Loss parameter calculations

PDF Version Also Available for Download.

Description

Sands and Rees propose an electronic bench measurement of the impulse energy loss of a stored particle bunch to vacuum-chamber components. The components act as the outer conductor of a coaxial line with a thin wire as center conductor. Short pulses are then transmitted through this coaxial system to simulate relativistic particle bunches. Their proposal has since been implemented by several investigators and has become a well-known technique. They derive a first-order approximation to the loss parameter {kappa} for use in these measurements. The purpose of this note is to point out that exact expression for {kappa} is as simple ... continued below

Physical Description

4 p.

Creation Information

Cook, J. M. July 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Sands and Rees propose an electronic bench measurement of the impulse energy loss of a stored particle bunch to vacuum-chamber components. The components act as the outer conductor of a coaxial line with a thin wire as center conductor. Short pulses are then transmitted through this coaxial system to simulate relativistic particle bunches. Their proposal has since been implemented by several investigators and has become a well-known technique. They derive a first-order approximation to the loss parameter {kappa} for use in these measurements. The purpose of this note is to point out that exact expression for {kappa} is as simple as its first-order approximation and to recommend its use even when {kappa} is small.

Physical Description

4 p.

Notes

OSTI as DE95015497

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95015497
  • Report No.: LS--177
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/89978 | External Link
  • Office of Scientific & Technical Information Report Number: 89978
  • Archival Resource Key: ark:/67531/metadc792299

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Jan. 6, 2016, 2:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cook, J. M. Loss parameter calculations, report, July 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc792299/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.