Dialkylenecarbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group

PDF Version Also Available for Download.

Description

In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing mobilization of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, volubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) ... continued below

Physical Description

6 p.

Creation Information

Assink, Roger A.; Baugher, Brigitta M.; Beach, James V.; Loy, Douglas A.; Shea, Kenneth J.; Small, James H. et al. July 20, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing mobilization of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, volubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) and bis(triethoxysilylisobutyl)-carbonate (2). Thermal treatment of the resulting non-porous xerogels and aerogels at 300-350 C resulted in quantitative decarboxylation of the dialkylenecarbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that can not be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

Physical Description

6 p.

Notes

OSTI as DE00009617

Medium: P; Size: 6 pages

Source

  • Material Research Society, San Francisco, CA (US), 04/05/1999--04/09/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-1895C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 9617
  • Archival Resource Key: ark:/67531/metadc792158

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 11, 2017, 12:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Assink, Roger A.; Baugher, Brigitta M.; Beach, James V.; Loy, Douglas A.; Shea, Kenneth J.; Small, James H. et al. Dialkylenecarbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group, article, July 20, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc792158/: accessed July 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.