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Loss Parameter Calculations 

J. M. Cook 

1 Introduction 

In reference [I] Sands and Rees propose an electronic bench measurement of the impulse 
energy loss of a stored particle bunch to vacuum-chamber components. The components act 
as the outer conductor of a coaxial line with a thin wire as‘center conductor. Short pulses are 
then transmitted through this coaxial system to simulate relativistic particle bunches. Their 
proposal has since been implemented by several investigators [2,3,4,5,6] and has become a 
well-known technique. 
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They derive a first-order approximation to the loss parameter k for use in these measure- 
ments. The purpose of this note is to point out that the’exact expression for k is as simple 
as its first-order approximation and to recommend its use even when k is small. 

2 A First-Order Approximation 

In an equivalent circuit model of the system, the value i ( t )  of the function i represents 
the current that is at time t entering the chamber being tested. To record i, the coaxial 
cable from the pulse generator is split as shown in Figure 2 of [6] and the reference chamber 
shown there in parallel with the test chamber is removed so that the sampling head of 
the corresponding oscilloscope is symmetric with the entrance to the test chamber. The 
impedance of the sampling head is equal to 2 0 ,  the characteristic impedance of the cable, so 
when the pulse deposits an amount 

of energy into that resistance, an equal amount of energy is also put into the test component 
by the other half of the split pulse. 

A second oscilloscope with sampling head also of resistance 2 0  is positioned at the exit 
from the chamber. Thus the system is instrumented for a complete set of input-output 
measurements with input to the left end of the chamber and output from the right end, from 
and to coaxial cables with characteristic impedance 2 0 .  There is no provision for input from 

‘See equation (Rl) on page 38 of [l]. 
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the right (usually unnecessary by symmetry) or for the measurement of reflections to the 
left, back towards the pulse generator. 

The energy deposited in the sampling head at the exit from the test chamber is equal to 
U minus the energy intercepted by the chamber. Subtract the input pulse from the output 
pulse to form Si. Then the first-order approximation to the energy change, as given by the 
variational calculus (see 53.2 in [7]), is the first variation of U: 

SU = S(Z0 l+mi( t )2dt)  
J --oo 

J--00 

= 220 /+=I i(t) * (Si)(t)dt. 
J --00 

By definition of k, 

where q = J-+," i(t)dt, and AU is the exact increment of U corresponding to the increment Si 
of i. (Because it is the independent variable, Ai = Si. 4, Therefore the first approximation 
to k is given by 

3 An Exact Expression 

The "exact" expression will be obtained by repeating arguments of Sands and Rees 
except where they explicitly state that they are neglecting terms of order higher than one. 
Then we simply keep all of those terms. The resulting expression will be exact in the sense 
that it follows from the arguments of Sands and Rees. If those arguments are not valid then 
their first-order approximation to IC should not be used without some other derivation. 

Higher order approximations to k can be obtained by adding to SU in the above expression 
higher order terms in the Taylor expansion 

S2U S3U 
2! 3! 

AU = SU + - + - + 
(see page 87 of [SI). But U is a quadratic functional so the variational derivatives GnU/Sin 
are all zero for n > 2 (see $24 in [?I) and the Taylor expansion reduces to 

+-00 

AU = 2Z01m i(t)(Si)(t)dt 
~~ ~ 

the first equality in equation B-6 on page 39 of [l]. 
3See equation (8) on page 16 of [l]. 
*In equations (B-3) and (B-4) on page 38 of [l], Ai is denoted by 4,. We expect it to be mostly negative 

5See equation 10 on page 16 of [l]. The minus sign corresponds to the choice of the sign of 6i. 
(see line 4 on page 41 of [l]). 
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This is an algebraic identity easily verified by purely algebraic manipulations without use 
of any fancy derivatives. The exact formula for k is then obtained from its first-order 
approximation simply by replacing SU there by AU: 

k = -AU/q2  

The inaccuracy in the first-order approximation is given by the second-order term, so the 
approximation is always larger than the exact value. In references [1,2,3,4,5,6] the inaccu- 
racy must be reduced (but not eliminated) by shifting the data describing the output pulse 
backwards to correct for the time-delay as the pulse traverses the chamber. Minimization 
of the second-order term is then just a one-parameter least-squares fit. As so determined, k 
is an insensitive function of the shift because the minimum is characterized by a zero of the 
derivative of that function. However in [6] ,  as in earlier papers, the shift was determined by 
bringing into coincidence the leading edges of the two pulses. The particular algorithm used 
in [6] was quite effective at obtaining this coincidence but, unlike the minimization algorithm 
which compares the entire pulse-shapes, it compares only the shapes of the leading edges. 
At the suggestion of Gil Nicholls the sensitivity of the first-order-approximate k to this shift 
was investigated. It was found to be so high as to threaten the validity of the approximation. 
On the other hand, the value of the exact ezpression is invariant under time-translation. No 
shift is necessary. 

Alternatively, AU can be evaluated directly from its definition: 

AU = U(i  + S i )  - U ( i )  

where i is the input pulse. 

In some of the experiments done for [6] ,  two components to be compared were tested 
simultaneously, in parallel (see figure 2). For example the value of k for a hardline as 
reference versus hardline-plus-pillbox for test component was computed in by the first-order 

~ ~~ 

6Analogously, the higher order terms neglected by Sands and Rees in the first part of equation (B-6) on 
page 39 of [l] can be recovered in the derivation of 2hiAiAt from &i2At two lines above by noticing that 
Ai2 = ( i  + Ai)a - i2 z 2Ai + (Ai)2,  and then keeping the second-order term (Ai)2. 

‘On page 38 of [l], energy dissipated in the chamber by the coaxial current pulse is neglected. Instead, 
the energy lost by the pulse is . . . to a large extent coupled into the center wire . . .to be dissipated in the 
terminations at the two ends” (page 7, lines 5-7). (On the other hand, the energy lost by a beam bunch 
“is transformed eventually into heat energy in the walls’’ (page 7, line 2). The central assumption of [l] is 
that both losses are equal (“ . ..similar . . .”, page 7, lines 12-14).) Therefore on page 38, where only the 
coaxial current pulse is discussed, equations (B-2) through (B-4) imply AU = U ( i  + b i )  - U ( i )  = the energy 
Ro J ii(t)dt lost to the reflected pulse. 

The authors then go on to describe something they would “like” in the line at the bottom of page 38 and 
the next three lines at the top of page 39 but I cannot find any supporting arguments for this preference. 
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approximation to be -20703 volts/picocoulomb. When computed by the exact expression 
the value is .12569 V/pC. The difference, .08134, is the second-order correction term. This 
is a relatively large number, and the situation does not improve much when IC is small. 
For an elliptical beam chamber as reference versus beam tube plus abrupt transition to 
antechamber, typically the first-order approximation to k was about -.003 V/pC whereas 
the exact value was about -.004 V/pC, a significant difference. 
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