed. If A admits a disassembly sequence D yielding an
m-handed assembly sequence, every subset of A (not just those produced by 0) admits a disas-
sembly sequence yielding a p-handed assembly sequence with p 5 m. Therefore, we can modify
p a r t i t i o n into a greedy algorithm so that disassemble only constructs disassembly sequences
yielding minimally-handed assembly sequences. The new p a r t i t i o n always scans the entire NDBG
of the (sub)assembly S passed as argument, and selects a partitioning of S into two subassemblies
such that the total number of floats in these subassemblies is minimal. On the average, this variant
takes more time t o run, but it has the same worst-case complexity as the original procedure.

8 Generalizations

The algorithms of Sections 4, 5, and 6 can be extended to handle several generalizations of the
problem stated in Section 2.

Spatial relations involving more than two parts: To define some assemblies we may need
spatial relations involving more than two parts. Figure 14 shows such an assembly: While the
relative placement of parts 1 and 2 is defined by a spatial relation between them, the placement
of part 3 is defined relative to parts 1 and 2 by a relation involving features of both parts 1 and
2. We call the relation between 1 and 2 a binary relation and the relation between 3 and { 1,2} a
ternary relation.

Although we could be even more general, let the relative placements of the parts in A be
described by binary and ternary spatial relations such that, if a part Pi is connected to two other
parts PJ and Pk by a ternary relation, then PJ and Pk are connected by a chain of binary relations.

22

a

(a)

Figure 15: Part with multiple coordinate systems

Let B be the undirected graph whose nodes are the parts of A and whose links are the binary
relations. Let T be the undirected graph whose nodes are the connected components of B and
whose links are the ternary relations (more precisely. let X1 and X2 be any two nodes of T : if a
ternary spatial relation defines the placement of a part in XI relative to two parts in Xa, then X1
and Xz are connected by a link). The set of all spatial relations is complete if and only if T is
connected. It is non-redundant if and only if neither B nor T contain cycles and no two nodes of
T are connected by more than one ternary relation.

Allowing ternary spatial relations requires little change in our algorithms. The only difference
is in the identification of the variational parameters that affect the relative position of P, and P,,
prior to computing each cone SC,, and LC,,. But this identification remains straightforward and
the generated parameters can still be separated between the two sets J and L defined in Section 5 .
The maximal size of L remains 6 (this is important since the algorithms take time exponential in
this number). The size of J is now O(IL'), instead of O (n) , but previously n. could be as large as
N - 1 in the worst case. The locus of p , relative to p , when the paxameters in J vary is thus a
polygon W of complexity O(Ar). The rest is unchanged. The computation of the strong and weak
NDBGs takes time O (N 3 (q 2 + log N)) and O(N3(q4 + log A')), respectively.

Assigning multiple coordinate systems to a part: Consider the part P of Figure 15.a. The
distance between edges a and b is 10 i c l , the distance between edges b and c is 10 k €2, and the
distance between edges c and d is 10 f € 3 . (Ignore the other distances for a while.) To express
such tolerance constraints by assigning a single coordinate system to P , we would have to rewrite
them into, say, three constraints relating a to b, a to c, and a to d. But these constraints would be
stronger than the original ones. Instead, we can decompose P into two fictitious components P'
and PI', and assign a coordinate system to each of these two "parts" (Figure 15.b). The origin of
the system of 3" (resp. P") lies a t the intersection of edges a and f (resp. c and 9). The tolerance
zone defining the distance between a and b is specified in the system of P', while the tolerance
zones defining the distances between b and c, c and d , and g and h are described in PI'. (Continue
ignoring the distance between f, g , and e .) Moreover. a spatial relation is defined between PI and

23

P” to achieve their relative placement in P. In more complicated cases, the decomposition of a
part may yield overlapping fictitious components.

The strong and weak NDBGS of an assembly A containing part P (or several such parts) can be
generated using the algorithms presented in Sections 4, 5 , and 6. To compute the small and large
cones, we replace P by its fictitious components. Identifying the variational parameters that affect
the relative position of any two parts remains straightforward. For any pair of parts, the set of
parameters that affect both their geometry and relative position (set L) is still of size 6, at most.
Thus, the cost of computing the small and large cones is unchanged. (Note in passing that there is
no need to compute the small and large cones for any pair of fictitious parts deriving from P , since
these parts will not be moved separately.) Once the relevant cones have been computed, the strong
and weak NDBGS are generated as before, with P yielding a single node in each DBG: Any arc that
is not a set of feasible directions for some component of P is also not a set of feasible directions for
P. Beyond this step, the decomposition of P is forgotten.

Finally, in the example of Figure 15, we deal with the fact that f and g are aligned. i.e.. lie at
the same distance of e, by simply requiring that the distances between f and e’ in P’ and between
g and e‘/ in PI’ be equal. This means that the two variational parameters are collapsed into one.

Tolerancing distances in spatial relations: Our algorithms can deal with toleranced distances
in spatial relations, by treating these distances as additional variational parameters with their own
tolerance zones. None of them influence the shapes of the parts, but they may affect the relative
position of some pairs of parts. For any two parts P, and P,. the set J of parameters used in the
computation of the cones SC,, and LC,, should include the toleranced distances involved in the
spatial relations that determine the relative placement of P, and P,. Since there are at most two
toleranced distances per spatial relation, the complexity of the algorithms is unchanged.

In the same way, our algorithms can deal with some “floating” assemblies. Such assemblies
differ from the “static” assemblies considered so far by the fact that the relative placement of two
or more subsets of parts is allowed to vary within some bounded range [30]. We can describe such
assemblies by assigning intervals of values to distances in some spatial relations. Each such interval
is then treated as a tolerance zone, though it has a completely different meaning and is usually
larger.

Three-dimensional polyhedral assemblies: Let now A be an assembly made of N polyhedral
parts. The language of spatial relations between parts is extended accordingly, but this raises no
serious difficulty. There are only more ways to express spatial relations. The variational parameters
of every part Pi in A are the distances between p , and the planes supporting the faces of P,. The
tolerance zones are small enough to guarantee that any two instances of the same part have the
same topology.

Let us first assume that A has nominal geometry. In 3D, directions span the unit sphere S2.
The cone C;j of feasible infinite translations of a part P, relative to a part PJ is still the cone of all
translations erected from pi and intersecting P, 8 P,. The region Pj 8 P, is a polyhedron. Hence,
Ci, is’ a polyhedral cone whose intersection with the unit sphere centered at its apex is a “polygon”
bounded by arcs of great circles. The arcs obtained with all the cones C;, create an arrangement
of regions in S2 such that the DBG of A remains constant over each one. This arrangement a,nd
the associated DBGS form the N D B G of A. A system implementing this computation is presented
in [40].

24

The computation does not require the explicit construction of the 3D region defined by PJ @ P,.
We need only project its edges into S2, as follows: first. we compute the Minkowski difference of
every pair of faces of P; and Pj using the algorithm given in [16]; next, we project the edges of all
computed differences into S2. We get more arcs than actually needed. but in the worst case their
asymptotic number is the same. Let q be the maximal number of vertices in a part of A. Each pair
of parts contributes O(q4) arcs of the arrangement on S2. The total arrangement has size O(Ar2q4)
and is computed in time O(N2q410g(Nq)). In every region the DBG is computed in time O (N 2) .
The total NDBG is constructed in time O ((N Q) ~ + N2q410g(Nq)). Each DBG has O (N 2) arcs, so
that finding its strong components takes time O (N 2) . Hence, p a r t i t i o n has complexity O ((N q) 4) .

If A is made of toleranced parts: all small cones SC,, can be computed as suggested in Section 5:
U (P j e P 2) is constructed by computing afinite number (more than 6, however) of regions UJ,],-(P,Q
P,). None of these regions need to be explicitly constructed in 3D. For each of them, we decompose
P, and Pj into convex components P: and Pi and we project the edges of UJ,,(P: 8 P,”) = 14: @

P,”GP,” into S2. Each pair of parts yields O (n 2 q 4) arcs in the arrangement on S2. The arrangement
defining the strong N D B G has size O((A’TL)~~*) and is computed in time O((Xn)2q41~g(A7q)). The
procedure p a r t i t i o n has complexity O(N4n2q4). The computation of the large cones and therefore
the weak NDBG seems much more problematic, however.

9 Conclusion

Previous research has thoroughly investigated assembly sequencing under the assumption that parts
and products have nominal geometry. It has produced useful algorithms to detect undesirable
geometric interferences among parts. But these algorithms cannot help designers analyze the effect
of their tolerancing decisions on the assembly process. As product quality and manufacturing
automation increase, such analysis becomes critical. This paper is a first attempt to fill this need.
It describes algorithms to generate assembly sequences for products made of toleranced parts.
These algorithms could be embedded in an interactive CAD environment to assist designers in the
selection of appropriate tolerance values.

Our approach to assembly sequencing with toleranced parts derives from the NDBG-based ap-
proach previously proposed in [40]. Two non-directional blocking graphs, the strong and the weak,
are precomputed. They respectively represent possible and necessary blocking interferences among
parts in an assembly. These NDBGS are then exploited in a query phase to generate assemblx se-
quences. Using the strong NDBG we determine if a product accepts an assembly sequence that is
always feasible, independent of the values of the variational parameters in their tolerance zones.
Using the weak NDBG we determine if a product is never assemblable, or if it accepts non-guaranteed
assembly sequences. One may use Monte Carlo techniques to estimate the probability of success of
non-guaranteed sequences.

At the core of this approach are two algorithms to compute cones of feasible infinite translations
of one part P; relative to another Pj, when both parts have toleranced geometry and their relative
position varies due to the toleranced geometry of parts lying between them. The key fact underlying
these two algorithms is that the number of variational parameters that affect both the shapes of
P; and Pj and their relative position is constant, Le., independent of the complexity of pZ, P3, and
the total assembly. This fact is crucial because the time complexity of the algorithms depends

25

exponentially on this number, while it is polynomial in all other measures of the size of the input
data. It is preserved in several generalizations presented in the last section of this paper.

Another finding reported in this paper is that. unlike in the nominal-geometry case, assembly
sequences are not the strict inverses of disassembly sequences. Although our algorithms generate
monotone two-handed disassembly sequences, the corresponding assembly sequences may be non-
monotone and multi-handed due to the presence of multiple floats in some subassemblies. The
relative position of two floats in a subassembly S is not entirely determined by the pa.rts in S.
The initial construction of this subassembly achieves a temporary relative position of the two floats
(arbitrarily selected in the set of possible positions). This temporary position is later adjusted
when S is merged with other subassemblies. We have proposed a simple algorithm to generate
disassembly sequences that minimize the number of floats at any one step.

The tolerance language used to describe assemblies is simple and falls short of modeling all
imperfections of a manufacturing process. It nevertheless captures several important features of
the Y14.5 standard. Its main limitation is that it assumes perfect angles between edges. To remove
this limitation, we could associate a tolerance zone with the orientration of every line supporting
an edge of a part. However, this would lead parts to have different relative orientations in various
instances of the assembly. One ad hoc way to deal with this difficulty would be to discretize the
angular tolerance zones and treat each set of discrete values as perfect angles. One could also
perform some sort of Monte-Carlo sensitivity analysis on guaranteed assembly sequences around
the nominal orientations of the edges. However: we believe that additional research should make it
possible to provide an exact solution (at least for planar assemblies).

Another topic for future research is to go beyond infinite translations and allow motions made
of several extended translations (as in [43]). as well as motions combining translation and rotation.
The computation of large cones in 3D seems a challenging issue as well.

References

Dimensioning and Toleruncing, ANSI Yl4.5Aif-1982, ASME, United Engineering Center, New
York, IVY, 1982.

Altschul, R.E. and Scholz, F.W., Statistical Tolerancing: A Case Study, Proc. Intl. Forum on
Dimensional Toleruncing and Metrology, ASME, New York, NY, 1993.

Arkin, E.M., Connelly, R., and Mitchell, J.S.B., On Monotone Paths Among Obstacles with
Applications to Planning Assemblies, Proc. 5th ACM Symp. on Computational Geometry,
334-343, 1989.

Baldwin, D.F., Algorithmic Methods and Software Tools for the Generation of Mechanical
Assembly Sequences, Master’s Thesis, MIT, 1990.

Baldwin, D.F., Abell, T.E., Lui, M.C., De Fazio, T.L., and Whitney, D.E., An Integrated
Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical Products,
IEEE Tr. on Robotics and Automation, 7(1), 78-94, 1991.

26

[6] Bourjault, A., Contribution a une Approche Me'thodologique de I'Assemblage Automatise': Elab-
oration Automatique de Skquences Opkratoires. Thkse d'Etat, Facult6 des Sciences et des Tech-
niques de I'Universit4 de Franche-Comt6, Besanson. France, 1984.

[73 Canny, J.F. The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, 1988.

[8] Chase, K.W. and Greenwood, W.H., Design Issues in Mechanical Tolerance Analysis, Manu-
facturing Review, 1, 50-59, 1988.

[9] Chazelle, B., Ottmann, T.A., Soisalon-Soininen, E., and Wood, D., The Complexity and
Decidability of SEPARATION, Lecture Notes in Computer Science, Vol. 172, Springer Verlag.
New York, N Y , 119-127, 1984.

[lo] C l h e n t , A., Desrochers, A., and Rivikre, A., Theory and Practice of 3D Tolerancing for
Assembly, Proc. CIRP Seminar on Computer Aided Tolerancing. Penn State Univ., May 1991.

[113 De Fazio, T.L. and Whitney, D.E., Simplified Generation of All Mechanical Assembly Se-
quences, IEEE Tr. on Robotics and Automation, 3(6), 640-658, 1987.

[12] Fleming, A., Analysis of Uncertainties and Geometric Tolerances in Assemblies of Parts, PhD
Thesis, Dept. of Computer Science, Univ. of Edinburgh, 1987.

[13] Frants, L., Automating Tolerance Analysis in Computer Aided Design, PhD Thesis, Dept. of
Computer Science, Stanford Univ., 1995 (to appear).

[14] Giordano, M. and Duret, D., Clearance Space and Deviation Space. Application to Three-
Dimensional Chain of Dimensions and Positions, Proc. 3rd CIRP Seminar on Computer Aided
Tolerancing, Editions Eyrolles, Paris. April 1993.

[15] Guibas, L., Halperin, D., Hirukawa, H., Latombe, J.C., and Wilson, R.H.. A Simple and
Efficient Procedure for Polyhedral Assembly Partitioning under Infinitesimal Motions, Proc. of
the IEEE Intl. Conf. on Robotics and Automation, Nagoya, Japan, May 1995 (to appear).

[16] Guibas, L. and Seidel, R., Computing Convolution by Reciprocal Search, Proc. ACM Symp. on
Computational Geometry, Yorktown Heights, NY, 90-99, 1986.

[17] Guibas, L. and Yao, F., On Translating a Set of Rectangles. in Computational Geometry,
Preparata, F.P. (ed.), Advances in Computing Research 1, JAI Press, London, 61-77, 1983.

[18] Guilford, J. and Turner, J., Advanced Analysis and Synthesis for Geometric Tolerances, Man-
ujucturing Review, 6(4), 305-313, Dec. 1993.

[19] Hoffman, R.L., A Common Sense Approach to Assembly Sequence Planning, in [all, 289-314,
1991.

[20] Homem de MeUo, L.S., Task Sequence Planning for Robotic Assembly, PhD Thesis, Carnegie
Mellon University, 1989.

[all Homem de Mello, L.S. and Lee, S. (eds.), Computer-Aided Mechanical Assembly Planning,
Kluwer Academic Publishers, Boston, 1991.

27

1221 Homem de Mello, L.S. and Sanderson, A.C.. A Correct and Complete Algorithm for the
Generation of Mechanical Assembly Sequences. IEEE Tr. on Robotics and Automation, 7(2),
228-240, 1991.

[23] Hopcroft, J.E., Schwartz, J.T., and Sharir, M., On the Complexity of Motion Planning for Mul-
tiple Independent Objects: PSPACE-Hardness of the ‘Warehouseman’s Problem’, The Intl. J . of
Robotics Research, 3(4), 76-88, 1984.

[24] Kavraki, L., Latombe, J.C., and Wilson. R.H., On the Complexity of Assembly Partitioning,
Information Processing letters, 48, 229-235, 1993.

[25] Khanna, S., Motwani, R., and Wilson, R.H., Dynamic Strong Connectivity with a Look-Ahead,
in preparation.

[2G] Krishnan, S.S. and Sanderson, A.C.. Path Planning Algorithms for Assembly Sequence Plan-
ning, Proc. IEEE Intl. Conf. on Intelligent Robotics, 428-439, 1991.

[27] Lee, S. and Shin, Y.G., Assembly Planning Based on Geometric Reasoning, Computation and
Graphics, 14(2), 237-250, 1990.

[2S] Natarajan, B.K., On Planning Assemblies. Proc. ACM Symp. on Computational Geometry,
299-308, 1988.

[29] O’Rourke, J., Computational Geometry i i 2 C. Cambridge Univ. Press, New York, NY, 1994.

[30] Parratt, S.W., A Theory of One-Dimensional Tolerancing for Assembly, PhD Thesis, Sibley
School of Mechanical and Aerospace Eng., Cornel1 Univ., 1993.

[31] Pollack, R., Sharir, M.. and Sifrony, S., Separating Two Polygons by a Sequence of Transla-
tions, Discrete and Computational Geometry, 3, 123-136, 1988.

[32] Requicha, A.A.G ., Mathematical Definition of Tolerance Specifications, Manufacturing Review,
6(4), 269-274, 1993.

[33] Requicha, A.A.G, Representation of Tolerances in Solid Modeling: Issues and Alternative
Approaches, in Solid Modeling by Computers: From Theory to Applications, Pickett, M.S. and
Boyse, J.W. (eds.), Plenum Press, New York, 3-22, 1984.

[34] Snoeyink, J. and Stolfi, J., Objects that Cannot be Taken Apart with Two Hands, Proc. 9th
ACM Symp. on Computational Geometry, 247-256, 1993.

[35] Srinivasan, V., Recent Efforts in Mathematization of ASME/ANSI Y14.5M Standard,
Proc. 3rd CIRP Seminars on Computer Aided Tolerancing, Editions EyroUes, Paris, 223-232,
April 1993. -

[36] Toussaint, G.T., Movable Separability of Sets, in Computational Geometry, Toussaint,
G.T. (ed.), North-Holland, Amsterdam, Netherlands, 335-375, 1985.

[37] Voelcker, H., A Current Perspective on Tolerancing and Metrology, Manufacturing Review,
6(4), 258-268, Dec. 1993,

28

[38] Walker, R.K. and Srinivasan, V.. Creation and Evolution of the ASME Y14.5.l Standard.
Manufacturing Review, 7(I), 1994.

[39] Wilson, R.H. and Rit, J.F., Maintaining Geometric Dependencies in an Assembly Planner.
Proc. IEEE Intl. Conf. on Robotics and Automation. Scottsdale. AZ, 890-895, 1990.

[40] Wilson, R.H., On Geometric Assembly Pdanning. PhD Thesis. Dept. of Computer Science,
Stanford Univ., 1992.

[41] Wilson, R.H. and Latombe, J.C., On the Qualitative Structure of a Mechanical Assembly.
Proc. A A A I Nat. Conf. on Artificial Intelligence. San Jose, CA, 69’7-702, 1992.

[42] VC’ilson, R.H. and Latombe, J.C., Geometric Reasoning About Mechanical Assembly, Artificial
Intelligence, 71(2), 371-396, 1994.

[43] Wilson, R.H.. Kavraki, L., Lozano-Phrez. T., and Latombe, J.C., Two-Handed Assembly Se-
quencing, Tech. Rep. No. STAN-CS-93-1478. Dept. of Computer Science, Stanford Univ., June
1993. To appear in Intl. J . of Robotics Research.

[44] Wolter, J.D., On the Automatic Generation of Plans for Mechanical Assembly, PhD Thesis.
Univ. of Michigan, 1988.

[45] Wolter, J., Chakrabarty, S.. and Tsao, J., Mating Constraint Languages for Assembly Sequence
Planning. Proc. IEEE Intl. Conf. on Robotics and Automation, Nice, France, 2367-2374,1992.

29

Distribution for SAND94-3 124:

MS9018 Central Technical Files, 8523-2 (1)
MS 0899 Technical Library, 13414 (5)
MS 0619 Technical Publications, 1261 5 (1)
MS 0100 Document Processing for DOE/OSTI, 7613-2 (2)
MS 0951 Randy Wilson, 2121 (10)

30

