Improving the diversity of manufacturing electroluminescent flat panel displays

PDF Version Also Available for Download.

Description

Crystalline calcium thiogallate with a cerium dopant has been deposited by metal-organic chemical vapor deposition (MOCVD) at temperatures below 600{degrees}C on a low cost glass substrate. An EL luminance of 1.05 fL was observed 40 volts above threshold at 60 Hz. This is more than an order of magnitude improvement over earlier crystalline-as-deposited thiogallate materials. These results pave the way for the use of MOCVD as a potential method for processing full color thin-film electroluminescent (TFEL) flat panel displays. The formation of the CaGa{sub 2}S{sub 4}:Ce phosphor requires precise control over a number of deposition parameters including flow rates, substrate ... continued below

Physical Description

13 p.

Creation Information

Moss, T.S.; Samuels, J.A. & Smith, D.C. September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Crystalline calcium thiogallate with a cerium dopant has been deposited by metal-organic chemical vapor deposition (MOCVD) at temperatures below 600{degrees}C on a low cost glass substrate. An EL luminance of 1.05 fL was observed 40 volts above threshold at 60 Hz. This is more than an order of magnitude improvement over earlier crystalline-as-deposited thiogallate materials. These results pave the way for the use of MOCVD as a potential method for processing full color thin-film electroluminescent (TFEL) flat panel displays. The formation of the CaGa{sub 2}S{sub 4}:Ce phosphor requires precise control over a number of deposition parameters including flow rates, substrate temperature, and reactor pressure. The influence of these parameters will be discussed in terms of structure, uniformity, and TFEL device performance.

Physical Description

13 p.

Notes

OSTI as DE95017006

Source

  • 27. international technical conference of the Society for the Advancement of Material and Process Engineering (SAMPE): diversity into the next century, Albuquerque, NM (United States), 9-12 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95017006
  • Report No.: LA-UR--95-2535
  • Report No.: CONF-951033--11
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 95502
  • Archival Resource Key: ark:/67531/metadc792266

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Feb. 29, 2016, 9:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Moss, T.S.; Samuels, J.A. & Smith, D.C. Improving the diversity of manufacturing electroluminescent flat panel displays, article, September 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc792266/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.