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ABSTRACT 

We report on experimental measurements and numerical predictions of 
shear-induced migration of particles in concentrated suspensions subjected 
to flow in the wide gap between a rotating inner cylinder placed eccentrically 
within a fixed outer cylinder (a cylindrical bearing). The suspensions consists 
of large, noncolloidal spherical particles suspended in a viscous Newtonian 
liquid. Nuclear magnetic resonance (NMR) imaging is used to measure the 
time evolution of concentration and velocity profiles as the flow induces par- 
ticle migration from the initial, well-mixed state. 

A model, originally proposed by Phillips et al. (1992) is generalized to 
two dimensions. The coupled equations of motion and particle migration are 
solved numerically using an explicit pseudo-transient finite volume formula- 
tion. While not all of the qualitative features observed in the experiments 
are reproduced by this general numerical implementation, the velocity pre- 
dictions show moderately good agreement with the experimental data. 

INTRODUCTION 

A number of experimental studies have determined that particles in ini- 
tially well-mixed suspensions migrate to the low shear-rate region in non- 
homogeneous shear flow fields (Karnis et al. 1966, Arp and Mason 1977, 
Gadala-Maria 1979, Gadala-Maria and Acrivos 1980, Leighton 1985, Hookham 
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1986, Graham et al. 1991, Abbott et al. 1991, Koh et al. 1994). This migra- 
tion occurs even under conditions in which inertial and colloidal forces are 
usually considered negligible. Here, we report on the particle migration, ob- 
served with NMR imaging, in a wide-gap cylindrical bearing, with a rotating 
inner cylinder placed off the axis of a fixed outer cylinder. The flow in this 
bearing is two dimensional, as opposed to the one-dimensional flow studied 
previously in the wide gap between rotating coaxial cylinders (Abbott et al. 

Stokes flow of a Newtonian (single phase) liquid in an infinite cylindrical 
bearing can be described analytically (Duffing 1924, Wannier 1950). Whereas 
the lowest shear rate displayed in an apparatus with coaxial cylinders occurs 
at the outer wall, the lowest shear rates in some cylindrical bearings do not 
occur along the wall. In these geometries, a reversed flow region exists in the 
wide part of the gap between the two cylinders. We will compare velocity 
profiles obtained in a concentrated suspension to those predicted for a New- 
tonian liquid undergoing flow in cylindrical bearings with two eccentricities. 
The suspension consists of relatively large, unimodal particles suspended in a 
viscous Newtonian liquid at a solids fraction of 0.50. NMR images show that 
extensive particle migration occurs in these bearings and that this migration 
creates a region of maximum solids concentration away from the wall when 
reverse flow is present. 

Other investigators have proposed mechanisms to model the suspended 
particle migration caused by the presence of nonuniform shear gradients 
(Phillips et al. 1992, Koch 1989, Leighton and Acrivos 1987, Nott and Brady 
1994, Zhang and Acrivos 1994). Except for Zhang and Acrivos (1994), who 
studied the flow of nonneutrally buoyant particles in pipe flow, these mod- 
els have been compared to data only from one-dimensional flows. Here, we 
compare the NMR data from the two-dimensional bearing flow to numerical 
predictions using a model expression previously used successfully to describe 
one-dimensional flows by Phillips et al. (1992). The model expression con- 
sists of two parts: a Newtonian constitutive equation in which the viscosity 
depends on the local solids volume fraction and a diffusion equation that 
accounts for shear-induced particle migration. We expand this expression to 
two dimensions by describing the flow in terms of the shear rate tensor D and 
the migration in terms of gradients in the generalized shear rate i /  = d w .  

We solve the coupled equations of motion and particle migration using an 
explicit pseudo-transient finite volume technique. We find reasonable overall 

1991). 

2 



agreement between the model and data, although not all of the qualitative 
features observed in the experiments are reproduced by this numerical im- 
plementation. 

In the next section we briefly describe the test fluids and experimental 
procedure. We then discuss the NMR imaging results in the third section. In 
the fourth, we describe a finite volume numerical technique, and in the fifth, 
we report the modeling results compared to data. We discuss and summarize 
the results in the final section. 

2. EXPERIMENTAL METHOD 

The techniques used in this experiment remained essentially the same as 
those described in Abbott et al. (1991). The suspensions consisted of 50% 
by volume of polymethyl methacrylate (PMMA) particles suspended in a 
density-matched liquid. This liquid was tested in a Rheometrics RMS 605 
up to a shear rate of 100 s-l and displayed no significant non-Newtonian 
behavior. The suspending liquid viscosity TO was 4.95 Pa.s at 23.15OC. The 
particles were unimodal but somewhat polydisperse, with a mean diameter 
of approximately 675 pm and a standard deviation in diameter of about 
15%. Although the temperature of each suspension was controlled only by 
the room air conditioner, no settling of the suspended particles was detected 
over the duration of a typical experiment. 

Each apparatus consisted of a rotating solid PMMA cylinder eccentrically 
placed in a fixed outer PMMA tube capped with solid PMMA disks. The 
outer radius of the inner rod (Ri) was 0.64 cm (1/4 in), the inner radius of 
the outer tube (a) was 2.54 cm (1 in). The length of the suspension-filled 
cavity was 25 cm. Figure 1 is a sketch of the cross-section of the device. 
The inner rod was placed at one of two positions, with the offset, e, of the 
axis of the inner rod either 0.64 cm (1/4 in) or 0.95 cm (3/8 in) off the axis 
of the k e d  outer cylinder (Fig. 1). With these dimensions, the maximum 
offset possible emax = R, - R, (occurring when the inner cylinder touches the 
outer) is 1.9 cm (3/4 in). The eccentricity ratio e/e,, is 1/3 for the first 
apparatus and 1/2 for the second. 

In this set of experiments, the inner cylinder was rotated at  a constant rate 
of approximately 90 rpm by a motor. Care was taken not to turn the inner 
cylinder until initial NMR images of the initial state were taken. The motor 
was stopped after a predetermined number of rotations, and NMR images of 
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the Couette were taken. The NMR technique is described by Abbott et al. 
(1991) and Graham et al. (1991). 

Images were taken of a cross-sectional slice, 2.4-cm thick, perpendicular to 
the Couette axis, about midway along the apparatus. The time required for 
each image was -8 min. Back-to-back repeated images indicate no significant 
settling or particle redistribution during this interval. In these experiments, 
the intensity values in the part of the slice corresponding to the suspension- 
filled apparatus were normalized such that the average intensity of the image 
matched the liquid fraction, which was known to a high degree of accuracy. 

3. EXPERIMENTAL RESULTS 

Figure 2 shows the time progression of the NMR concentration images of 
the bearing with eccentricity ratio equal to 1/3, from the initially well-mixed 
suspension to the steady state after 14,000 revolutions of the inner cylinder. 
One can see a dramatic change in solids concentration, with the steady-state 
solids concentration at  the outer wall much higher than at the inner cylinder. 
This is quantified in Fig. 3a, in which the solid line is the NMR measurement 
of the liquid fraction (1-4) across the diameter of the apparatus bisecting the 
inner rod (the x-axis of Fig. l), at steady state. The abscissa represents 
the distance along the x-axis with the origin at the center of the inner rod. 
This graph shows that the solids concentration is fairly close to maximum 
(random) packing at the outer wall, where the liquids fraction is about 0.4; 
whereas, the solids fraction is only about 0.27 (liquid fraction about 0.73) 
at the inner cylinder wall. This concentration change represents a dramatic 
change in suspension viscosity: the apparent viscosity of a homogeneous 
suspension of 60% of uniform spheres is about 25 times that of a suspension 
with a solids concentration of 27% (Rutgers 1962, Thomas 1965). 

Figure 3b shows the NMR measurements of velocity (solid line) across this 
same slice. The theoretical prediction (dashed line) for a Newtonian liquid 
is also shown for reference. In this geometry, there is no reverse flow for a 
Newtonian liquid (Wannier, 1950). The velocity in the suspension falls off 
much more quickly than in a Newtonian liquid, and is virtually zero about 1 
cm from the inner shaft. The suspension is moving in approximately a circle 
about the inner shaft, more symmetrically than a Newtonian liquid would 
flow in the same geometry. 

Figure 4 shows the concentration image of the bearing with eccentricity 
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ratio of 1/2 after over 10,000 revolutions of the inner shaft. Here, the maxi- 
mum concentration is not at the outer wall. This is shown quantitatively in 
Fig. 5a, which is again a graph of the fluid fraction in a slice across the di- 
ameter of the apparatus bisecting the inner shaft. Within the widest portion 
of the gap, the solids concentration is almost to maximum packing; whereas, 
at the outer wall the solids concentration is close to the original value of 
0.5. The solid line in Fig. 5b is the NMR measure of liquid velocity. A flow 
reversal is predicted for a Newtonian liquid in this geometry (Wannier 1950); 
however, the magnitude of the reversed velocity seen in a Newtonian liquid 
is about 1% of the velocity on the inner shaft and much smaller than can 
be distinguished with the NMR technique. That a flow reversal occurs in 
the suspension seems to be indicated by the presence of a high concentra- 
tion region not at  the outer wall but in a region within the gap. This was 
confirmed by visual observations of a tracer particle in the suspension and 
determined that indeed a region of very slow (of order 1 mm/minute) reverse 
flow occurred. 

4. FINITE VOLUME MODELING 

4.1. Governing Equations 

In the model presented Phillips et al, the stress tensor is given by the 
generalized Newtonian constitutive equation: 

u = -P1+ T ,  T = 27(4)D, 

where u is the total stress tensor, P is the hydrostatic pressure, T is the extra 
stress, D = $ (Vu + VuT) is the strain rate tensor, u is the velocity field, 
the superscript T denotes the transpose operation, q is the fluid velocity, 
which is assumed to depend only on the local volume fraction of the solid 
phase, 4. Krieger's form for the viscosity function is chosen here (Krieger, 
1972) : 

where qo  is the viscosity of the suspending liquid, 4m is the maximum volume 
fraction, and a is a constant of the order 2. In this paper we assume +m = 
0.68 and a = 1.82, the values suggested by Phillips et al. (1992). 
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The governing equations are the usual conservation statements: 

V * u = 0 (conservation of mass), (3) 

V o = O (conservation of linear momentum), (4) 
where the fluid inertia has been omitted. To this set of equations we add the 
conservation of the solid phase, which takes the form 

where N is the flux of the solid phase, given by the model equation 

N = Kca2$V (+$) + KVa2+$’V (In 7) , 

consisting of a contribution from the collision between the particles and a 
contribution from the gradient of the viscosity. This set of governing equa- 
tions is subjected to the usual no-slip and no-flux boundary conditions at a 
solid surface. The latter boundary condition is written as 

where n is the outward unit normal vector on the surface. 

4.2. Explicit Finite Volume Method 

The existence of third-order derivatives (gradients of gradients of shear 
rate) and the strong coupling between the volume fraction and the viscosity 
imply that the solution will be most sensitive to small changes in the volume 
fraction, especially in the regions of low shear rates. This is confirmed by 
our brief investigation of a finite element scheme using operator splitting 
techniques, which was proved to be quite unstable. 

In this paper we employ a pseudo-transient finite volume scheme, which 
is based on the method of artificial compressibility due to Chorin (1967), 
where the continuity equation is replaced by 

dP 1 - + -v * u  = 0, 
dt  6 
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where 6 is the artificial compressibility, and t is a time-like variable. Since 
we are interested in the steady-state solution 6 is set to unity. The main idea 
behind this is that an unbalance in the mass conservation is used to drive 
the pressure correction. We may re-instate the time derivative paulat, with 
p = 1, in the conservation of linear momentum and use the unbalance in the 
conservation of linear momentum to drive the velocity correction: 

The computational domain is divided into non-overlapped finite volume cells, 
each of volume V,  and bounding surface Si. We now integrate the governing 
equations (5)) (8-9) over this generic finite volume to obtain 

and 
( N - u $ ) . n d S  . (12) 

84 J, dtdV = Li 
In the simplest form of the finite volume method (but by far most com- 

monly used in computational fluid dynamic problems) the field variables are 
assumed piece-wise constant. This is assumed here, leading to the discretized 
equations 

dUi 

d t  I$- = (ts)j ) 

d Pi E- = - x ( ( N  - u#) - n S ) j ,  
j 

d t  

where t = u - n is the traction, the subscripted variable i indicates the 
corresponding value for the cell V,, and the sums are to be taken over all the 
bounding surfaces Si of cell i. In this paper, we are only concerned with two- 
dimensional flows, in which the computational domains are discretized using 

7 



unstructured triangular cells (Jin and Wiberg, 1990), an example of which 
is given in Fig. 6 (the volume of a cell is actually its area, and a bounding 
surface is actually a boundary line). 

To calculate the integrations over the surface Sj of V,, we first evaluate 
the averaged values of the field variables on Sj, using corresponding values 
either side of the surface, between two neighboring cells sharing the same 
boundary, and then calculate the integrands using these averaged values. It 
can be shown that, on a two-dimensional grid patch consisting of equilateral 
triangles of the same size, the scheme is actually a central differencing scheme 
and is second-order accurate in space (Jameson and Mavriplis, 1986). If a 
bounding surface is also on the boundary of the domain, special consideration 
is required. On structured grids, we may extrapolate the values on the edge 
from the values in the neighboring cells. On unstructured grids, it is not 
obvious how to design an accurate extrapolation scheme. For simplicity, we 
adopt a zero-order approximation and set the values on such a surface equal 
to the values in the cell containing the surface. 

Gradients of any quantity are calculated by assuming that they are con- 
stant within the cell, so that, for example 

The set of ordinary differential equations in the time-like variable t can 
be written in the form 

d -u d t  = F(U), 
where U represents all the unknowns, {ui, Pi, 4i}. This set is integrated in 
t using an adaptive fifth-order Runge-Kutta scheme. We can accelerate the 
convergence to the final steady-state solution by replacing on the left hand 
sides of (13-15) by a scale value V, (typically about the size of the smallest 
volume). In this way disturbances are expected to sweep a large cell in about 
the same number of iterations as with small cells. To obtain quantitative 
information on how far away from steady state the current solution is, we 
use the maximum residual 

When this is less than a prescribed tolerance, of 0(10-6), then the solution 
is deemed to be at steady state. 
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Boundary conditions are easily accommodated in this scheme (no-slip, 
no-flux, or even traction boundary conditions), since the prescribed veloc- 
ity, flux or traction can be directly fed into the right hand sides of (13-15). 
This explicit finite volume scheme has been used for solving some difficult 
problems in rheology, including the stick-slip problem of the upper-convected 
Maxwell model (Jin et al., 1990). 

5. NUMERICAL RESULTS 

5.1. Circular Couette Flow 

We first benchmarked the code in the circular Couette flow, where analyt- 
ical solution (Phillips et al., 1992) is available through solving the following 
equations 

and 

subjected to the boundary conditions 

and 
" J"" $(r)dr = $a. 

R:- R; 
In these equations, R, is the radius of the inner cylinder, which rotates with 
an angular velocity of w ,  Ro is the radius of the stationary outer cylinder, 
C is a constant to be determined from the boundary conditions, and $a is 
the prescribed average volume fraction of the solid phase, which is constant 
at  all time. The values for the parameters Kq and Kc are the same as those 
used by Phillips et al. (1992). 

A comparison between the numerical results, obtained with a mesh of 
4084 elements, and the analytical solution for the concentration and the ve- 
locity profiles is given in Fig. 7. It is clear that we have a good agreement 
with the exact solution. In fact, the convergence to the exact solution is 
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linear in the mesh size. With the adaptive integration scheme, the number 
of time steps required to achieve a steady state is of the order 10000 (30 
minutes CPU time on a DecStation 5000/300), which is an order of mag- 
nitude fewer time steps than are necessary if a constant time step is used. 
The time step itself varies, depending on the estimated local error in each 
finite volume cell, but is not allowed to be greater than one. The scheme 
is pseudo-transient, and therefore the total time taken to reach steady state 
(about 6000, or about 1000 turns of the inner cylinder) does not have any 
direct physical relevance; but it does give an indication on how long it would 
take to reach steady state and is comparable to the 4000 turns which is nec- 
essary to reach an experimental steady-state (Abbott et al., 1991). 

5.2. Eccentric Bearing Configuration 

We now consider the flow in an eccentric bearing configuration with an 
eccentricity ratio of 1/2, and with R, = 1, R, = 0.25, corresponding to one 
of the experimental setups; the computational mesh is displayed in Fig. 6. 
Initially the volume fraction is uniform at 50%) and the inner cylinder is 
allowed to rotate. The kinematics quickly achieve a steady state after some 
10000 time steps, as evidenced from the contours of velocities in Fig. 8. The 
volume fraction takes longer to reach steady state (about 20000 time steps); 
as the inner cylinder rotates, the solid phase is swept into long thin strips, 
migrating towards the outer cylinder forming a large essentially stagnant 
region in the wide gap region, with a correspondingly high solid volume 
fraction (about 62%). 

The steady state contours of the concentration are displayed in Fig. 9, as 
a three-dimensional map. In the figure, the computational mesh is elevated 
along the z-axis by an amount proportional to the volume fraction. In this 
way, one can visually determine if there is any local maximum, and assess 
the quality of the steady state of the solution by the degree of symmetry of 
the flow field. 

The concentration and the velocity profiles along the narrow and the 
wide gaps are given in Fig. 5. Along the narrow gap, the concentration pro- 
file varies nearly linearly, from a low value of about 17% at the inner cylinder 
to a high value of about 45% at the outer cylinder. A similar trend is found 
along the wide gap, except that the concentration is more quadratic, vary- 
ing between 18% and 62%. Overall the concentration along any radial line 
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increases monotonically, from a low value at the inner cylinder, to a high 
value at  the outer cylinder, as seen in Fig. 9. Although the overall agree- 
ment with the data (as shown in Fig. 5) is fair, we find no recirculation at 
this eccentricity ratio, in contrast to the experimental observation of a tracer 
particle, mentioned above. (Keep in mind, however, that this recirculation 
velocity is very small, approximately 1% of the velocity at  the shaft, and 
is well below the detection limit of the NMR measurements.) Allowing the 
solvent viscosity to be shear-thinning will not bring about a recirculation, 
because near the outer cylinder the low shear rate would reinforcing the no- 
flow condition there due to the higher viscosity. Perhaps some amount of 
anisotropy, which is missing in the present model equations, would help. Fi- 
nally, although recirculation is not predicted by the numerical results, the 
concentration profile is reasonably well-predicted (as seen from Fig. 5a) con- 
sidering the uncertainty in the experimental data, and the simplicity of the 
model theory. 

6 .  SUMMARY 

NMR imaging allows the study of flow-induced particle migration in con- 
centrated suspensions. Concentration profiles are easily determined, and 
good spatial resolution can be obtained. When subjected to flow between 
rotating eccentric cylinders, neutrally buoyant particles migrate away from 
the rotating inner rod. Depending on the geometry, the final region of high- 
est solids concentration can either be at  the outer wall or in a region within 
the gap. 

We have modeled the suspension following the technique presented by 
Phillips et al. (1992). Here, we expanded the model expression to two- 
dimensions by describing the flow in terms of the strain rate tensor and the 
migration in terms of gradients in the generalized shear rate. Although this 
expression resulted in particle migration and final concentrations that were 
approximately those measured with NMR imaging, important qualitative 
features of the flow could not be reproduced. Specifically, the flow reversal 
was not seen in the 1/2 eccentricity ratio case and neither was the occurrence 
within the gap of the region of highest particle concentration along the line 
separating the recirculation region from the rest of the cylindrical bearing. 
What is obviously missing in the present model is the anisotropy that must 
be ever-present in suspensions. An improved model should have some degree 
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of anisotropy, reflecting the differing behavior of the microstructure in shear 
and elongational flows. 

Finally, the explicit finite volume scheme has been found very robust in 
this problem, although there are several third-order derivative terms, which 
tend to de-stabilize more sophisticated finite element methods. The use of 
the artificial compressibility method is a convenient technique for correct- 
ing the pressure; however transient flows cannot be treated by the method. 
We are currently investigate different finite volume schemes to overcome this 
problem. 
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Figure Captions 
Fig. 1: Cylindrical bearing geometry. The x-axis passes through the 

center of both cylinders. The two cylinders are off-set by the distance e. 
Fig. 2: NMR images of a bearing with an eccentricity ratio equal to 1/3. 

The four figures show the initially well-mixed concentration profile followed 
by the Concentration profiles after 200, 800 and 14000 revolutions of the inner 
rod. The false color image uses yellow to highlight regions of high liquid (or 
low solids) concentration. 

Fig. 3: The steady-state velocity and concentration profiles along the x- 
axis of a cylindrical bearing with an eccentricity ratio equal to 1/3. The 
abscissa represents a nondimensional distance across the x-axis with the ori- 
gin at the center of the inner rod. a) The solid concentration q3 increases 
monotonically from a low at the inner cylinder wall. b) The velocity in the 
suspension (solid line) decreases more rapidly than the Newtonian velocity 
(dashed line) in the same geometry. Because the particle concentration is 
not uniform, the viscosity of the suspension is lower near the inner cylinder 
leading to higher shear rates than would be observed with a Newtonian fluid. 

Fig. 4: NMR image of a bearing with an eccentricity ratio equal to 1/2. 
Darker regions represent higher liquid fraction (lower solids fraction). The 
highest solids fraction occurs along a line within the widest portion of the 
gap* 

Fig. 5:  The steady-state velocity and concentration profiles along the x- 
axis of a cylindrical bearing with an eccentricity ratio equal to 1/2. The 
abscissa represents a nondimensional distance across the x-axis with the ori- 
gin at  the center of the inner rod. a) The experimentally measured liquid 
concentration (solid line) decreases almost linearly from the inner cylinder to 
the outer cylinder along the narrow part of the gap. However along the wide 
part of the gap, the liquid fraction reaches a minimum (solids concentration 
reaches a maximum) a t  about x=l.l.  This probably represents a stagnant 
region in the flow. The numerical results (- - -)predict a monotonic change 
with the maximum concentration at the out cylinder. b) Here, as with an 
eccentricity ratio of 1/3, the velocity in the suspension (solid line) decreases 
more rapidly than the Newtonian velocity (Wannier 1950, - - -) in the same 
geometry. Good agreement with our numerical results (- - -) are shown. 

Fig. 6: Numerical mesh demonstrating the use of unstructured triangular 
cells. For visualization, a less dense example mesh is shown. 

Fig. 7: Numerical results (square points) compared with the analytical 
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solution (solid line) for a suspension in a circular Couette flow. 
Fig. 8: Steady-state velocity contours predicted numerically for a cylindri- 

cal bearing, with an eccentricity ratio equal to l / 2 ,  filled with a suspension 
with an overall volume fraction of solids of 0.50. Steady-state values are 
reached after 10000 time steps. 

Fig. 9: The steady-state concentration profiles predicted numerically for 
a cylindrical bearing, with an eccentricity ratio equal to 1/2, filled with a 
suspension with an overall volume fraction of solids of 0.50. Concentration 
profiles stabilize after 20000 time steps. Here the z-axis represents the relative 
magnitude of the concentration. 
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