Support Services for Ceramic Fiber-Ceramic Matrix Composites

PDF Version Also Available for Download.

Description

The Facility for the Analysis of Chemical Thermodynamics (FACT) computer code was used to calculate the vaporization and condensation behavior of germanium (Ge) and lead (Pb) in coal gasification systems. Since condensation occurs at specific temperatures, the elements can concentrate in deposits that foul or corrode structures within an integrated gasification combined-cycle system or form very small particles that may be sticky in particle filter systems or be difficult to collect in a particulate-control cyclone. The calculations were performed in two steps: (1) vaporization from ash constitutents at 1600C at a system pressure of 22.9 atm and (2) condensation of ... continued below

Physical Description

10 p.

Creation Information

Hurley, J. P. & Nowok, J. W. June 30, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Facility for the Analysis of Chemical Thermodynamics (FACT) computer code was used to calculate the vaporization and condensation behavior of germanium (Ge) and lead (Pb) in coal gasification systems. Since condensation occurs at specific temperatures, the elements can concentrate in deposits that foul or corrode structures within an integrated gasification combined-cycle system or form very small particles that may be sticky in particle filter systems or be difficult to collect in a particulate-control cyclone. The calculations were performed in two steps: (1) vaporization from ash constitutents at 1600C at a system pressure of 22.9 atm and (2) condensation of GeX and PbX components at lower temperatures. The calculations indicate that Ge vaporizes as GeS and GeO and condenses through chemical vapor deposition as solid GeO2, Pb vaporizes primarily as PbS, with some Pb metal, and condenses as PbS as high as 880C for concentrations in the feed of 100 ppm on a mass basis. Although these concentrations would never be expected in the raw fuel, such levels could be reached if by-product dusts are recirculated into the gasifier feed material. Therefore, the calculations are useful in determining the maximum amount of recirculated material that can be allowed in the feed material to prevent formation of condensates at specific temperatures. The calculations also indicate that chlorine in the fuel has little effect on the behavior of Ge, but increases the concentration of vapor phase Pb as PbCl4 at temperatures below 800F, most significantly near 400F, at which temperature approximately 1/10 of the lead may be in the vapor phase as PbCl4. It is expected that this vapor would be collected in the system's scrubber.

Physical Description

10 p.

Notes

OSTI as DE00008836

Medium: P; Size: 10 pages

Source

  • Other Information: PBD: 30 Jun 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/Sub/94-SS112/04
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/8836 | External Link
  • Office of Scientific & Technical Information Report Number: 8836
  • Archival Resource Key: ark:/67531/metadc792242

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 30, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 6, 2017, 7:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hurley, J. P. & Nowok, J. W. Support Services for Ceramic Fiber-Ceramic Matrix Composites, report, June 30, 1999; Tennessee. (digital.library.unt.edu/ark:/67531/metadc792242/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.