Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1994--December 1994

PDF Version Also Available for Download.

Description

Coal liquefaction involves cleavage of methylene and dimethylene and ether-type bridges connecting polycyclic aromatic units. The selected compounds for model coal liquefaction reactions are 4-(l-naphthylmethyl)bibenzyl (NMBB) and several oxygen-containing compounds. This report mainly describes the synthesis and screening of selected iron and molybdenum compounds as precursors of dispersed catalysts for hydrocracking of NMBB and oxygen-containing compounds. Experiments using NMBB were carried out at 400{degrees}C for 30 min. under 6.9 MPa H{sub 2} pressure. All catalyst precursors converted NMBB predominately into naphthalene and 4-methylbibenzyl. Generally, ferrocene demonstrated very low activity as catalyst. Even sulfur addition did not increase activity. Hydrated iron ... continued below

Physical Description

35 p.

Creation Information

Schmidt, E.; Kirby, S. & Song, Chunshan February 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Coal liquefaction involves cleavage of methylene and dimethylene and ether-type bridges connecting polycyclic aromatic units. The selected compounds for model coal liquefaction reactions are 4-(l-naphthylmethyl)bibenzyl (NMBB) and several oxygen-containing compounds. This report mainly describes the synthesis and screening of selected iron and molybdenum compounds as precursors of dispersed catalysts for hydrocracking of NMBB and oxygen-containing compounds. Experiments using NMBB were carried out at 400{degrees}C for 30 min. under 6.9 MPa H{sub 2} pressure. All catalyst precursors converted NMBB predominately into naphthalene and 4-methylbibenzyl. Generally, ferrocene demonstrated very low activity as catalyst. Even sulfur addition did not increase activity. Hydrated iron sulfate FeSO{sub 4} x 7 H{sub 2}O gave similar conversion like ferrocene. In order to clarify the effect of sulfur alone on model compound conversion, NMBB was treated with sulfur in concentrations of 1.2 to 3.4 wt %, corresponding to conditions present in catalytic runs with sulfur. It was found that increasing sulfur concentrations lead to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. Non catalytic runs after experiments with added sulfur yielded higher conversion than a normal run with a new reactor. The objective of the work on oxygen-compounds is to investigate the utility of highly dispersed catalysts, from organometallic precursors, in the removal of heteroatom functionality from the products of a reaction performed under liquefaction conditions. The bimetallic catalytic precursor CoMo-T2 exhibited a sizable increase in the yield of non-O-containing products, compared to the run using a standard inorganic catalyst precursor (ATTM) or a non-catalytic reaction.

Physical Description

35 p.

Notes

OSTI as DE95016672

Source

  • Other Information: PBD: Feb 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95016672
  • Report No.: DOE/PC/92122--T9
  • Grant Number: AC22-92PC92122
  • DOI: 10.2172/95171 | External Link
  • Office of Scientific & Technical Information Report Number: 95171
  • Archival Resource Key: ark:/67531/metadc792217

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Feb. 1, 2016, 8:50 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Schmidt, E.; Kirby, S. & Song, Chunshan. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1994--December 1994, report, February 1995; United States. (digital.library.unt.edu/ark:/67531/metadc792217/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.