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Abstract

Genetic Algorithms and their use in Geophysical Problems

by

Paul Bradley Parker

Doctor of Philosophy in Geophysics

University of California at Berkeley

Professor Lane R. Johnson, Chair

Genetic algorithms (GAs),

evolution are well suited to the

global optimization methods that mimic Darwinian

nonlinear inverse problems of geophysics. A standard

genetic algorithm selects the best or “fittest” models from a “population” and then applies

operators such as crossover and mutation in order to combine the most successful

characteristics of each model and produce fitter models. More sophisticated operators

have been developed, but the standard GA usually provides a robust and efficient search.

Although the choice of parameter settings such as crossover and mutation rate may

depend largely on the type of problem being solved, numerous results show that certain

parameter settings produce optimal performance for a wide range of problems and

difficulties. In particular, a low (about half of the inverse of the population size) mutation

rate is crucial for optimal results, but the choice of crossover method and rate do not seem

to affect performance appreciably. Optimal efficiency is usualIy achieved with smaller (



e 50) populations.

methods due to its

2

Lastly, tournament selection appears to be the best choice of selection

simplicity and its autoscaling properties. However, if a proportional

selection method is used such as roulette

and a high scaling factor (> 2.0) should be

wheel selection, fitness scaling is a necessity,

used for the best performance.

Three case studies are presented in which genetic algorithms are used to invert for

crustal parameters. The first is an inversion for basement depth at Yucca mountain using

gravity data, the second an inversion for velocity structure in the crust of the south island

of New Zealand using receiver functions derived from teleseismic events, and the third is

a similar receiver function inversion for crustal velocities beneath the Mendocino Triple

Juncticm region of Northern California. The inversions demonstrate that genetic

algorithms are effective in solving problems with reasonably large numbers of free

parameters and with computationally expensive objective function calculations.

More sophisticated techniques are presented for special problems. Niching and island

model algorithms are introduced as methods to find multiple, distinct solutions to the

nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are

investigated as a way to improve the efficiency of the standard genetic algorithm.
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Chapter 1
1

Introduction

Most geophysical inverse problems are nonlinear and tend to have multimodal

objective functions (Sen and Stoffa, 1992). Such problems cannot be reliably

optimized using either conventional linear inversion techniques or quasi-Newton

methods because of the propensity of these routines to go to the nearest (local)

optimum point which is not necessarily the global optimum. It is apparent that the

solution of such problems requires a

exponential increase in computer speed

more

in the

sophisticated approach. The

last few decades has made it

possible to take another approach to solving these problems, one based more on

exploration than on exploitation. A good example of this approach is simulated

annealing (Aarts and Horst, 1989; Press et al., 1992) in which the search is

directed by the local gradient of the objective function in a probabilistic sense, so

that there is always a possibility that the algorithm can “escape” from a local

optimum in order to find the global one.

A recent Time magazine cover story entitled “The Killers All Around”

(Lemonick, 1994) described how new antibiotic resistant bacteria are reversing

human victories in the war against infectious disease. By the late 1940’s

antibiotics were in wide public use and scientists had discovered so many new and

efficient types of drugs that many predicted an eventual end to all infectious

disease. What went wrong? Too many antibiotics prescribed inappropriately and

used incorrectly had eventually aJlowed the unintended engineering of a “super
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race” of bacteria that thwart our best conscious efforts at their destruction. Now

matny scientists are wondering if and when a new plague may arrive. It appears

that no matter how hard we try, and though dramatic battles are

evolution slowly but surely finds a way to get the upper hand.

In the spirit of “if you can’t beat ‘em, join ‘em”, new

sometimes won,

computer based

techniques for solving numerical optimization problems were developed in the

1960’s by mimicking natural selection. These global optimization techniques,

called Evolutionary Algorithms, are well suited for solving the difficult nonlinear

problems of geophysics, and have been successfully applied to many types of

problems (Sen and Stoffa, 1992; Stoffa and Sen, 1991; Shibutani et al., 1996).

Aside from their ability to locate the global optimum in the presence of many

local optima, another major advantage to evolutionary computation is that it is

easily “parallelized” to run on multiple processors at once. In one “generation” as

many as several hundred objective function evaluations (a comparison between

the actual data and synthetic data which was created using a model) must be

made, but each is made independently of the results of any other, so parallelizing

the algorithm can theoretically increase efficiency by several orders of magnitude

(assuming that many processors are available). This is an important advantage, as

multiprocessor computing is fast becoming the most inexpensive way to achieve

ma~imum computing power.

In the following, a heuristic introduction to genetic algorithms is presented in

Chapter 2 along with some of the essential theory and a derivation of the schema

theorem. Some alternative operators are introduced at the end of the chapter. In
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Chapter 3 a suite of numerical tests are performed in order to determine which

factors most contribute to genetic algorithm performance. In particular optimal

crossover and mutation rates and selection schemes are estimated using a set of

multimodal test functions and the results are tested with standard geophysical

inverse problems. Chapters 4-6 present case histories. In Chapter 4 a gravity data

set is inverted with a genetic algorithm to obtain the crustal basement structure at

Yucca Mountain, Nevada. In Chapters 5 and 6 deep crustal structure is

investigated for the South Island of New Zealand and the Mendocino region of

Northern California, respectively, by inverting receiver functions with a genetic

algorithm. Finally, Chapter 7 describes specialized techniques to address such

problems as loss of diversity and excessively slow convergence.
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C!hapter2

Genetic algorithm background and overview

2.1

A

Introduction

Genetic algorithm (GA) is a computational technique which uses principles

of Darwinian natural selection in order to solve a wide variety of problems.

Typically, a randomly generated initial population of binary strings (each string

representing a set of model parameters) competes through an objective function

evaluation for reproduction slots in the next generation. Then crossover and ‘

mutation operators are applied to the fittest strings (the strings representing the

mc,dels which produce the smallest misfit between synthetic and actual data) in

orcler to “mix” the characteristics of the best models and find an acceptable set of

model parameters. The early development of the genetic algorithm is credited to

John Holland (1975) and his students at the University of Michigan. The early

goals of Holland’s work were oriented more towards modeling naturzd systems

rather than problem solving, and his approach has brought a new understanding of

natural selection from an artificial standpoint.

Genetic Algorithms are part of a larger family of algorithms called

Evolutionary Algorithms, which also include Evolutionary Programming (Fogel,

1962; Back, 1996; De Groot-Hedlin and Vernon, 1999) and Evolutionary

Strategies. The major differences between the GA and its related techniques are:

1) GAs use a binary representation instead of real valued representation

2) GAs use crossover based recombination
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3) GAs do not use self adaptation

The binary representation allows the implementation of binary operators such as

simple crossover, bitwise mutation, and inversion. Because there is no self

adaptation, GA’s more closely follow

evolutionary algorithms follow something

Darwinian evolution while other

akin to Lamarck’s earlier evolution

theory. For a complete discussion of all three methods see Back ( 1996).

Genetic algorithms can be used to solve a wide range of problems, but they

excel in solving complex nonlinear problems. Three methods are commonly used

to solve such problems: Quasi Newton (calculus based) methods which exploit

gradient information, grid search methods which explore the solution space

exhaustively, and stochastic search methods. Like simulated annealing algorithms

(Aarts and Horst, 1989; Kirkpatrick, 1998), genetic algorithms fall under the

classification of stochastic or “randomized” search, although this does not imply a

directionless search. Genetic algorithms are highly exploitative, making use of a

vast amount of parallel information in order to direct their search more efficiently.

However, genetic algorithms are not “greedy” like calculus based methods, so

they are capable of finding the global optimum in the presence of local optima,

noise, and discontinuities. This is one of the major advantages of genetic search

methods for geophysical problems. There is always a tradeoff between efficiency

and exploration in solving nonlinear inverse problems, but genetic algorithms are

a compromise that is acceptable for a wide range of problems. Other methods

may prove more efficient for specific problems.
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In the next section a model of a standard genetic algorithm will be presented

with an explanation of the basic operators necessary for a robust and efficient

search.

2.:2 A standard genetic algorithm model

Sollving problems with a standard genetic algorithm involves six basic steps:

1.

2.

3.

4.

5.

6.

Coding the problem and constructing the objective function

Generating an initial population of random models

Evaluating the fitness of each model

Subjecting the models to a selection process

Crossover and mutation

Overwriting the old generation

A flow chart representation of these steps is shown in Figure 2.1. The relevant

terms will be defined in the following sections.

2.2.1 Coding the problem and constructing the objective function

These are the two steps that tend to be problem dependent. Coding the

problem refers to constraining the model parameters and encoding them into

binary strings (the use of non binary codings will be discussed in section 2.3.1).

This immediately requires that the model parameters be finite, but leaves few

other restrictions on their domain. The choice of the number of bits to be used in

the string is largely a matter of desired accuracy. Each 1 bits gives 21 possible



parameter values.

space the interval

7
As an example, assume it is necessary to search as a model

[0,10.0] for the optimal value of a certain parameter x. If the

desired accuracy of the solution is 99%, it would require at least 7 bits (27 = 128

possible values for x). The binary string 0000000 would then be mapped to 0.0,

1111111 to 1.0 and all the points between would be linearly interpolated.

Ironically, discrete model spaces present the biggest coding problems. Suppose it

is desired to code a parameter that does not have an even power of two

discretizations. If a power of two is used that gives more discretizations than the

model space has evaluating these models becomes a problem. Problems like these

are most efficiently solved

function.

Population sizing, while

by incorporating extra constraints into the objective

one of the most important factors in determining the

convergence of a GA (Harik et al., 1996), is also one of the least understood.

Naturally, a large population will produce better results per generation, but the

real goal is to minimize the number of objective function evaluations necessary to

obtain satisfactory results. Several equations have been derived that base the

population size on the signal and noise characteristics of the problem (DeJong,

1975) and the variance in fitness (Goldberg and Rudnick, 1993), but they give

population estimates that tend to be too high to be practical for most applications.

Because the optimal population size depends greatly on the type of problem, some

experimentation is necessary. According to Goldberg (1989), a good range to use

for most complex problems is 50-200.
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Construction of the objective function is typically the most subjective part of

solving any inverse problem, as it is the part that usually requires a significant

value judgment. Sometimes the implementation is quite straightforward, such as

minimizing a misfit or maximizing a profit function, but often there are other

constraints that must be considered which strongly determine the nature of the

solution that will

fitness function,

be obtained. In addition to the objective function, GA’s use a

which is related to the objective function but has several

properties that facilitate the performance of the algorithm.

2.2!.2 Generating an initial population of random models

This is usually done in the binary representation. For each model a string of

randomly generated 1‘s and O’s are mapped to a set of floating point parameters.

This can easily be implemented by calling a random number generator that gives a

real number from zero to one and using a case statement to assign

based on the value obtained. After this the strings can be decoded

point array in preparation for evaluation by the objective function.

a binary value

into a floating

2.2.3 Evaluating the fitness of each model

(Genetic algorithms use a fitness function which is related to the objective

function but has two key differences:

1. Whereas the objective function may produce positive or negative values, the

fitness function must be

with larger fitness values.

a positive function which rewards smaller misfits
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2. The fitness function must be scaled as the GA run progresses in order to

keep selection pressure as constant as possible,

The objective function represents the optimization goal of the problem, but the

fitness function is a mapping of the objective function that allows the algorithm to

achieve optimal results by adjusting the amount of competition in the model

population. Although the objective function may be either minimized or

maximized, it is convenient to define fitness as a quantity to be maximized for

genetic algorithms because most selection schemes are stochastic, selecting

members to fill the next generation in proportion to their fitness. For example, if

the object of the problem is to minimize an error function, a good choice for a

fitness function might be:

fi(x)=Em -&i (2.1)

where &i is the error between the observed and estimated data for each model and

E~X is the maximum error for the current generation. Note that this choice of

fitness function gives

f~o (x)= 0.0 (2.2)

If a selection scheme based on ranking is used, the objective function maybe used

as the fitness function. More will be said about the fitness function and scaling in

section 2.4.
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2.2.4 Subjecting the models to a selection process

There are many different ways to select the best models, but one of the most

effective (and certainly the easiest to implement on a computer) is tournament

selection. Members are taken randomly from the population in groups of two or

mare at a time, and the fittest of each of these subgroups is selected to enter the

next population. The larger the subgroup the greater the “selection pressure” or

competitiveness but also the likelihood of premature convergence, so subgroups

of 2 or 3 are usually the norm.

Although simple this method tends to give excellent results. The major

advantage over other techniques is that it is based on fitness rank, while most

techniques are based largely on fitness proportionality. These proportional fitness

methods are all scale dependent, which means that the fitness must be scaled or

“stretched” in order for the algorithm to proceed efficiently. Tournament

selection is scale invariant, so fitness scaling is not necessary. Fitness scaling and

several other selection methods will be described in greater detail in section 2.4.

2.2.5 Crossover and mutation

After the selection process it is desirable to combine the properties of the best

individuals in various ways in order to find better models. This is accomplished

through the crossover operator, which is analogous to chromosomal crossover in

biological systems. First, two strings are chosen for mating and a random locus (a

point between two bit positions) is found by generating a random integer between

1 and the length of the string minus 1. Second, “offspring 1“ gets the bit values of
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parent 1 for the bits from 1 to the crossover locus, and “offspring 2“ gets the bit

values of parent 2 for the bits from the crossover locus to the last bit. This is done

for every set of mates or “parents” to produce a new generation. Figure 2.2 shows

an example of this type of crossover (called “single point crossover”) between two

strings of 8 bits length. Several other types of crossover operators are commonly

used, such as two point crossover and uniform crossover. These will be discussed

in

to

a later section.

The action of “crossing over” strings can lead to a subtle pitfall: it is possible

eventually have the same bit value at one or more alleles (positions) for the

entire population, after which the bit value can never be changed through

crossover. Thus, certain model “characteristics” can be lost forever during a

program execution (these characteristics may or may not be desirable, but the idea

is that information is lost and the number of possible solutions that can be

obtained is limited). However, the mutation operator is a simple way to avoid this

situation. This operator loops through the binary array corresponding to the new

generation and changes the bit value if a randomly generated number is less than a

predetermined value (usually called the mutation probability, it is typically on the

order of l/(population size)). There are two ways to implement this: either the bit

is flipped automatically when the mutation operator is called, or the old value is

thrown out and a new bit is randomly generated. The only difference between

these two techniques is in the rate of mutation, the former being twice as frequent

as the latter. The mutation operator is also analogous

systems. According to traditional GA theory the primary

to mutation in natural

purpose of mutation is
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to insure that no information is permanently lost in a run. In order to keep the

algorithm working efficiently it is best used sparingly. Figure 2.3 illustrates the

mechanics of mutation on a string.

2.2.6 Overwriting the old generation

Inthis step the old (parent) array is overwritten with the new (child) array and

a generation is completed. The new population is usually checked to see if the

best model from the previous generation has been

copied into a random slot. This is called “elitism”.

reproduced and if not, it is

2.2.7 Genotype versus phenotype

It is important to differentiate between genotypic (binary based) and

phenotypic (floating point based) operators. As in biology, genotype refers to the

representations of the characteristics and phenotype to the physical characteristics

themselves. Crossover and mutation are examples of genotypic operators

selection (as described above) is an example of a phenotypic operator.

and

As

discussed in section 2.1, GA’s are the only type of evolutionary algorithm which

uses a binary coding of the models parameters. This makes GAs intrinsicallyy

more complicated thari the other methods, although operations such as crossover

and mutation tend to be much simpler to implement in the binary representation

than in the real number representation.
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2.2.8 How well does this algorithm perform?

It maybe asked why this type of algorithm would work more efficiently than a

simple Monte Carlo routine. Do the selection process, crossover and mutation

operators really improve the results of the search? A simple example illustrates

how single point crossover can lead to improvement in each successive

generation. Assume that the simple function

f(x)=x (2.3)

is to be minimized on the interval [0,1]. If the problem is coded with 4 bits, the

string {0,0,0,0} can be defined as 0.0 and {1,1,1,1} as 1.0 and the values of the

strings in between carI be interpolated, for example a string such as {O,1,1,0}

would decode as follows:

110
0“103+1” 102+1 ”10’+0”100=—= 0.0990099

1111

If the fitness is defined as 1– (fobj (x)) (where fObj(x) is the objective

(2.4)

function

value) this string would evaluate fairly high. In fact, any string with a “O” in the

1,000’s place would evaluate quite well, even {O,1,1, 1}. It is quite easy to

imagine that any reasonable selection scheme will heavily favor these strings over

the ones with “ 1‘’s in the 1,000’s place. Therefore, the vast majority of strings

that are selected and crossed over will have a “O” in the 1,000’s place, so this

characteristic will seldom be disturbed in recombination. However, because these

models evaluated better than the average, many of them are also likely to have

“0”s in the 100’s, 10’s, and 1‘s place, and these models are more likely to be

selected into succeeding generations.
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The best improvement in any stochastic search is usually seen at the

beginning, and as the search continues the improvement diminishes, giving a

convergence in the form of l/n, where n is the number of function evaluations.

For some types of problems the performance of a genetic algorithm may be

similar to that of a Monte Carlo approach early in the run, but the genetic

algorithm is quickly able to estimate the solution while the Monte Carlo algorithm

is simply a random walk, occasionally finding a better solution only by chance.

Figure 2.4 shows the results of the search for the minimal value of the function

f(x, >x,>x,,x,,x,,x, )= Jz+&+Jz+Jz+Jz+& (2.5)

on the interval {xl, X2,X3,x4,X5, xb }c [0.0,1.0]. Each string has 16 bits, so the

search space has (216)b =7.92 x1028 possible values of fi The Figure shows the

results for both the standard genetic algorithm as described above and a Monte

Carlo algorithm. After 147 generations the GA has reached the solution

(X,,x,,xs,xd,x,,xb ) = (0.0,0.0,0.0,0.0,0.0,0.0) (2.6)

while the Monte Carlo routine is still far from the solution with an objective

function value of 0.97. In fact, it would take the Monte Carlo search somewhere

on the order of 1026generations to find the exact solution! Although this simple

example is somewhat unfair to the Monte Carlo technique, it illustrates the point

that the GA is capable of exploiting information in order to arrive at a solution

much faster than a random search.
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It is intuitive to see that genetic algorithms work by combining “traits” or

“characteristics” to produce parameter sets that we have defined

But what are these “traits”? Goldberg (1989) defines schema

as being “fit”.

as a similarity

template which describes a subset of strings with similarities at certain string

positions. As an example, the strings {10101101} and {10001000} both have in

common the bits in positions 1,2,4,5 and 7, so they share the similarity template

(“schema”) of{ 10*O1*O*}, where the character “*” represents either a 1 or a O (a

wildcard).

Each string of length m has 2m schemata because each position in the string can

have its own binary value or a wildcard. An upper bound on the number of

schemata in a given population can be found by counting the number of schemata

in one of

population

because of

population

the strings and multiplying that by the number of strings in the

(typically this is a gross overestimate of the actual number of schemata

loss of diversity, especially late in a genetic algorithm run). Consider a

of 100 strings of length 8 bits where a maximum of 100(28) = 25,600

schemata exist. Of course, the vast majority of schemata in a given problem are

of little or no use in finding an acceptable solution, so it is more useful to know

how many schemata a genetic algorithm can process and evaluate in each

generation.

Following Goldberg (1989), assume a group of n binary strings each of length

1. Looking only at the schemata which stay intact through recombination with a
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probability p, and therefore whose 10SS1 after recombination is pl e 1-p,

allows consideration only of schemata of length 1$c pl (1 – 1) + 1. The number of

schemata of length 1, or shorter on a string of length 1 is then 2 (~f-l).(/– 1, +1) .

Multiplying this by the population n will give an overestimate of the total number

of schemata because there are certainly duplicate schemata in the population

(especially the low order schemata). A better estimate is to assume n = 2~s’2, so

that one or less of schemata of order 1S/2is expected. Counting only the higher

ordler schemata gives a minimum number of schemata that are processed:

If the population size is then restricted to 2’s’2, the above equation becomes

(Z-ls+l)n, =cn,
n$ =

4
(2.8)

where C is a constant. This shows that the number of schemata processed by a

genetic algorithm is on the order of the population size cubed, or n3 . This result,

that a genetic algorithm can process an extremely large number of schemata

through a relatively small number of strings was first derived by Holland (1975),

who gave it the name implicit parallelism. Note that this derivation does not take

into account mutation, but if a low mutation rate is used the result will be the

same.

‘ In this sense 10SSmeans that the schemata is divided in the recombination operation, disrupting

the information it represented.
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Every parameter coding discussed to this point has been in binary. It maybe

advantageous to code in another cardinality for certain problems, but there is a

good reason binary codings are the standard in GA work. The binary alphabet

gives the largest number of schemata per bit of information (Goldberg, 1989).

This can be seen as follows: let 12be the length of the binary string and 1. be the

length of the alphabet of cardinality n. To have the same amount of information,

222 must be equal to nln. As n increases, 1. decreases rapidly. According to

traditional GA theory, processing large numbers of schemata is what makes a GA

powerful, so it is important that the maximum number of them are available for

the algorithm to process.

2.4 Other operators and techniques

2.4.1 Other selection schemes

The choice of a selection scheme has subtle implications that strongly affect

the performance of the algorithm; using a scheme that is too competitive can lead

to premature convergence while using one that is too forgiving is inefficient.

Selection schemes fall into two general categories: stochastic (based on

probability) and deterministic (based on rank). The major difference between the

two categories is that the stochastic methods introduce selection noise, which

although seemingly inefficient is crucial in some amount to avoid premature

convergence.
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It should be noted that although numerous sophisticated selection schemes

have been proposed, many times the best results can be achieved by using simple

tournament selection, as previously described. Although this method is based on

rank it introduces noise in the initial random choice of 2 or more tournament

competitors. Selection pressure in tournament selection can be increased by

increasing the number of competitors in the tournament and it can be decreased by

increasing the amount of noise in the selection process (see “stochastic

tournament selection” below).

2.4.1.1 Roulette Wheel Selection

In Roulette Wheel Selection each model is given a slice of a “roulette wheel”

that is proportional to its fitness. The roulette wheel is then spun as many times as

necessary to create a subpopulation with the genetic material necessary to

construct a statistically fitter new generation. To implement this scheme a random

number is generated between 0.0 and the sum of all the fitness values. A loop is

then used to determine which model’s fitness this number corresponds to

(“spinning the roulette wheel”), and this model is given a slot in the next

generation. While this method is simple and intuitively appealing, there is a

hidden pitfall based on scale. At the

variance in the population’s fitness is

m?y be overlooked due to the strength

beginning of a genetic algorithm run, the

large, and many potentially good models

of a few very fit models which may result

in a rapid loss of diversity and early convergence. Near the end of the run the

opposite occurs: Every model has nearly the same fitness with very little variance,
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so the algorithm is reduced to a less efficient random walk. To avoid these

difficulties some form of fitness scaling is necessary. Linear scaling (pivoting the

fitness values about the average) is an effective method. The scaled fitness value

is given by

f,= Af+B (2.9)

where~is the original fitness value, A the fitness slope and B is the y-intercept:

[1f

A= ‘c’ - 1“0)“ fmax‘fa.~

fmin- f..,

B= fm - fovg

(2.10)

(2.11)

The value of the scaling factor Cs depends on the problem but typically ranges

between 1.3 (1.0 is equivalent to no scaling) and 2.5.

2.4.1.2 Rank only selection

In this scheme the truncated ratio of a model’s fitness to the average fitness of

the entire population determines how many offspring (if any) the model will have

in the next generation. For example, if the ratio fi / f~V~= 2.9 for an individual,

the individual will produce 2 offspring in the next generation. After this is done

for all the models with fitness greater than 1.0 the remaining empty slots are filled

with the models having the highest fitness less than 1.0, and this can include the

mantissas for the models with fitness greater than 1.0 also. The selection pressure

is very high when this method is used, and although efficient its use is not
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recommended for complex problems where early convergence may find a local

optimum rather than a global one.

2.4.1.3 Stochastic tournament selection

Stochastic tournament selection is a variant on tournament selection in which

extra noise is added to

Instead of selecting the

the selection process in order to slow the convergence.

fittest of two or more individuals, a roulette wheel type

tournament is held between the subgroup. For example, if two individuals with

fitness of 4.2 and 8.4 are randomly chosen from the population, the latter has a 2/3

probability of being selected and the former probability of 1/3 (rather than

automatically selecting the latter) due to the ratio of the fitness values for each

individual.

Because

to increase

improvements tend to diminish late in a GA run, it is often desirable

the competitiveness at this stage. One way to do this is to use

stochastic tournament selection and scale the fitness appropriately as the run

progresses. Power function scaling is probably most appropriate for this selection

process, starting with an exponent of

generation so that towards the end of

effectively being used because small

exponent.

1.0 and increasing a small amount per

the run standard tournament selection is

advantages are magnified by the large
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2.4.1.4 Stochastic remainder selection

Stochastic remainder selection is widely used in the GA community.

major reason for its popularity is that it elegantly combines stochastic

deterministic selection in one method.

The

and

As with rank only selection, the truncated ratio of a model’s fitness to the

average fitness of the population automatically results in that number of offspring

in the next generation, but here the empty slots are filled by roulette wheel spins

using the mantissas of the fitness values. A quick and efilcient way to perform

this type of selection is called Stochastic Universal selection. A subroutine for

this is given in appendix A.

2.4.2 Other crossover operators

Although crossover is necessary for optimal performance of the algorithm, too

much of it may be disruptive, causing a loss of vahable information. For this

reason it is suggested that not all strings be crossed over, so that some of the

models in a generation are fully reproduced into the next. Typically a “crossover

probability” of 60-80% is used, meaning that for each pair of strings there is a 60-

80% chance that crossover will occur.

It is commonly believed that single point crossover is the best choice for a

crossover operator because it is the least disruptive in terms of schemata.

However, for many problems better results are obtained using more disruptive

operators. The most reasonable explanation for this is that there are possibly more

important factors than schema disruption in GA performance.
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2.4.2.1 Two point crossover

In two point crossover two points are found at random locations (“loci”) along

the binary string and the bits between the two points are exchanged between the

two mates (see Figure 2.5). Two point crossover is slightly more disruptive than

single point, but the mechanics are very similar otherwise.

2.4.2.2 Uniform crossover

In uniform crossover (Syswerda, 1989) a new string is generated one bit at a

time by randomly taking a bit from either of the parent strings (see Figure 2.6).

Uniform crossover at first sight seems to contradict standard GA theory. The.

probability of disruption for a schema of length 1 under uniform crossover is

1-(1/2) ~-1,while for 1 point crossover it is only 1/1-1. Uniform crossover has

also been shown to be more disruptive than 2 point crossover for schemata of

orcler 3 in every possible case (Spears and DeJong, 199 1).

However, uniform crossover appears to give better results than less disruptive

methods in many cases. The reason for this has to do with the tradeoff between

efficiency and exploration: disruption from crossover and mutation is clearly

undesirable, but it is the only way to create the information diversity necessary to

explore large regions of the model space. Spears and DeJong conjecture that

uniform crossover may help

pol?ulations and breakup the

overcome the limited information

tendency towards homogeneity.

capacity of small

For a total of nPdifferent bits between two strings single point crossover allows

2(KJP–1 ) possible combinations, while uniform recombination allows 2“’ – 2. It is
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easy to see that uniform crossover can produce a more heterogeneous

population. A subroutine for uniform crossover is given in appendix A.

2.4.3

At

Variable mutation rates

the beginning of a run mutation is usually not disruptive because the

information in the early generations is still mostly random, whereas near the end

of the run the information is significantly more ordered and randomly reversing a

bit is more likely to produce a weaker model than a stronger one. This line of

reasoning supports the idea of a variable mutation rate. Mi,ihlenbein (1992) found

that decreasing the mutation rate with each successive generation gave optimal

results. However, the results were only marginally better because the GA spends

the vast majority of its time finding the optimal values of the last few bits, and this

process is not expedited by varying the mutation rate.

Another possibility is to vary the mutation rate for each member of the

population within a single generation according to fitness. Naturally, the models

with lower fitness should be subjected to a higher mutation rate than those of

higher fitness. This scheme is used in Evolutionary Programming (Fogel, 1962;

Back, 1996; De Groot-Hedlin and Vernon, 1999) in the following manner: the

floating point vectors that represent each model are tested with the objective

function and are mutated by a Gaussian perturbation distribution with standard

deviation proportional to the square root of the model’s fitness. This can also be

implemented in a GA with the net result being faster convergence, although

possibly at the expense of a wider search of the model space.
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As mentioned previously, elitism is a way to insure that the best model or

mc~dels in each generation are reproduced into the next, and as a result that the

minimum objective function value of the best model in each succeeding

generation never increases from one generation to the next. Elitism of degree 2 or

mc~re(copying the best 2 models into the next generation) speeds up convergence

significantly, which is useful if computation time is limited but it can also cause

the run to converge prematurely. Figure 2.7 shows the convergence of receiver

function inversions (receiver functions will be explained in detail in chapter 5)

with and without elitism. The results are much better throughout the early part of

the run using elitism but only slightly better at the end.

Elitism is fairly simple to implement. The binary parameters for the best

model or models are saved during the fitness evaluations, and after crossover and

mutation, the population is checked to see if the best model from the previous

generation was replicated by looping through the entire child array. If not, the

model/models are put into a random slot in the binary child array.

2.41.5 Multiobjective optimization

Geophysical inverse problems often require the optimization of two or more

criteria at the same time (e.g., adding a regularization criterion for smoothness).

This type of problem, known as multiobjective optimization, is easy to implement

in a GA. The objective function generally takes the form



25

fobj = al fl ~azfz ●ayfy ~...~a. f. (2.12)

where j represents each function to be optimized and the constant parameters G

represent the weighting factors assigned to each function. For practical purposes,

it is best if

~l+~z+~3+...+~~=0.0 (2.13)

The choice for the values of CGdepend on the relative importance of the

corresponding functional factor and its average magnitude and are usually

determined by trial and error.

2.5 Conclusions

Genetic algorithms are derivative free global search methods based on

Darwinian natural selection. Due to their robust nature and efficiency they are

well suited for solving the complex nonlinear inverse problems of geophysics.

Inversion codes using GAs make use of information from many parallel objective

function evaluations and are therefore easily adapted to take advantage of parallel

computer architecture. GAs search a predefine model space without bias, hence

avoiding the problem of starting model dependence. Many sophisticated

techniques have been successfully adapted to GAs from biological systems in

order to solve specialized problems, although using the basic operators produces a

robust and efficient search in most cases,
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string 1 string 2 product

1 0 1

1 1 1

0 0 0 crossoverpoint

1 1 1

0 1 1

0 1 1

1 c1 o

0 0 0

Figure 2.2. Single point crossover. The product has the upper
three bits from string 1 and the lower four from string 2. The
crossover point is chosen randomly.
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Figure 2.3. The effect of a random mutation on a string. The bit
in position number 8 (from the top) is flipped from a ‘O’ to a ‘ 1‘.
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f(X1jX2jX3$X4,X5, X6)=&+&+&+&+&+& On [0.0, 1.0] using
both a genetic algorithm and a monte carlo routine.
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0 0 0

Figure 2.5. Two point crossover. The product inherits bits 1,2,6,7
and 8 from string 1 and bits 3,4 and 5 from string 2.
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product
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Figure 2.6. Uniform Crossover. Each bit in the product has an
equal chance of being inherited from string 1 or string 2. Here the
product inherited bits 1,2,4,7 and 8 from string 1 and bits 3,5 and 6
from string 2.
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Figure 2.7. Convergence of receiver function inversion problem

with and without elitism. Using elitism gives the characteristic
monotonic convergence.
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Numerical tests of standard genetic algorithm operators

3.1 Introduction

The Genetic Algorithm (GA) (Holland, 1975; Goldberg, 1989) has proven to

be an effective global optimization technique for a wide variety of problems.

GA’s occupy a middle ground between traditional quasi-Newton (calculus based)

methods and global enumerative/random schemes. Although they are not as

efficient as calculus based methods, they are capable of finding global optima in

multimodal, discontinuous, or noisy objective functions. Because they do not

directly use gradient information, GA’s do not suffer from the problems inherent

in calculating numerical derivatives. Along with simulated annealing (Aarts and

Horst, 1989; Kirkpatrick, 1998), GA’s are categorized as a random search method,

although this does not imply that they are inefficient. GA’s process and exploit

vast amounts of information in parallel to arrive at a global solution.

Significant debate exists as to what makes GA’s effective. Intuitively and in

traditional theory GA’s work by combining the traits of successful models to

produce an optimal model. Goldberg (1989) argues that GA’s work by processing

large numbers of schemata in parallel through the operation of crossover (a

schema is a similarity template which describes a subset of strings with

similarities at certain positions). The N3 argument (Fitzpatrick and Greffenstette,

1988) claims that a GA with population size N processes on the order of N3

schemata in one generation. This implies that GA’s are highly exploitative and
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non-random. In such a scheme the crossover operator is performing the major

part of the work and the mutation operator is used only sparingly to insure that no

information is permanently lost in the crossover process. In fact Holland (1975)

described mutation as a “background operator” that should serve only this

purpose. All of this would suggest that a high crossover rate should be used in

conjunction with a low mutation rate. However, recent research has suggested

that mutation may be a more important factor in the performance of a GA than

crclssover. Miihlenbein (1992) demonstrates that for some simple problems an

algorithm that uses mutation but no crossover performs quite well, and the field of

evolutionary programming (Fogel, 1962) is based entirely on mutation without

crossover.

The two major questions that will be ‘investigated in this chapter are:

1) Which operators are the most important for genetic algorithm performance?

2) What are the optimal search parameters for these operators?

The approach is based on empirical trials using a complicated multimodal

objective function.

3.:2

A

Testing Methodology

suite of tests are performed using the multimodal test function as shown in

Figure 3.1. The model space for each parameter is [-5.0, 5.0] and 16 bit strings

are used (except for test number 2, in which string length is varied) giving a

precision of four decimal places per parameter. The tests are chosen to find

reli~tionships between selection pressure, optimal crossover and mutation rates and
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population size, string length, and problem difficulty. In all of the tests,

performance is defined as

Obj(bo) – Obj(bc )
perjlormance =

obj(bo )

where b. is the best fitting model of the first generation,

model of the current generation, and obj( ) is the objective

(3.1)

bc is the best fitting

function. Defined in

this manner an exact solution (in which the objective function is 0.0) is assigned a

performance of 1.0 and no improvement over the initial population gets a 0.0. For

reliability, each performance realization is averaged over 10 runs, each run with a

different random number seed. Each run consists of 100 generations with a

population size of 100 (except runs for test number 3, in which population size

varies).

The tests consist ofl

1) Performance vs. mutation rate and problem difficulty

2) Performance vs. mutation rate and string length

3) Performance vs. mutation rate and population size

4) Performance vs. crossover rate and problem difficulty

5) Performance vs. selection pressure and problem difficulty

6) “Performance comparison of several selection routines

3.2.1 Problem Difficulty

In several of the tests the parameters of GA operators are varied along with

problem difficulty in order to see if a relationship can be derived. The term
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problem diflculty is defined by Goldberg (1993) as a set of quasi-separable

factors:

. Isolation

● Misleadingness

● Noise

. Multimodality

. Crosstalk

Isolation

in which

and misleadingness combine to produce what Goldberg calls deception,

the dominant gradient leads to a suboptimal point. Test problems using

deception have been utilized in many recent papers, however, multimodality is

used here as the primary factor of difficulty because it can be increased

exponentially by adding to the dimensionality of the problem and therefore

difficulty can be uniformly varied over a wide range.

3.:3 Test Results

3.3.1 Test 1

The sensitivity of convergence to changes in the mutation rate is explored by

estimating the global minimum of the multimodal test function shown in Figure

3.1. The problem difficulty is increased by expanding the number of dimensions

from 10 to 30. Thus the search space is increased from 21s0 to 24g0(104* to 10IU )

points. Tournament selection and single point crossover with a crossover



probability of 0.7 is used. An exact solution for the 10 parameter problem

93 generations using the above parameters and a mutation rate of 0.006.
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takes

The performance is measured while mutation rate is varied from 0.0 to 0.1 “in

increments of 0.001 and the problem difficulty is varied from 10 to 30

dimensions. Single point crossover with a crossover rate of 0.7 and tournament

selection are used in this experiment and kept constant throughout the entire run.

The results are displayed in Figures 3.2-3.5, revealing a surprising dependence of

performance on mutation rate for rates below 0.1 (beyond this point the

performance becomes asymptotic at just above 0.2 and the algorithm performs as

a random search) and extreme sensitivity in the range of 0.0-0.04. This sensitivity

is seen most clearly in Figure 3.4, in which the results of the previous figures are

averaged. It is apparent from this curve that the optimal mutation rate does not

vary significantly over the range of 10-30 dimensions. The peak performance

corresponds to a mutation rate of 0.004, which is about half of the inverse of the

population size (test 3 compares performance to mutation rate and population

size). Figure 3.5 shows the mutation rate which produced peak performance for

each number of dimensions. The slope of -0.0000377 is statistically insignificant,

and it is clear from this figure that the optimal mutation rate is constant for this

range of problem difficulty.

3.3.2 Test 2

In this test performance is measured while mutation rate is varied from 0.0 to

0.1 in increments of 0.001 and the string length (in the binary representation) is
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varied from 10 to 30 bits. As in test 1, single point crossover with 0.7 crossover

rate and tournament selection are used in this experiment and kept constant

throughout the entire run. The test function to be minimized is that of Figure 3.1

using 20 dimensions. The results are seen in Figures 3.6-3.7. Again, the extreme

dependence of performance on mutation is seen as in test 1, but there is apparently

no relationship between optimal mutation rate and string length. This does not

preclude a relationship for string lengths of less than 10, but below that number

the solution accuracy is less than two decimal places,

becomes unacceptably small for this type of analysis.

and the model space

3.:3.3 Test 3

The performance is tested while the mutation rate is varied from 0.01 to 0.1 in

increments of 0.001 and population varies from 10 to 200. The number of

generations is changed accordingly so that each

objective function evaluations. The test function

run has the same number of

is that of Figure 3.1 using 10

dimensions. Single point crossover with 0.7 crossover rate and tournament

selection are also used in this case and kept constant throughout the entire run.

The plots in Figures 3.8-3.9 show that this particular problem is most

ef~iciently solved with a small population and a high number

interesting to note that performance rises very steeply as the

of generations. It is

population becomes

less than 50 (this is most easily seen in Figure 3.9), while the performance for

populations smaller than 20 is acceptably high for all mutation rates less than 0.1.

This is in stark contrast to the previous results in which performance was
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unacceptably low below about 0.05. This suggests that higher mutation rates

are beneficial for smaller populations which tend to have limited information

content.

Note that the mutation rate is not examined below 0.01 in this experiment,

which is why there is no rapid fall off in performance at that end as seen in the

previous figures.

3.3.4 Test 4

Here performance is measured while the crossover rate is varied from O to

100% in increments of 1% and the problem difficulty is varied from 10 to 30

dimensions. The crossover operator is single point, the mutation rate is 0.01 and

the selection operator is tournament selection. The results shown in Figures 3.10-

3.11 are surprising: a moderate increase in performance (about 25%) is apparent if

crossover is used, but the performance is virtually constant for all crossover rates

above 1%. Figure 3.12 shows the rate of convergence for a much more complex

problem, an inversion of gravity data to obtain crustal parameters. In this case

400 parameters are being optimized using a computationally intensive objective

function. The dotted line is the convergence for the case of no crossover and

0.5% mutation rate, the solid line for 70% crossover and 0.5% mutation rate, and

the dashed line is the case for 70910crossover and 10’ZOmutation rate. For the two

lower curves the misfit of the final solution is decreased by about 25% using

crossover, which is consistent with the above results. However, the algorithm

without crossover performs vastly better than the one with a high mutation rate.
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This demonstrates that performance is much more sensitive to the choice of

mutation rate than it is to the choice of crossover rate.

Thus far single point crossover has been the only crossover operator used. The

newer method of uniform crossover (Syswerda, 1989) has been found to be more

efficient for many types of problems. Although it is far more disruptive than

single point crossover it is believed that uniform crossover may help to overcome

the information deficiencies associated with relatively small populations (Whitley,

19!36). In Figure 3.13 the performance of uniform crossover is subtracted from

that of single point crossover for crossover rates from O to 100Yo. For reliability,

each point represents the averaged results of 10 runs. While there is little

difference in the results, the gentle but consistent slope indicates that a lower

crclssover rate may be more effective when using uniform crossover and a higher

rate more effective when using single point crossover. This is consistent with the

notion that greater disruption may be necessary to overcome information

de~lciencies.

3.3.5 Test 5

This test demonstrates the effectiveness of fitness scaling when using roulette

wheel selection. Performance is measured as the linear scaling factor is increased

from

from

.0 (no scaling) to 4.0 in increments of 0.25 and the difficulty is increased

O to 30 dimensions. Single point crossover is used with a 70% crossover

rate and a mutation rate of 0.01. In contrast to what is suggested by Goldberg

(1989), Figures 3.14-3.15 imply that the best results are obtained when the scaling
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factor is greater than 2.0, although performance appears to be fairly constant for

values above 2.0. Something else that should be noted here is that using roulette

wheel selection with no fitness scaling at all gives mediocre results at best, and for

greater problem difficulty gives results only slightly better (-25%) than a random

search.

3.3.6 Test 6

The last test compares the

stochastic remainder selection to

performance of roulette wheel selection and

tournament selection. The crossover operator is

again single point with 70% crossover probability while the mutation rate is 0.01.

10 runs using roulette wheel selection and stochastic remainder selection are

performed for 100 different scaling factor increments between 1.0 and 4.0. Figure

3.16 shows

20, and 30

parallel for

the performance for the multimodal test function of Figure 3.1 in 10,

dimensions. Tournament selection without scaling is performed in

comparison with performances averaged over 10 runs. From these

plots it appears that tournament selection is vastly superior to the other two

methods for all choices of scaling factors in both average performance and

consistency. Stochastic remainder selection tends to outperform roulette wheel

selection on average, but there is also considerably more variance in performance.

The results are similar for each number of dimensions.

Table 3.1 gives the statistics for the plots in Figure

presents the statistics for scaling factors in the range of

noted from the results of test 5, if either roulette wheel

3.16, while table 3.2

2.0-4.0 only. As was

selection or stochastic
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remainder selection are used, they should be used in conjunction with a scaling

factor of 2.0 or larger.

mean x—
roulette
wheel 0.8421

7
selection—
stochastic
remainder 0.8663
selection

tol~ament

selection 0.9804

xsions

stdev a

0.1163

0.1212

0.0023

20 dim

mean ;

0.6158

0.6236

0.7542

nsions

stdev o

0.0864

0.0959

0.0127

30 dim

mean ;

0.5060

0.5185

0.6240

nsions

stdev o

0.0842

0.0832

0.0086

Table 3.1. Mean performance and standard deviations of trial results for three
different selection routines using a scaling factor range of 1.0-4.0.

I 10 dimensions I 20 dimensions I 30 dimensions

mean x stdev o mean x

rroulette
wheel 0.8951 0.0162 0.6565

I
selection

stochastic
remainder 0.9196 0.0333 0.6665
selection

tournament
selection 0.9806 0.0021 0.7541

stdev o mean ; stdev a

0.0110 0.5503 0.0120

0.0346 0.5603 0.0285

Talble 3.2. Mean performance and standard deviations of trial results for three
different selection routines using a scaling factor range of 2.0-4.0.
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3.4 Conclusions

DeJong’s (1975) empirical studies using 5 different test problems suggested

that for optimal GA performance the mutation rate should be in inverse proportion

to the population size. Using both empirical and theoretical arguments, Shaffer et

al. (1989) and Hesser and Miinner (1991) confirmed this result. However,

Miihlenbein (1992) shows that this is not true in all cases. The tests performed

here (Figures 3.8-3.9) show a moderate but significant inverse relationship

between optimal mutation rate and problem size, also suggesting that a slightly

larger mutation rate may be able to compensate for the information deficiencies

associated with a small initial population.

Although the choice of genetic algorithm operators and parameters is to some

extent problem dependent, the results from these trials show that a particular

choice of operators and parameter settings consistently produces optimal results

for a reasonably broad range of problem difficulties. In particular a low mutation

rate (about half of the inverse of the population size) is crucial for optimal results,

but the choice of crossover method and rate seem to be much less important. If

computation time is an important factor, optimal efficiency may be achieved with

smaller populations ( < 50).

Finally, tournament selection appears to be the best choice of selection

methods due to its simplicity and its autoscaling properties, but if a proportional

selection method is used such as roulette wheel selection, fitness scaling is

essential to achieve acceptable performance and the scaling factor should be high

for optimal performance (> 2.0).
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It must be noted that in the present work modality is the only factor of

difficulty that is varied, and more work should be done to determine how this

choice of operators and parameters varies if deception is also varied.
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Figure 3.1. Ackley’s multimodal function used in the numerical
experiments (recreated from Back, 1996)
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Figure 3.2. Contour plot of performance vs. mutation rate and
problem difficulty.
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Figure 3.3. Surface plots (rotated at different angles) of
performance vs. mutation rate and problem difficulty.



48

1.0

0.8

0.6

0.4

0.2 I
1 I I I I I 1 I 1 I

0.00 0.02 0.04 0.06 0.08 0.10
mutationrate

Figure 3.4. Averaged results from figures 2-3 showing peak
performance at P~uht.= 0.004.
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Figure 3.7. Surface plots of performance vs. mutation rate and
number of bits (string length).
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Figure 3.9. Surface plots of performance vs. mutation rate and
population size.
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Figure 3.11. Surface plots of performance vs. crossover rate and
problem difficulty.
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Chapter 4

An example problem from gravfmetry: inversion for

crustal basement

4.1 Introduction

depth

The difficulties involved with the inversion of gravity data are typical of many

geophysical problems: large data set of surface measurements, a computationally

costly objective function evaluation, many parameters to be solved for, and

nonuniqueness due to an inherent ambiguity between depth and the magnitudes of

physicaI measurements. In the case of gravity the nonuniqueness derives from a

depth/density tradeoff, but it can be minimized or even removed by constraining

density as a function of depth (using borehole data or geologic information) at one

or more points within the region of study. In this chapter a genetic algorithm will

be used to estimate the crustal basement depth below Yucca Mountain in Nevada

assuming that the density profile is known.

In many inverse problems, the quality of the solution is limited by the available

computation time. The two independent factors ptimarily responsible for the

potential time required are the number of parameters to be estimated in the

problem and the evaluation of the objective function. In order to solve an inverse

problem with any degree of accuracy and efficiency, the choice of solution

method should take these factors into account. The following problem involves

the optimization of 400 parameters and requires approximately 1.2 seconds to

evaluate the objective function on a 366 MHz Sun Enterprise 4000 computer so
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that 150 generations of 150 models take approximately 7.4 hours. Calculating

the inverse of a (non sparse) 400X 400 mat@x is computationally expensive, as is

any method in which computation time increases with the square of the number of

parameters. Although GA’s are not the most efficient optimization method, the

com~putation time required to obtain an acceptable solution is not dependent on

the square of the number of parameters, so it is a reasonable method to use for this

problem. A greater problem is the objective function evaluation time as GA’s use

an extremely large number of objective function evaluations. An objective

function evaluation that requires 1 second is significant if the problem needs to be

solved in about a day. An objective function evaluation time greater than a few

seccmds would not allow a population size worthy of the complexity of this type

of problem and may not be suitable for a GA, although as computers become

faster methods that require a high number of objective function evaluations

become more feasible.

4.2 Problem background

lRaw gravity data can be reduced to derive Bouguer gravity anomalies which

can be inverted to estimate crustal parameters. The acceleration of gravity in the z

direction (the direction along which gravity is measured) in rectangular

coordinates is given by

(4.1)
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where U is the gravitational potential and y is the gravitational constant

(Telford, et al., 1976). There is inherent nonpniqueness involved in inverting this

equation due to a depth/density tradeoff which can be seen in the integrand of the

above equation, but if one of these parameters is constrained by some other means

(e.g. density profiles from borehole or well logging data) this nonuniqueness can

be minimized or effectively removed if the data coverage is good enough.

4.3 Gravity data and data reduction

Figure 4.1 shows 127 station points along 17 linear gravity profiles collected in

1994 in the vicinity of Yucca Mountain, Nevada, from 36.8° to 36.9° North

latitude and from 116.5° to 116.4° West longitude. This region, approximately

11 by 9 km in size, is directly above the site of the proposed underground nuclear

waste repository. The gravity measurements were made with LaCoste-Romberg

model G gravimeters. A drift correction factor was calculated after measuring

gravity with both meters at roughly !4 of all the stations. These crossing points

were also used to assure that the accuracy of the measurements was within 0.1

rngal throughout the survey.

To estimate a solution for the basement depth from these data, it is necessary to

know the density as a function of depth for the region. This information can be

obtained by studying surface rocks and drill cores, and by taking measurements in

boreholes. Using the aforementioned techniques Snyder and Carr (1984) found

that the density varies with depth within the tuff section below Yucca Mountain

according to the relation
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P(Z)= 1.95 + 0.26z (g / Cln3) (4.2)

where z is the depth and p(z) is the density. The density of the corresponding

paleozoic basement rocks was found to be 2.66 g/cm3. The basement density is

assumed to be constant with depth for the purposes of the inversion.

The Bouger gravity anomalies were calculated using the following formula

(modified from Telford, et al., 1976):

6g~ = gO~,+dgL +dgFA ‘dgB +dgT +dgt ‘dgd (4.3)

where gO~,is the gravity measured at the station, dg~ the latitude correction, dg~A

the free air correction, dgB the Bouger correction, dgT the terrain correction, dg,

the tidal correction, and dg~ the drift correction.

4.4 Problem parameterization and Inversion method

h the interest of simplifying the inversion, long wavelength Bouger anomalies

are interpreted as changes in depth to the paleozoic basement. The region shown

in Figure 4.1 was discretized by dividing it into 400 rectangular cells in which

density varied with depth according to Equation (4.2) and the depth to basement

was a free parameter to be estimated. Each of the 400 basement depth parameters

was represented in the GA with a binary string of 8 bits in length, giving a

num~erical precision of 1 part in 256. The search space was created using

simplified initial model proposed by Johnson et al. (1995) which fit the data

reasonably well. The minimum value of each parameter was

Ztini = z,, - 0.3Z0,-1.5 h] (4.4)



and its maximum value was

Zmi= z~i+o.3zoi+ U [~1

65

(4.5)

where Zoi is the parameter value from Johnson’s model.

The forward calculations for the inversion were made following the method of

Johnson and Litehiser (1972) for calculating the gravitational

dimensional bodies of arbitrary shape within a spherical earth.

function is given by the summed squares of the gravity residuals:

4.5 Inversion results

The GA inversions consisted

fobj = ~(d”bs-~~c)2i
i=l

field of three

The objective

(4.6)

of 150 generations with initial populations of 150

models. Figure 4.2 shows the convergence for 3 different GA runs and one Monte

Carlo run. The three GA runs represent three different selection methods: roulette

wheel selection, stochastic universal selection and tournament selection.

Tournament selection produced the best fit, with an average misfit for each station

of 0.055 regal, which is about half of the measurement precision, and about one-

third of the misfit of the initial model by Johnson. No smoothness constraint or

regularization of any type were applied to the objective function, and the inversion

appears somewhat unstable in regions with sparse data coverage. However, the

same major features can be identified in all of the inversion results.

Figure 4.3 is a contour plot of the estimate for the basement depth for the run

using tournament selection. A surface plot of the basement topography for the



same model is shown in Figure 4.4. The most prominent feature is

basement depth from west to east just south of 36.85 degrees latitude,

be indicative of a tilted, uplifted block beneath Yucca Mountain.
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a rise of

which may

4.6 Conclusions

The inversion for depth of a density contrast, although nonunique, can be

constrained with the added information of borehole or other geologic information

to produce a quasi-unique solution (it can only be truly unique with infinite

surface data density). Despite the relatively large number of model parameters

and the computational cost of the objective function evaluation, the inverse

problem can be readily solved using a GA. As found in chapter 3, tournament

selection combined with a very low mutation rate produces the most efficient

search.
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Chapter 5

An example from seismology: New Zealand receiver

function inversion

5.1 Introduction

Receiver functions (Langston, 1979) provide a way to model the velocity

structure below a seismographic station using a single three component recording.

The inversion of receiver functions involves estimating velocity, density, and

quality factor (“Q”) for various depths, Typically, density and Q are related to the

velocity using empirical relationships in order to reduce the degrees of freedom,

but the problem is inherently nonunique due to the depthhelocity tradeoff. The

objective function evaluation consists of calculating a synthetic seismogram for a

layered structure, deconvolving the vertical component from the radial to generate

the synthetic receiver function, and calculating the sum of the squares of the

residuals between the empirical and synthetic receiver functions. The problem is

moderate in terms of the objective function calculation (about 0.5 seconds on a

366 MHz Sun Enterprise 4000) and in the number of free parameters (usually

about 10-40, depending on desired resolution). Genetic algorithms are an efficient

and reliable method for solving this type of nonlinear problem. In this chapter a

genetic algorithm is used to invert for the crustal structure of the South Island of

New Zealand by fitting empirical receiver functions.
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5.2 New Zealand Tectonic and Geologic Background

Oblique convergence of the Pacific and Australian plates manifests itself as

approximately 39 mm of strike slip displacement and 12 mm of convergence

annually (Walcott, 1997). Since the Oligocene about 450 km of strike slip

motion, 90 km of Pacific plate subduction and 25 km of uplift caused by the

deformation of the overlying Australian plate have transpired. The major

transform feature of the South Island, the Alpine Fault, roughly connects the

region of the Pacific plate subduction at the Hikurangi trough in the Northeast

with the region of continental collision at the Puysegur trench at the Southwest

part of the Island. The Chatham rise to the east of the North-central part of the

South Island is a region where the Pacific plate becomes near continental in

thickness, thickening to about 27 km compared to an average of about 15 km

(Reyners and Cowan, 1993). There is some question whether this thickened crust

is :subducted completely or if a new plate contact is formed in the subducted layer.

Recent work by Eberhart-Philips and Reyners using earthquake hypocenters show

the subducting plate dipping to the Northwest in this region, roughly parallel to

the strike of the Alpine Fault. The slab dips almost vertically at about 100 km

depth, probably due to a change in the plate density between the shallow and

deeper sections of the plate (Eberhart-Philips and Reyners, 1997).

An interesting result of the tectonic regime can be seen at the surface as the

Alpine Fault is approached from the East. Outcrops of increasingly higher grade

of metamorphosed upturned schists can be seen which were accreted from as deep
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as 25 km, exposing a slice of almost an entire crustal section perpendicular to

the Fault.

5.3 SAPSE Project Background

The Southern Alps Passive Seismic Experiment (SAPSE) is a cooperative

project that was founded during a 1993 NSF science workshop in New Zealand.

The original objective of the workshop was to discuss plans for two wide angle

reflectionhefraction profiles across the South Island. This project, SIGHT (South

Island Geophysical Transect), focused on the middle of the South Island, where

the plate boundary manifests itself as a strike slip fault with mountainous uplift

along its southeast side. It became obvious at the workshop that earthquake data

would be an important complement to the active source SIGHT experiment.

The goal of the project is to gain a broad view of the seismicity and the 3-D

inhomogeneity in the lithosphere of the South Island in order to understand how

deformation from the obliquely convergent plate boundary is accommodated

along the Alpine Fault in the Southern Alps. This can be achieved through the

completion of six specific objectives:

1.) Microearthquake hypocenter location and source characteristics with

acceptable precision to characterize the state of stress and seisrnicity along

the Alpine Fault.



74

2.)

3.)

4.)

5.)

6.)

Determination of three dimensional P and S wave velocity structure in

the crust through travel time residual tomography and receiver function

inversion.

Determination of crustal thickness and the degree of isostatic

compensation in the Alpine range through receiver function inversion.

Analysis of the variation of crustal shear wave velocities through surface

wave tomography.

Exploration of the anisotropy in the lower crust and upper mantle through

a combination of surface wave tomography and a study of variations in

teleseismic S wave polarization.

Investigation of regional scale lithospheric anomalies in areas such as the

Chatham rise, Lord Howe rise, and Macquarie ridge regions.

The second and third objectives are addressed in this paper. The approach used to

mc~del the crust three dimensionally involves 1-D receiver function inversions

under each station in order to estimate the 3-D structure.

The SAPSE array consisted of twenty-six broadband, fourteen 1 Hz stations

and seventeen permanent New Zealand 1 Hz stations (see Table 5.1). All of the

stations were in operation from November 1995 to April 1996. The spatial

distribution of the stations was slightly weighted toward the central Alpine Fault

in order to better understand the 2-D transect results as they relate to the broad

scade 3-D structure of the crust and upper mantle. The sensors at each broadband

site were coupled to solid rock with cement. The Reftek recorders, batteries,

power board, and removable hard disk for each station were contained in steel
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cages to protect them from New Zealand’s alpine parrot, the Kea. Figure 5.1

shows the South Island and the source lines for the onshore/offshore experiment,

along with the broadband stations that were used in this paper for receiver

function analysis.

Stn. code Stn. name Latitude Longitude Elevation
(m)

ABUA Abut Head -43.1467 170.4625 97
ARPA Arthur’s Pass -42.9749 171.5787 710
BERA Berwen -44.5294 169.8838 505

BLBA Blackbirch -41.7139 173.8774 253

CHTA Chatharn Island -43.7712 176.5808 178

CLAA Clarks Junction -45.7902 170.0437 423

CLIA Clinton -46.2916 169.3135 352

DENA Denniston -41.7449 171.8053 669
DOTA Doubtful Sound -45.5299 167.2723 255

EWZA Erewhon -43.5100 170.8526 625
GLAA Gillespie Bch. -43.4219 169.8476 25

GLEA Glenorchy -44.8729 168.4081 460
HOKA Hokitika -42.7411 171.0915 240
JACA Jackson Head -43.9688 168.6094 50
KAHA Kahutara -42.4176 173.5415 72
LAMA Lake Moeraki -43.7122 169.4642 93
LATA Lake Taylor -42.7811 172.2690 640
LUDA Lauder -45.0335 169.6871 382
LUMA Lumsden -45.7288 168.4494 290
MAKA Makaroa -44.2504 169.2229 335
MAYA Mayfield -43.7454 171.3694 530
MTCA Mt. Cook -43.7342 170.0913 859
MTJA Mt. John -43.9856 170.4649 1042
QRZA Quartz Range -40.8253 172.5299 294
SHEA Sheffield -43.3914 171.8801 450
TIMA Timaru -44.3825 171.0789 243
TOPA Tophouse -41.7627 172.9053 754

Table 5.1. SAPSE broadband stations,



5.4 Receiver

Teleseismic P

Functions

wave coda contains information about the crustal structure

below the recording site in the form of P-S conversions at each interface below

the surface. The effects of the source can be effectively removed by using a

source equalization procedure as prescribed by Langston (1979), which consists of

deconvolving the vertical component from the radial.

The three components of response at a station due to a teleseismic P-wave are

Xv (t)= Z(t)@ S(t)@ E, (t) (5.1)

X, (t)= I(t)@ S(t)@ E~ (t) (5.2)

X,(t) = l(t)@ S(t)@ ET(t) (5.3)

wh~ere l(t) is the impulse response of the instrument, S(t) is the source function,

E(t) is the Earth’s response, V, R, and T represent the vertical, radial and

transverse components, respectively, and the symbol @ signifies convolution.

Langston (1979) shows that for the vertical component the Earth’s response is

approximately a delta function:

Ev (t)= fi(t) (5.4)

and therefore the vertical component of response is approximately equal to the

instrument response convolved with the source function, which are exactly the

factors that have to be removed in order to isolate the Earth’s response E(t). The

raclial and tangential receiver functions are defined as

f,(~) = x.(~)@ x;’ (~)

fT(O = x,(~) @ xi’ (~)

(5.5)

(5.6)
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or in the frequency domain,

(5.7)

x,(f)
f,(f) = x (f)

v
(5.8)

Because the procedure requires a deconvolution, there is a high degree of

sensitivity to small values of Xv(f). Typically a frequency band is selected

where Xv(f) does not faJl below a certain level, but the presence of noise can

still cause division by zero problems in the above quotient, adding much

extraneous information to the receiver function. Following Clayton and Wiggins

(1976) and Owens (1984), a water level (similar to a optimal filter) can be used in

the operation, so that the deconvolution is of the form

X,(f) x;(f)

Xv(f )X; (f )+02
(5.9)

here o is a constant (usually between 0.001 and 0.0001) multiplied by the

maximum spectral amplitude, and * refers to the complex conjugate. In addition,

a Gaussian filter can be applied in the frequency domain to smooth the receiver

function. In this case the deconvolution takes the form

xR(.f)x” *(f)
Xv(f)xv *(f) +cr2

FG(f )

where

()f2FG(f) =exp –~

(5.10)

(5.11)
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and a, the width of the Gaussian function, is usually between 1.0 and 5.0,

representing a 1 Hz and 5 Hz low pass, respectively. Figure 5.2 shows Gaussian

functions for a range of different a values.

Because of the removal of source effects and instrument response, receiver

functions offer direct insight into the structure below the instrument. In some

cases crustal thickness can be inferred to a reasonable degree of accuracy by

simply looking at the receiver function, and Moho dip can be estimated from a

series of functions from a group of stations. Figure 5.3 shows the receiver

function for a single layer over a half space with an impedance contrast at the

interface. In real media with many layers and attenuation the P-S phases are

overwhelmingly dominant, a quality which makes them aesthetically appealing

because each P-S phase corresponds to a conversion at an interface. The

relationship between t, and Z1 in the Figure is simply

4

(5.12)

where p is the ray parameter. Note that in this illustration the impedance contrast

is positive with depth (Vz > VI). If the contrast were negative, the amplitude peak

rel?resenting the P-S conversion (PS on the Figure) would be negative.

5.5 Inversion method

In the following synthetic seismograms are calculated with the reflectivity

method (Kennett, 1983) and processed in the same manner that the data are to



generate the synthetic receiver functions. A Poisson relationship

between VP and Vs (VP / V~ = 1/ &), and the density in the crust is

using the formula

p = 0.32VP + 0.77

(Berteussen, 1977, Ammon et al., 1990). A genetic

best fitting models.

5.5.1 Starting models

79

is assumed

approximated

(5.13)

algorithm is used to find the

One of the subjective problems in modeling receiver fimctions is finding a

starting model or, as is the case with genetic algorithms, to find a range of model

space in which to search. One common approach is to use a number of thin layers

of fixed thickness such that the actual medium can be reasonably approximated

(the velocities of the thin layers take on constant values for regions of constant

velocity, and will increase or decrease slightly where the actual layer thicknesses

don’t match the fixed layers). While this method provides very good fits to the

data, there are some disadvantages. Because of the time/depth nonuniqueness, the

models produced by this technique can be quite unstable (alternating higMow

velocity layers), especially when fitting noisy data. Ammon et al. (1990) suggests

a minimum roughness criteria which can be incorporated directly into the

objective function. Another problem in modeling with a large number of layers

lies in the computation time of the forward problem, although this is usually only
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a problem when using a “randomized” inversion method like a GA, in which

thlere is a vast number of function evaluations.

Another approach to the problem is to use the receiver function that is being fit

to, find an approximate starting model. This can be done with a bootstrapping

technique. An exact inversion of the receiver function is not possible because

its simultaneous nonlinear dependence on both time and amplitude (Shibutani

al., 1996). However, if some a priori velocity information is available it

of

et

is

possible to estimate a rough starting model. Because each positive peak on a
,.

receiver function corresponds to an increase in impedance (at least in the first few

seconds where multiples do not dominate), one can invert the travel times to

obtain a velocity model using the following formula relating depth to time on a

receiver function:

‘=[&&ll (5.14)

where z is the depth below the station, and At is the time beyond t =’ 0.0 on the

receiver function. Naturally, a model must be assumed to determine the layer

depths. An initial crustal and final mantle velocity estimated from the refraction

data are assumed and

inversion is inherently

velocity steps are interpolated in between. Because the

nonunique it is beneficial to make use of any a priori

information to exclude unrealistic models. The model space searched by the

algorithm consists of this starting model * 3070 (in both velocity and layer

depths).
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The starting model generated with this method is far from perfect, mainly

because it is derived from a receiver function that has already been filtered (due to

processing andalso the effects of the Earth) but itmustbe understood that it is

only a starting model space in

5.5.2 Nonuniqueness

The travel time difference

which to search.

direct arrival can be expressed as

between a P to S conversion from a depth z and a

“P->S=OF-F51
Taking the total differential of the above expression gives

) [)11
d(AtP_>~ = –$dV~ + $dv~ + ~–~ d.

s P s P

For a fixed time lag d(Atp_,~ ) = O, and if we assume a Poisson solid we get

dVs dVP
– l.732—

v~
—+0.732~=0

+ Vp z

(5.15)

(5.16)

(5.17)

This equation demonstrates the inherent time-depth nonuniqueness of the receiver

function. The solutions to this equation for a fixed travel time are spread out in a

plane. Even if a relationship between VS and VP is assumed there still exist an

infinite number of solutions that fall along a line. Unique solutions can only be

obtained if a relationship between Vs and Vp and either the velocity structure (for

either V. or VP) or the layer thicknesses are known. This information is seldom



available, but one can minimize the range of possible nonunique

incorporating some sort of a priori knowledge into an inversion.
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solutions by

5.6 Synthetic Tests

The inversion method is first tested with synthetic data, by attempting to invert

for the velocities of layers with fixed thickness for three cases:

1.

2.

3.

Noise free synthetic data (the performance under ideal conditions)

Synthetic data with 10 and 20~0 noise.

Synthetic data with 20% noise and an additional constraint in the objective

function that penalizes models with layers that decrease in velocity with

depth, i.e. the objective function is given by

(5.18)

where~O is the objective function without the additional constraint, ai the P

wave velocity for each layer, and n the number of layers.

tests is the sameThe model used to construct the synthetic seismograms in these

in all cases, a simple six layer case in which velocity increases gradually with

depth:

depth (km) velocity
(km/s)

0.0 4.0
10.0 4.5
20.0 5.5
30.0 6.0
40.0 6.5
50.0 7.5
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The model space searched by the algorithm consists of this initial velocity model

* 2090, The number of bits per parameter is 16, so the number of different

possible models is ’216’s= 7-9228X1028’which is unnecessarily high resolution for

this problem but does not affect the computation time of the genetic algorithm (in

this particular problem the bottleneck is the objective function evaluation, any

computation time used by the genetic algorithm is insignificant). White

uncorrelated noise is added in the time domain to the original traces with an rms

amplitude equal to 10 and 20% of the peak amplitude of the trace. Figure 5.4

shows the correlation coefficients between a noise free receiver function and

receiver functions with O-30~o noise added. The correlation is still above 70% for

the case of 3070 noise. All of the runs consist of 100 generations of 150 models.

The results, summarized in Table 5.2, show that the inversion is quite robust even

in the presence of noise. The results for case (3) are surprising: adding the

additional constraint produces a model misfit that is roughly 1/3 of the case with

no additional constraint. This implies that adding a priori information to the

inversion is crucial in the presence of strong noise. Figure 5.5 shows the fit for

this case. Note that many of the peaks in the synthetic “data” are direct results of

the added noise.

For a more realistic inversion, the layer thicknesses can also be left unknown

so that the algorithm must search a much larger model space and find both depth

and velocity. This is also a way to estimate the likelihood of obtaining nonunique

solutions. Figure 5.6 shows six different, independent fits of the receiver function
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generations. For these inversions the algorithm searched a space

from the original model by 20% in velocity and 20% in layer

thicknesses. Note that V, is still tied to VP,but there is no other a priori constraint

such as velocity increase with depth. The receiver function fits are fairly good, as

might be expected, but it is surprising that the model fits are also fairly closely

grouped (see Figure 5.6). In Figure 5.7 the data misfit for these runs is plotted

against the model misfit, showing a linear trend. This indicates that the

ncmunique solutions may be constrained to a small region of the model space.

Table 5.2. Minimum objective function and percent model misfit for O, 10 and
20% noise, and 20% noise with the constraint that velocity not decrease with
depth.

5.7 Data

The broadband stations consisted of matched three component instruments

which recorded data at 20 samples per second for the early part of the experiment

and 50 samples per second for the latter part. With some exceptions, the collected

data are found to have overwhelming long period noise, especially those collected

during the winter. A combination of low attenuation in the crust and a high

degree of microseismic noise were the major contributors to this effect (no station

O% noise 10% noise 20% noise 20% with
constraint

minimum objective 0.0018 1.2197 4.3663 4.3916
function
~~odel misfit (%) 0.1569 1.1243 8.1308 2.4314
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on the South Island was more than 200 kilometers from the ocean, most were

less than 100). The stations BERA, CLAA, EWZA, LAMA, LATA, QRZA, and

SHEA produced records with acceptable signal quality for this analysis and they

cover most of the interesting tectonic regions of the South Island (see Figure 5. 1).

date time latitude longitude dep~h mb location
(km)

96/01/07 13:14 :29.2 -6.963 155.872 33 5.5 Solomon
Islands

96/01/10 22:36 :02.6 -6.147 133.671 33 5.2
Islands

96/01/11 I 03:51 :35.1 ! -8.427 ! 158.708 I 96 I 6.6 ! Solomon
Islands

96/01/12 02:17 :34.1 -23.191 170.775 33 5.6 Loyalty
Islands

96/03/17 14:48 :56.3 -14.686 167.247 164 5.8 Vanuatu

I I Islands

Table 5.3. Locations and magnitudes for the 5 events used in the inversion.

The 5 events used to generate and stack receiver functions occurred in the

Melanesia region, all within a 40 degree azimuthal swath and a distance of 26-39

degrees (see Table 5.3). The events were also chosen based on signal to noise

ratio (these events occurred during the summer in New Zealand, when

rnicroseismic noise is low). Each trace is picked one second before the onset of

the P phase and contains a total of 20 seconds of record. The traces are tapered

with a cosine taper for the first 4% and the last 50% of the time series and are

padded with zeros to obtain 1024 points. The receiver functions for each station-

event are filtered in the frequency domain with a Gaussian filter of width a = 4.0,

while a water level with o = 0.001 is used to remove low amplitude, high
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station to improve
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The receiver functions are subsequently stacked at each

the signal to noise ratio. The final stacked receiver functions

am shown in Figure 5.8.

5,8 Inversion Results

The number of layers in each starting model was determined using the one step

inversion technique described in section 5.5.1 and varied from 7-15, depending on

the complexity of the empirical receiver function. Figure 5.9 shows the results of

an initial experiment to determine an optimal population size for the genetic

algorithm. The convergence in fitting the receiver function for station CLAA is

shown for 5 different runs, each utilizing 10,000 objective function evaluations

but different population sizes. Clearly, the run with a population of 100 gave the

best results and therefore all of the inversions were made with a population size of

100 and 150 generations.

The final models show an apparent correlation between relief and crustal

thickness with the thickest crust (40 km) found under the station EWZA

(Erewhon), which is in the heart of the Southern Alps. The stations in the

Eastern foothills of the Alps, such as BERA (Berwen) and SHEA (Sheffield) have

crustal thicknesses of 33 and 37 km, respectively. The receiver function fits and

the corresponding models for each station are seen in Figures 5.10-5.16. Note

that the units for amplitude of the receiver function are l/time. This is because the

physical units of time cancel out in the deconvolution, but a unit of frequency is

gained in the transformation back into the time domain.
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Figure 5.17 shows a preliminary model from Stern et al. (1997) which is

based on the onshore/offshore refraction data. The crust thickens significantly as

the Alpine Fault is approached, due to both the angle of the subducting slab itself

and the compressional uplift. Very strong reflections are observed at the interface

between the amphibolite and the old oceanic crust. In fact, these reflections tend

to be more prominent than those from the interface between the old oceanic crust

and the mantle, suggesting at least a comparable impedance contrast. This

hypothesis is also supported by the receiver function results, as the velocity

increase for the amphibolite/old oceanic crust tends to be larger than that for the

Moho interface at many of the stations such as BERA (Berwen) and LATA (Lake

Taylor).

Little is known about the crustal structure near the Alpine Fault Zone at the

Western edge of the island, but the receiver function for station LAMA (Lake

Moraki) suggests that there is significant scattering in this region. The Moho

depth could not be determined from the refraction study, and it is difficult to

derive from the receiver function due to scattering, but it is most likely more

shallow than other regions in the South Island, with a depth between 20 and 25

km. The most obvious impedance contrast on the model in Figure 5.13, at about

19 km depth, is attributed to the largest peak in the receiver function at about 5

seconds. Amplitude peaks that are likely due to

later in the other receiver functions, between

Moho conversions tend to arrive

6-7 seconds. Delayed phases

observed on the Mt. Cook refraction line suggest a low velocity zone in the region

of the Alpine Fault (Stern et al., 1997). It is possible that the large impedance
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contrast is caused by the interface between a low velocity layer and the old

oceanic crust in Figure 5.17, and that the Moho conversion is the amplitude peak

arriving at about 6.5 seconds, in which case the crust could be as thick as 28 km.

Several anomalies in the models appear to be artifacts of poorly fit data, for

example the first major peak after the direct P arrival on the receiver function for

the station LATA (Lake Taylor, Figure 5.14) is overestimated,

the velocity profile at about 3 km depth. Also, the aJgorithm

producing a step in

did not fit some of

the extreme amplitudes of some of the receiver functions, but many of these

features are clearly artifacts of the deconvolution process and their fit would

produce unrealistic models.

Figure 5.18 shows the crustal thickness for each station plotted as a function of

station elevation. A linear trend with a slope of about 4-6 is indicative of Airy

type

with

isostatic compensation (Fowler, 1990). In

elevation, but the slope is 35 and there is

this case the thickness increases

significant scatter. Referring to

Figure 5.17, it can be seen that as the Alpine Fault is approached from the east, the

crust thickens substantially due to the angle of the subducting Pacific plate. The

trend in Figure 5.18 is much more likely to be attributed to this effect than to any

isostatic compensation. In Figure 5.19, the crustal thickness is plotted as a

function of the perpendicular distance from the Fault (moving towards the East

only). The fit for this case is

much stronger correlation. If

slope for the least squares fit of these points, -0.66, is an estimate of the slope of

much better than that of Figure 5.18, indicating a

Airy type isostatic compensation is neglected, the
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the Moho as the Alpine Fault is approached and it agrees reasonably well with

the interpretations of Stern et al. (1997).

5.9 Conclusions

Receiver functions afford direct insight on shear wave velocity discontinuities

beneath a seismic station using a single three component station event. By

deconvolving the vertical component seismogram from the radial, source and

receiver effects are removed leaving only information from P-S conversions.

Using a standard genetic algorithm, receiver functions can be inverted to estimate

crustal structure below a station using only a single station event. The solutions

are nonunique due to a depthhelocity tradeoff which is similar in nature to what is

seen in the gravity problem in chapter 4, but if a modest number of model

parameters are being inverted for the nonuniqueness appears to be constrained to a

small region of the model space.



90

16,$? 17n 177 17A

❑ SAPSE Broadband Station I

RangitataLine

Mt.CookLine O ) r>

o$—J. — I

J?’
km

0-00

Figure 5.1. The South Island of New Zealand, showing the
onshore/offshore refraction lines and the seven broadband stations
used in this study.
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Figure 5.5. Fit of synthetic receiver function with 20% noise
added to the original “data” seismograms, and with the additional
constraint penalizing models having decreasing velocity with
depth.
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Figure 5.7. Data misfit plotted as a function of model misfit for
the inversions in Figure 5.6. The trend shows that the two are
roughly proportionate, indicating that the nonunique solutions may
be constrained to a small region in the model space.
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Figure 5.8. Stacked receiver functions for the seven broadband
stations on the South Island.
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Figure 5.11. Receiver function fit for station CLAA (Clarks
Junction) (above) and crustal model (below).
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Figure 5.12. Receiver function fit for station EWZA (Erewhon)
(above) and crustal model (below).
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Figure 5.13. Receiver function fit for station LAMA (Lake
Moeraki) (above) and crustal model (below).
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Figure 5.14. Receiver function fit for station LATA (Lake Taylor)
(above) and crustal model (below).
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Figure 5.15. Receiver function fit for station QRZA (Quartz
Range) (above) and crustal model (below).
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Figure 5.16. Receiver function fit for station SHEA (Sheffield)
(above) and crustal model (below).
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Chapter 6

An example from seismology:

receiver function inversion

6.1 Introduction

109

Mendocino Triple Junction

In this chapter a genetic algorithm is used to invert receiver functions to

estimate the crustal structure

Northern California. Unlike the previous examples,

of the Mendocino Triple Junction (MTJ) region in

this one utilizes

into the objectivemultiobjective optimization by incorporating regularization

function. Whereas in the previous chapter a single step inversion is used to obtain

the starting model, in this case the starting model consists of a medium of many

thin layers (-20-30). In order to best fit the data, the velocities of each layer will

either increase or decrease (in the case of an amplitude peak on the receiver

function) or take on constant values (in the case of constant amplitude). In

practice this approach tends to be somewhat unstable because of the high number

of degrees of freedom, typically generating models with alternating fluctuations

between high and low velocity, so a minimum roughness criteria is added to the

objective function. As with any multiobjective optimization, it must be stressed

that adding additional constraints causes a tradeoff between the fit of the data and

the smoothness of the model.
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6,,2 Mendocino Triple Junction tectonic and geologic

b~ackground

The complex plate geometry of the Mendocino Triple Junction (MTJ) is the

focal point of Northern California tectonics. Bounded by strike slip faulting to the

West and South and subduction to the North, the junction itself has been moving

to the North at a rate of approximately 5 cm/yr for the last 5.5 million years

(Atwater, 1970). This northward migration (and the oblique convergence of the

Juan de Fuca/Gorda Plate) are responsible for many of the significant tectonic

events in North America, including (1) volcanism in the Northern Coast Ranges,

(2) a broad zone of faulting and deformation in the Coast Ranges, and (3)

extinction of arc volcanism to the North of the MTJ (Benz et al., 1992).

The North American Plate in the region of the MTJ is an accretionary complex

of Mesozoic to Cenozoic origin (the Franciscan, manifesting itself in the Coast

Ranges and Klamath Mountains) which is overlain by the Eel River Basin, a

sedimentary forearc basin of Cenozoic origin (Beaudoin and Magee, 1994).

Velocities in these crustal units are believed to be relatively uniform, in the range

of 5.5-5.8 km/s in the West and 6.0-6.5 km/s in the East (Beaudoin and Magee,

1994; Benz et al., 1992). The subducting Gorda Plate is believed to vary in

thickness from 7 km at the southern end of the MTJ to 10 km in the North,

decreasing in velocity from 6.7 km/s to 6.2 km/s at the same time (Beaudoin and

Magee, 1994).
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Figure 6.1 is a schematic cross section of the standard model for the

tectonic interaction in Notihem C~ifomia asproposed by Benz etd. (l992). The

cross section is assumed to be valid for the region between 40 and 41 degrees

latitude. The dip associated with the subducting Gorda Plate is a matter of much

contention. The most reliable estimates come from east-west cross sections of

seismicity, which define a Benioff zone that dips 10° to the east at the coast and

up to 25° below the southern Cascades. Estimates of the velocities VI, V2 and V3

are not as reliable as the estimates of Benioff zone dip. VI is likely the least

uncertain, typically in the range of 6.3 to 6.5 km/s. V2 is found to be as low as 6.7

km/s (Beaudoin and Magee, 1994) and as high as 8.0 km/s (Benz et al., 1992), and

the underlying mantle velocity V3 is usually estimated to be from 8.0 to 8.2 kmls.

Focal mechanisms and seismicity patterns imply a change in the orientation of

stress on the Gorda Plate from compression in the North-South direction to down

slab extensional beyond 236° east (Dicke, 1998). An obvious consideration with

a model in which V1 < V2 < V3 is the lack of a driving force for this type of

subduction. If V2 < V3, the Gorda Plate should also be less dense than the

underlying mantle material and therefore more buoyant. It is possible that

compressional forces associated with spreading from the Gorda Ridge are driving

the subduction. In this case there should either be a thickening of the Gorda Plate

as it is being subducted or some type of imbrication. Benz et al. suggest that the

slab is imbricated in the MTJ region resulting in accreted slab fragments under the

North American Plate, but Verdonck and Zandt (1994) find the plate to be intact.
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6.3 Data and Processing

Receiver functions are calculated for 8 teleseismic events recorded at five

Northern California Broadband stations in the Berkeley Digital Seismic Network

(BDSN) (see Table 6.1). The stations and their spatial relationship to the MTJ

can be seen in Figure 6.2. The teleseismic data used in this investigation consist

of 7 events of magnitude 7.0 or greater between -15 and -28 degrees latitude and -

173 and -179 degrees longitude, and the Bolivian M. = 8.2 Event of 1994 (see

Table 6.2). The 7 South Pacific events have travel paths approximately

perpendicular to the zone of convergence in the MTJ region, while the travel path

of the Bolivian event is roughly parallel.

F!3tation code Station name Latitude Longitude Elevation (m)

ARC Arcata 40.877 -124.075 60

L HOPS Hopland 38.994 -123.072 299 I

E
MIN Mineral 40.345 -121.605 1495

ORV Oroville 39.556 -121.500 360

WDC Whiskeytown 40.580 -122.540 300

YBH Yreka 41.732 -122.710 1110

Table 6.1. Berkeley Digital Seismic Network (BDSN) broadband stations used in
this study.

The data, sampled at 0.05 s, is filtered to remove microseismic noise below

0.15 Hz, cosine tapered and 2570 zero padded before being deconvolved with a

Gaussian filter coefficient of a = 2.0 to produce both radial and tangential

receiver functions for each station-event. The receiver functions for each South

Pacific event and the stacked functions are shown Figures 6.3-6.8, while those for
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the Bolivian event are presented in Figure 6.9. Note that the final 5 seconds of

“each time series is “wrapped around” to the beginning purposely to give a clearer

picture of the first arrival. Because the latter part of the time series was zero

padded before deconvolution, the rrns amplitudes for the first 5 seconds can give

some insight into the amount of noise present.

date latitude longitude I depth(km) I MO I location I
06/09/94 -13.841 -67.553 631.3 8.2 Bolivia

03/09/94 -18.039 -178.413 562.5 7.6 South Pacific
04/07/95 -15.199 -173.529 21.2 8.0 South Pacific
07/03/95 -29.211 -177.589 35.3 7.2 South Pacific
08/05/96 -20.690 -178.310 550.2 7.4 South Pacific

09/20/97 -28.683 -177.624 30.0 7.2 South Pacific
10/14/97 -22.101 -176.772 167.3 7.7 South Pacific
03/29/98 I -17.576 I -179.061 I 536.6 I 7.2 I South Pacific I

Table 6.2. Locations and magnitudes for the 8 events used in the inversion.

There is strong similarity between the stacked and the individual traces in

Figures 6.3-6.8, The correlation coefficients ranged from 0.611 to 0.949, with an

average of 0.805, indicating a good correlation.

6.4 Estimation of Moho Depth by direct interpretation of

receiver functions

As a first approximation of Moho depth below each station, a simple inversion

is performed using equation 5.14 and assuming a constant crustal velocity of 6.5

km/s to find depths for the major amplitude peaks on the stacked receiver

functions. On the receiver function for the station at Arcata (Figure 6.3), two
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amplitude peaks are visible in the first 5 seconds, corresponding to depths of

21.9 km and 32.0 km, respectively. It is likely that the crust is thinnest in this

region (Verdonck and Zandt, 1994; Benz et al., 1992), so the first amplitude peak

is most likely caused by a P-S conversion at the Moho at 21 km depth. The

receiver function determined from the station at Hopland (Figure 6.4) shows

amplitude peaks corresponding to 26.4 and 37.1 km depth, and because this is still

in the coast ranges 26.4 km is the most likely Moho depth. The receiver function

for the station at Mineral (Figure 6.5) has a long, flat amplitude peak that begins at

31.1 km and begins to recede at 46.6 km. Sustained positive amplitude on a

receiver function is associated with a gradual increase in velocity, so it is possible

that there is a slower transition to Mantle velocities in this region. The receiver

function determined for Oroville (Figure 6.6) has significant amplitude peaks

corresponding to 31.4 and 39.7 km. Because it is in the Sierra foothills, is likely

to overlie a fairly thick crust, but here the choice is not as obvious as with the

previous ones. The receiver function calculated for Whiskeytown (Figure 6.7) has

two obvious amplitude peaks which correspond to 34.2 and 48.0 km in depth.

Lastly, the receiver function determined from the station at Yreka (Figure 6.8) has

major amplitude peaks which correspond to depths of 32.6 km and 41.4 km,

although the peak at 41.4 km is the largest of the two, implying that the

conversion at 41.4 km has the largest impedance contrast.
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6.5 Inversion method

Following Ammon et al. (1990) the approach that is used here is to model with

many thin layers of fixed thickness. As previously discussed, modeling with too

many thin layers can produce unstable solutions, which can be seen in Figure

6.10. The fit is very good, but the model

velocity layers that may not be realistic.

has many alternating high and low

Because the problem is inherently

nonunique it is desirable to minimize the number of degrees of freedom in order

to find the simplest model that fits the data. To accomplish this, a minimum

roughness constraint is added to the objective function, with the model roughness

being calculated using an IILIIInorm:

x,= ~[(ai+l-a,)’]’”i=1 (6.1)

where ai represents the P wave velocity for each layer. The roughness parameter

is then multiplied by a normalized weighting factor which is found through trial

and error. A value of 0.4 is used as a weighting factor for the minimum roughness

constraint and 0.6 for the receiver function fit for the inversions described in this

chapter.

6.6 Inversion Results

The inversion results are shown in Figures 6.11-6.21. Figures 6.11-6.16 are

the receiver function fits and models for the stacked South Pacific events and

Figures 6.17-6.21 those for the Bolivian event. The amplitude peak
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corresponding to the direct arrival on many of the South Pacific receiver

functions cannot be fit adequately. Because the height of this amplitude peak is a

function of the angle of incidence of the seismic wavefront, it is likely that

dil?ping layers are producing an angle of incidence that is not as steep as the one

that is used in the modeling. The travel path of the Bolivian event is roughly

parallel to the zone of convergence, so this effect is not apparent for that event.

Therefore, interpretations of the inversion results will be more heavily weighted

towards the Bolivian data.

Inversions results for the coastal station of Arcata (Figures 6.11, 6.17) imply a

gradual increase to upper mantle velocities occurring from 18 to 24 km depth.

No consistent low velocity zone can be seen here. It would be interesting to look

at receiver functions for a station at the same longitude as Arcata but south of the

MrJ to see if there is a low velocity zone where Benz et al. (1992) suggest the

existence of a slab window. Inversions results for the stations in the Southern

Cascade Range are

(near the Oregon

more interesting. The results derived for the station at Yreka

border, Figures 6.12, 6.18) show a steep initial velocity

inciicating a high velocity at about 5-8 km depth, followed by gradually increasing

velocity to upper mantle values at 36-38 km depth. Inversion results for the

station at Whiskeytown (Figures 6.13, 6.19) show a relatively constant velocity

profile down to about 44 km in depth, where the velocity jumps to nearly 8 km/s.

Another increase of approximately 0.75 km/s occurs on the Bolivian inversion

(Figure 6.19) at 44 km

slab, but it is probably

depth. It is possible that this is the bottom of the Gorda

more indicative of a gradual rise in velocity through the
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upper mantle with depth. Inversion results for the station at Mineral (near

Mount Lassen, Figures 6.14, 6.20) display a relatively constant velocity structure

until 34-36 km depth, where there is a large increase to near mantle velocities, iind

a lesser increase at 40 km. The results for the station at Oroville (Figures 6.15,

6.21) suggest a crustal thickness of 44-46 km, which is consistent with the simple

one step inversion result described above. There are no data for the Hopland

station during the Bolivian event, but the South Pacific inversions suggest a

crustal thickness of about 32 km (Figure 6.16). However, the inversion appears to

be somewhat unstable, alternating between high and low velocities in an attempt

to fit the high amplitudes of the peaks, which may be a result of a dipping layer

geometry of the region.

In Figure 6.22, the results from section 6.4 are plotted in two dimensions for

the purpose of comparison with existing subduction models of the MTJ region.

Estimated depths derived from amplitude peaks on the stacked South Pacific

receiver functions which are larger than 50% of the direct arrival peak and fall

between 2.3 and 5.8 seconds (corresponding to roughly 20-50 km depth if a

constant velocity of 6.3 km/s is assumed for the region) are plotted as a function

of one dimensional distance from the MTJ. The results are consistent with the

schematic in Figure 6.1 for the case where VI < V2 < V3. Assuming the lowest

points correspond to conversions originating from the bottom of the Gorda Plate,

the dip on the Gorda Plate can be estimated. Between the stations ARC and

HOPS the dip is approximately 3.5°, between HOPS and YBH it is approximately

8.0°, and between YBH and WDC approximately 22.3°. This agrees fairly



closely with the estimated dip of the Benioff zone in the region betv

and WDC but is considerably lower than that for the dip of the Benj

the coast. The two higher points representing conversions for

Oroville and Mineral have approximately the same depth at 31 km

Moho conversions, the lower points could be conversions from slab

suggested by Benz et al. (1992).

An alternative interpretation for the apparent thickening of the c

the isostatic compensation for the Cascade Range. If this hypotht

then the two lower points in Figure 6.22 for Oroville and Mineral

consistent with Moho

crustal boundaries.

depth and the two higher points could be the

6.’7 Conclusions

Empirical receiver functions contaminated by noise and/or affected by dipping

layers can lead to unrealistic or unstable models with extreme velocity variance.

In this case, multiobjective optimization can be used to add a minimum roughness

constraint to the objective function. Some amount of experimentation is

necessary to find a suitable tradeoff between data fit and model smoothness.

In addition to carrying out formal inversion procedures, direct interpretations

of receiver functions can provide a great deal of information. Assuming a

constant velocity in the crust and then calculating the depths which correspond to

significant amplitude peaks on the receiver function can give a rough estimate of

the depth and dip of the Moho and other discontinuities.
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Figure 6.1. Schematic east-west cross section of standard model
for the tectonic interaction in Northern California as proposed by
Benz et al. (1992) (not to scale).
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Figure 6.2. Berkeley Digital Seismic Network (BDSN) stations.
YBH, ARC, WDC, MIN and HOPS were used in this study.



121

94.068 -

95.097 - ~

95.184 -

96.218

97.263

97.287

98.088

Stack-

1

I I I I I
-5.0 00 5.0 10.0 150 20.0 250

time (see)

Figure 6.3. Radial receiver functions for station ARC (Arcata)
from the 7 South Pacific events, with receiver function stack at
bottom.
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Figure 6.4. Radial receiver functions for station HOPS (Hopland)
from the 4 South Pacific events, with receiver function stack at
bottom.
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Figure 6.5. Radial receiver functions for station MIN (Mineral)
from the 7 South Pacific events, with receiver function stack at
bottom.
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Figure 6.6. Radial receiver functions for station ORV (Oroville)
from the 7 South Pacific events, with receiver function stack at
bottom.
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Figure 6.7. Radial receiver functions for station WDC
(Whiskeytown) from the 7 South Pacific events, with receiver
function stack at bottom.
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Figure 6.8. Radial receiver functions for station YBH (Yreka)
from the 7 South Pacific events, with receiver function stack at
bottom.
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Figure 6.9. Radial receiver functions for 5 of the broadband
BDSN stations from the Bolivian event.
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Figure 6.10. (above) Empirical receiver function for the stacked
South Pacific events and fit for station Oroville and (below) model
based on fit. No minimum roughness criteria is used in the
objective function here.
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based on fit.
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Figure 6.12. (above) Empirical receiver function for the stacked
South Pacific events and fit forstation Yrekaand (below) model
based on fit.
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Figure 6.13. (above) Empirical receiver function for the stacked
South Pacific events and fit for station Whiskeytown and (below)
model based on fit.
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Figure 6.15. (above) Empirical receiver function for the stacked
South Pacific events and fit “for station Oroville and (below) model
based on fit.
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Figure 6.16. (above) Empirical receiver function for the stacked
South Pacific events and fit for station Hopland and (below) model
based on fit.
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Figure 6.17. (above) Empirical receiver function for the Bolivian
events and fit for station Arcata and (below) model based on fit.
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Figure 6.18. (above) Empirical receiver function for the Bolivian
events and fit for station Yreka and (below) model based on fit.
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Figure 6.19. (above) Empirical receiver function for the Bolivian
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Figure 6.20. (above) Empirical receiver function for the Bolivian
events and fit for station Mineral and (below) model based on fit.



139

0.8

0.4

.g
~

0.0

-0.4

I----- data

— mtiel

k

1

,

I

,,

, ,,
-i t

!,’, ,

,,
d

-5.0 0.0 5.0 10.0 15.0 20.0
time (see)

10.0 –

8.0 –

.

6.0 –

4.0 –

2.0 –

0.0 ( I I
I

t

0.0 20.0 40.0
depth (km)

Figure 6.21. (above) Empirical receiver function for the Bolivian
events and fit for station Oroville and (below) model based on fit.



140

0 50 100 150 ml 250 330

Figure 6.22. Estimated depths of conversion derived from major
amplitude peaks on the stacked South Pacific receiver functions.
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Chapter 7

More sophisticated techniques

7.1 Introduction

Although a simple GA will often produce excellent results, it is likely that

more sophisticated operators may be necessary to obtain solutions to many special

problems. For example, it is not possible to obtain multiple distinct solutions to a

nonunique problem with a standard GA (An exception to this is to re-run the

algorithm

assurance

many times using a different random number seed, but there is still no

that the solutions will be distinct). Also, some problems may require a

forward calculation that is too computationally costly to be solved by a standard

GA. In this chapter several techniques are introduced to solve these and other

problems.

7.2 Inversion operators

The expectation that the crossover operator will mix genetic information in a

way that will produce improved models is based on one important assumption:

That the schema or “building blocks” which combine advantageously to produce

strings of higher fitness are in positions on the string that actually allow crossover

to combine them. In the simple example of minimizing the function ~(x) = x ,

the combination of minimizing a linear function and the natural coding order of

descending powers of ten insures that crossover will produce better results. But
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not all problems are simple linear optimization, so the question of coding

becomes an important issue.

There are two factors to consider when coding a problem. First, the number of

bits to use and second, the order of the bits. The major constraint on the first

factor is usually the accuracy desired, but experimenting with different length

strings can sometimes produce faster rates of convergence. Up until this point,

the second factor, the order of the bits in the string has not been considered.

There is no reason why the bits can’t be arranged in another order, for example

{102, 10°, 104, 101, 103}, as long as the original order can be restored so the string

can be decoded. This can be done using a position independent coding in which

the order of each bit on the binary string is kept in another string. In the example

above, the order would be 3, 5, 1, 4, 2. The question is, in which order should

they be arranged to get the best results from crossover? In most cases this is a

problem of difficulty on the order of the optimization problem, so exchanging the

bit positions or inversion is usually a random trial and error process.

Inversion is usually carried out in the following manner: two points are

selected on a string, and the order of the bits between the two points is reversed.

This is done to both the binary parameter string and the order (allele) string.

When the fitness of the string is to be evaluated, its corresponding order string is

first used to arrange the bits in their proper (original) order.

Goldberg (1989) points out that inversion must be combined with crossover in

orcler to achieve a significant improvement in results. There are several ways to

accomplish this, the best known being Partially Matched Crossover (PMX)
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(Goldberg and Lingle, 1985). A subroutine for Partially Matched Crossover is

given in Appendix A.

Note that inversion is only a remedy to improve the performance of traditional

crossover methods (i.e. 1 and 2 point crossover). Inversion is superfluous if a

disruptive recombination operator such as uniform crossover is used.

7.3 Preserving Diversity in the model population

Because numerous problems in geophysics are inherently nonunique

feasible solutions to a problem may exist. If one solution is significantly

many

better

than the rest, there can be reasonable confidence that a standard genetic algorithm

will find that solution. But what if two or more solutions have very similar

objective function values? Can a standard genetic algorithm find more than one

solution in this case? The answer is almost always no. This is due to what people

in the genetic algorithm community call genetic drzjl (DeJong, 1975). Because of

instabilities associated with the sampling of a finite population, the standard

genetic algorithm tends to converge to only one solution, with all the models

competing for the same parameters.

An example of a multimodal function of this type is illustrated in Figure 7.1.

This is a simple five peak multimodal function, with the peaks decreasing in

height as the x coordinate increases. The equation for the function is

(.)
2

~(x) = exp(-2 in(2) ‘~~1 sinG(5 zx) (7.1)
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Figure 7.2 shows the result of genetic drift.

local maxima of the multimodal function al

In trying to estimate all of the

diversity is lost as the population

competes for the solution x = 0.1 and hence only one solution is obtained.

Examples of how to solve the problem of lost diversity are given in the next

sections.

7.:3.1 Niching

As is common in the development

dynamics of natural systems gives insight

of genetic

into how to

algorithms, observing the

solve this type of problem.

uses a similar criterion for selection.

models in the population that are the

common way to do this is to sum and

Nature does not force its populations to compete for the same resources, but

allows individuals and species to take advantage of unique traits in order to

survive. Niching, or sharing (Holland, 1975; Goldberg, 1989) is a method for

maintaining diversity in the population that

The idea is to give a selection advantage to

least similar to the rest of the population. A

normalize the differences between the floating point parameters of each model

and the rest of the population. In this way, each model is given a value from 0.0

to 1.0, where 1.0 means that the individual is exactly the same as all the others

and 0.0 is as different as possible from the other models (and the other models are

all exactly alike). The fltnesses of the population are then divided by this value so

that the models that are the most diverse are given higher fitness and the ones that

are most frequently represented are practically unchanged.

—
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Sharing is implemented by calculating a similari~ metric, or a

multidimensional distance between a model and the other models in the

population. This similarity metric can be calculated with the floating point model

parameters (phenotype) or with the binary parameters (genotype). Goldberg and

Richardson (1987) propose an elegant phenotypic method using a sharing

function, in which the similarity metric for an individual is calculated by

normalizing the difference between each real valued parameter and its

corresponding parameters in the population:

(7.2)

where n is the population size, m is the number of floating point parameters for

each model and x the parameter values. The adjusted fitness (~ ‘(xi)) is then

calculated with the following formula

ff(xi) = ‘(T,)
S(d(xi ,x))

(7.3)

Note that the denominator ranges from 0.0 for the model that is most unlike the

rest of the population to 1.0 for the model which is identical to the rest of the

population. Depending on the problem, it maybe desired to find a broader range

of solutions at the cost of a lesser fit. This can be done by raising the denominator

to an integer or non integer power higher than 1. The function is called a

“triangular sharing function” if the exponent has a value of 1.

Despite its aesthetic appeal, naively implementing sharing can produce

somewhat disappointing results. Oei et al. (1991) observed that combining
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tournament selection and sharing to select a new generation is inherently

unstable because the resealing of sharing conflicts with the autoscaling of

tournament selection. This results in the eventual loss of diversity and genetic

drift. Figure 7.3 demonstrates this diversity loss after 100, 200, 300, and 500

generations. Only the solution x = 0.1 remains.

Fortunately there is a fairly straightforward modification called continuously

updated sharing (Oei et al., 1991) that maintains the diversity of the population

even after several thousand generations. The only difference is that the sharing

coefficient used to adjust the fitness of a potential mate is calculated by comparing

that individual’s phenotype to that of the next generation as it is being created. In

Figure 7.4 the multimodal problem is solved using this modification. Note that

even after 1,000 generations significant diversity is preserved because the best 3

of 5 possible solutions are estimated.

7.3.2 Parallel models

Another way to avoid the problem of genetic drift is to create a more “grainy”

population. The most effective way to implement this (in terms of maintaining

diversity) is to divide the population into isolated groups. This removes the

problem of genetic drift altogether because there is no sharing of information

between the groups, but there is a downside: the smaller each subpopulation, the

less likely it will contain all the information necessary to obtain an optimal

solution. The natural solution is to use larger subpopulations which requires more
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computing time. This type of problem is well suited to parallel computing as

the subpopulations can be divided between processors.

Island Models (Starkweather et al., 199 1) are a slightly more integrated

approach. As with the parallel model, each subpopulation is treated as a standard

genetic algorithm computation, but every 10-20 generations the populations

exchange strings in order to share in a larger pool of genetic material. The

number of strings that are migrated between groups and the frequency of

migrations is an effective way to control the convergence of the algorithm. By

using a low migration rate, one can create stable subpopulations that search the

model space with little influence from other subpopulations, producing multiple

solutions for multimodal functions. A higher migration rate between

subpopulations is closer to a single population model, but tends to converge more

slowly because of the slower rate of information exchange, often producing better

results. Figure 7.5 shows the solutions for the multimodal problem in the

previous section obtained by using 10 islands and no migration for 100,200,300,

and 1,000 generations. Note the stability of the solutions in comparison with the

niching approach. Except for a few points, the positions of each solution are

unchanged after 1,000 generations.

7.3.3 Niching versus Islands for preserving diversity

From the results in Figures 7.3-7.5

population diversity better and give

it appears that island models preserve

more stable solutions to multimodal
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problems. Looking at the statistics strengthens this hypothesis. The percent

heterogeneity of the population can be defined as

h(x)(%) = ~~s(d(xi ,x))
n i=l

(7.4)

where S(d(xi ,x)) is given in Equation 7.2. The percent heterogeneity is just the

normalized

Table 7.1

generations

sum of the sharing functions for each member of the population.

compares the heterogeneity after 100, 200, 300, 400 and 500

for standard niching, continuously updated sharing, islands with no

migration, and

generations).

islands with migration (20Y0 migration probability every 20

r I 100 I 200 I 300 I 400 I 500

L1 island (standard GA 0.58% 0.0% 0.0% 0.0% 0.0%
run) of 100 models

1
10 islands of 10 models 26.71% 25.21% 26.0670 25.53% 25.89%

each, no migrations

10 islands of 10 models 22.54% 24.97% 24.92% 25.01% 25.96%
each, migration (20910)

standard sharing 13.75% 11.66% 17.5% 15.47% 15.15%

t

Continuously updated 14.76% 13.08% 7.52910 7.86T0 6.48V0
sharing

Table 7.1. Heterogeneity for 100, 200, 300, 400 and 500 generations using both
sharing and island models.

In addition to maintaining heterogeneity in the model population, Figures 7.4-

7.5 show that the island models give more precise solutions than those obtained

with standard niching techniques. This is because all of the models in an island
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are converging on the same solution, whereas with niching there are many

solutions within the same population group.

7.4 Hybrid Algorithms

As versatile as genetic algorithms are, it is typically much faster to use a more

efficient method (one that processes gradient information more directly such as a

calculus based method) for simple or unimodal problems. Similarly, it is faster to

use more direct methods to find a local (or global) optimum when the starting

model is within the region of the optimal point. Therefore it is reasonable to

assume that after the application of a genetic algorithm which returns solutions in

the neighborhood of an optimal point, time could be saved by using a more direct

method to find the solution that corresponds to the optimum. Hybrid algorithms

can combine the global search properties of a GA with the efficiency of a gradient

based method. The GA can be used to search for peaks or troughs in the objective

function after which a direct method can be used to find the extremum rapidly and

precisely. The best way to search out the model space is to use an island model

with many islands and a low migration rate. Methods such as Levenberg-

Marquardt (Marquardt, 1963) and conjugate

and eftlcient candidates for local search.

gradient (Press et al., 1992) are fast

Pattern search (Hooke and Jeeves, 1961; Lewis et al., 1998; Torczon and

Trosset, 1999) is a deterministic, derivative free search method that has gained

much attention in the optimization community. Although not generally
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ccmsidered a global inversion technique, pattern search tends to converge

much faster than stochastic methods like GAs and simulated annealing. Pattern

Search is also very simple and elegant, and like the stochastic methods it does not

rely on gradient information directly. These qualities make it an excellent

Cc)mplementq method for a genetic algorithm hybridization. Figure 7.6 shows

the average convergence of 10 runs for a receiver function inversion using both a

GA and a GA/pattern search hybrid algorithm. The GA runs consist of 20

generations with

generations of ~

evaluations. GA

a population of 100, while the hybrid runs consist of 10

00 followed by 10 iterations of 100 objective function

convergence is represented by the dashed line and convergence

for the hybrid scheme by the solid line. The overall improvement in the solution

using the hybrid approach is 26%. Use of the GA alone required an average of 53

generations to improve the solution by this amount.

A flow chart outlining the Pattern Search algorithm is found in Figure 7.7. The

algorithm works by adjusting each parameter of a starting model by a step size,

and if the model is improved by the adjustment the changes are saved. After the ‘

last parameter has been adjusted a pattern move is made if the parameters have

been changed or the step size is decreased if they have not. The algorithm finishes

when the step size becomes smaller than a user specified misfit size. The pattern

search method has been successfully applied to problems with as many as 256

1Some confusion exists due to the definition of “global” in the above references. In these papers

global convergence is defined as converging to the optimal point nearest the starting point.
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variables (Torczon and Trosset, 1999). A FORTRAN code based on the

original paper by Hooke and Jeeves (1961) is presented in appendix B.

7.5 Discussion and Conclusions

Certain types of problems are not conducive to the traditional GA approach,

but relatively simple modifications can be made which will solve these problems

more efficiently, or find solutions to problems that cannot be solved by more

traditional GAs. In this chapter several techniques were presented to demonstrate

how to avoid some shortcomings of the simple GA: inversion to insure that

crossover is

population,

problems.

effective, niching and island models to retain diversity in the model

and hybrid algorithms to speed convergence for time intensive

Niching and island models are both effective approaches for maintaining

diversity in the model population and thereby obtaining more than one distinct

solution to a nonunique or multimodal problem. Island models are a passive

approach to diversity, and as such there is no assurance that they will produce

distinct solutions, but they appear to give more stable solutions than those

obtained through the use of niching. It is also possible to combine these two

techniques in order to obtain the best results: an island model algorithm could

make use of niching to reward members of each subpopulation for being least

similar to the members of the other subpopulations. No comparison would be

made between the individual and its own population. This would add an incentive

towards developing a distinct niche in each island.

.
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There are many other possible modifications that can be made to a standard

GA to increase effectiveness. For example, GAs can incorporate principles from

other nonlinear optimization techniques. Stoffa and Sen (1991) suggest stretching

the fitness function according to the amount of improvement from generation to

generation using a Boltzmann-like energy distribution function, much like

simulated’ annealing. Taking the opposite approach, Mahfoud and Goldberg

(1995) present a parallel simulated annealing procedure which borrows principles

from genetic algorithms.
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Figure 7.2. Result of genetic drift in the maximization of the
multimodal function in Figure 7.1. All 100 solutions are at or very
near the value x = 0.1, which is the value of the maximum peak on
the function in Figure 7.1.
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Chapter 8

Conclusions

to

Genetic algorithms have many advantages over the methods traditionally used

solve nonlinear inverse problems in geophysics such as linear inversion

techniques and quasi-Newton methods:

●

●

●

●

Due to their stochastic nature, they are capable of finding a global optimum

even in the presence of many local optima.

The necessary objective function calculations are intrinsically parallel, so GAs

can be run on parallel machines with little or no modification. This can

reduce computation time by several orders of magnitude.

They are derivative free in that they do not rely on direct calculation of the

gradient. This makes them inherently stable, avoiding division by zero and

other numerical difficulties associated with the calculations of derivatives.

Rather than using a single starting point from which to search, they search a

bounded model space and the search is unbiased within that space. This

removes much of the subjectivity associated with starting model dependence

from the inversion.

The standard genetic

simple modifications

algorithm performs well enough for most problems, but

can allow the solution of special problems that are not

solved using the traditional approach. For example, the population may be

subdivided into “islands” in order to find multiple distinct solutions to a

ncmunique problem. Some problems in geophysics require time consuming
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forward calculations, and others have very large numbers of parameters to be

estimated. Such methods are not typically amenable to a stochastic search method

such as a GA. However, a robust and efficient search can be made by hybridizing

the GA with another more direct method such as a gradient based procedure or

even a linear inversion technique.

Traditional theory holds that GAs achieve most of their performance through

the action of crossing over the best parameter sets in order to combine desirable

traits into new models. The purpose of mutation is believed to be only to insure

that no bit information is permanently lost in the action of crossing over. Based

on these assumptions, best performance should be achieved with a high crossover

rate and a low mutation rate. However, numerical simulations suggest that

although the mutation rate should be very low, mutation is in general a far more

important operator than crossover in genetic search. In fact, an algorithm using

mutation only and no crossover performs reasonably well, but one using crossover

without mutation performs very poorly. The same simulations also suggest that

GA performance is highly dependent on the choice of the selection method.

Tournament selection appears to give better results than the other methods for all

the problems discussed here.

Limited computational resources have traditiomdly forced geophysicists to

solve nonlinear inverse problems by using linear approximations which produce

models that are heavily dependent on starting models. Many problems of current

interest in geophysics are inherently nonlinear in both the forward and inverse

problem, and such problems are reliably solved only with a globaJ approach.
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Examples of this type of problem are fluid flow modeling and mantle

convection. h combination with increasing computer speed, GAs will provide a

robust and relatively efficient approach to these and other problems.
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Appendix A: An island model genetic algorithm

in FORTRAN

This code is currently set to handle a maximum population size of 200, a

maximum parameter size of 48, and a maximum string length of 384. The

parameter statements must be changed in the main program and the subroutines in

order to use higher values.

There are three possible selection schemes: Roulette Wheel selection,

Tournament selection and Stochastic Universal selection. For all but tournament

selection, a fitness scaling method should be used to prevent premature

convergence early in a run and to promote healthy competition in a mature run.

There are two choices for crossover algorithms: single-point and uniform

crossover. Fitness scaling is not available for function maximization, so a scale

independent selection scheme should be used for maximization (in this case

tournament selection).

The random number generator has been left out, as most people have their own

favorite subroutine for this. See for example Press et al. (1992)

Program variable definitions

jll Array of fitnesses for each individual.

ibest Binary array of parameters for fittest individual.

ichild Binary array of offspring.

idum The initial random number seed for the GA run

This can be set to any negative integer, e.g. idum= -1000.
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ielite

imax

iparent

icross

irestart

istr

iselect

min

mixint

nchrmax

nchrome

nparam

nparmax

npopmax

nbits

nrestart

parent

= O for no elitism (best individual not necessarily replicated from

one generation to the next).

= 1 for elitism to be invoked (best individual replicated into next

generation); elitism is recommended.

The number of generations (iterations).

Binary parameter parent array.

= Ofor single-point crossover

= 1 for uniform crossover.

= Ofor normal run

= 1 for restart (must have restart.inp file from previous run).

= Ofor no sigma truncation (a procedure to remove weak “lethals”

from the population by setting the fitness of weak outlyers to O)

= 1 for sigma truncation.

= O for Tournament Selection

= 1 for Roulette Wheel Selection

= 2 for Stochastic Universal Selection.

= O for function Maximization

= 1 for function Minimization.

Number of generations per migration.

Maximum number of chromosomes (bits) per string.

Number of chromosomes for each individual

Equal to npararn*nbits.

Number of input parameters.

Maximum number of parameters allowed.

Maximum population size aIlowed.

Array of the number of bits per parameter, e.g., nbits=2 gives 4

(=2**2) possible models per parameter.

Number of generations between each update of restart.inp file.

Floating point parameter parent array.



parmax

parrnin

pbest

pcross

pmutate

smult

stmult

xmixprob
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Upper bound values of the parameter array to be optimized

from the lower bound values in the parmin array.

Lower bound values of the parameter array to be optimized.

Floating Point array of parameters for fittest individual.

the crossover probability, 0.6 or 0.7 is recommended.

The mutation probability, usually set to l/modpop.

Multiple for Scaling. Should be between 1.0 and 2.0, for simple

functions

about 1.8 works well.

Multiple for sigma truncation (should be between 1.0 and 3.0).

Migrating probability per individual.

Subroutine Descriptions

cross

decode

evaluate

kale

mix

mcutate

nexgen

output

restart

rstclect

shufle

start

Performs single-point crossover on pairs of iparent strings to

generate ichild array.

Decodes a binary string into a real number.

Evaluates the fitness of the population.

Applies a linear scaling to the fitness array.

Allows individuals to migrate between islands.

Converts a 1 to a Oor a Oto a 1 on a binary string

of pmutate.”

with a probability

Writes ichild array onto iparent array, and replicates the fittest

individual into the array if not already done (if ielite = 1).

Writes parameters for final generation to genalg.out testing niching.

Reads in binary file restart.inp

Selects a mate according to the “Roulette Wheel” method, where the

individual’s chance of being chosen is proportional to its fitness.

Shuffles the ichild array for two by two mating.

Begins the run by generating the initial binary parameter array.

—
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strunc Applies Sigma Truncation to fitnesses. this is useful to remove

“lethals” from the population and allow a better linear scaling.

tselect Selects the fittest of two random parents for mating.

ucross Performs uniform crossover on pairs of iparent strings to generate

ichild array.

uselect Selects the fittest members of the population according to the

Stochastic Universal method, an efficient variation of Stochastic

Remainder selection (requires shuffling to randomize pairs for

mating)

wrestart writes iparent array to restart.inp file.

Input files

Sample genalg.param file:

6

8

0

0.7
0.01
0
1
1
2.0
0
2.0
0
100
-1
5
0.1

//nparam (# of parameters)
//nbits (# of bits per parameter)

//icross (=0 for single point, 1 for uniform)

//pcross (crossover probability)

//pmutate (mutation probability per bit)

//iSelect (=0 for tournament, 1 for RW, 2 for US)
//ielite (1 for elitism, O for no)

//rein (1 for minimization, O for maximization)

//smult (scaling multiple, -1.3-2.0)

//istr (1 for sigma truncation, O for no)

//stmult (multiple for sigma truncation)

//irestart (1 if run is a restart, O for normal)

//nrestart (number of generations per restart file)

//idum (random number seed for initial number)

//mixint (number of generations between mixing)

//xmixprob (probability of each individual mixing)

Sample genalg.in file (for six parameters, all real numbers):

0.0 1.0 //xmin xmax
0.0 1.0 //xmin xmax
0.0 1.0 //xmin xmax
0.0 1.0 //xmin xmax

0.0 1.0 //xmin xmax
0.0 1.0 //xmin xmax



Output files

174

converge. out At end of every generation the generation number, the minimum

objective function, the average fitness and the maximum fitness

of the population are output.

genalg.out For each island, the number of the best model, its fitness, and its

parameter values are output (floating point) at the end of the run.

restart.inp Binary parameter values for restart file.

Main

10

11.

12!

13
1<~

15

16

17

18

22!

24

28

Routine

PROGRAM GENALG

PARAMETER (npopmax=2OO,nparmax=48, nchrmax=38 4,nis lmax=l 00 )

DIMENSION iparent (npopmax, nchrmax) ,ichild(npopmax, nchrmax)

DIMENSION parent (npopmax,nparmax) ,fit(npopmax)

DIMENSION ibest(nislmax,nchrmax) ,kbest(nislmax)

DIMENSION parmin(nparmax),parmax(nparmax)

COMMON/ genl /

COMMON / gen2 /

COMMON / gen3 /

COMMON / gen4 /

COMMON / gen5 /

COMMON / gen6 /

COMMON / gen7 /

format (A20)

parent,fit

iparent,ichild

nbits,nparam, modpop,nchrome

pcross,pmutate

iselect,smult, stmult

parmin,parmax

islpop,nisland, xmixprob

format (A24,f4.3)

format (A14,E1O.4)

format (A28,14)

format (’ Population per Island = ‘,$)

format (’ Number of Generations = ‘,$)

format (A35)

format (’

format (’

format (’

format (’

format (’

print 16,

print 10,

print 10,

print 16,

print *,

Error: Pop . must be at least 2’)

Error: Population too large’)

Error: Pop . must be a multiple of 2’)

Number of Islands = ‘,$)
Error: Too many Islands’)

, —-——--———----———_--———___-—————___,.-_---———-_-————__-————___—————___

‘ GenAlg Version 4.1 ‘

‘ Single Precision ‘
-.————----——---——-——.————--——————. ,———————___— _______________________

,,

c--–-–Prompt for population size and number of generations

100 print 24

read *, nisland
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if (nisland.gt

print 28

go to 100
end if

110 print 14

read *, islpop

nislmax) then

modpop=islpop*nisland

mremain=mod (islpop,2)

if (islpop.lt.2) then

print 17

go to 110
else if (modpop.gt.npopmax) then

print 18

go to 110
else if (mremain.ne.O) then

print 22

go to 110

end if

print 15

read *, imax

print *, ‘‘

c-----Open genalg.param and read input parameters

open

open

read

read

read

read

unit=l, file= ’genalg.param’ ,status=’old’)

unit=4, file=’converge. out’ ,status=’unknown’ )

l,*) nparam

l,*) nbits

l,*) icross

l,*) pcross

read (l,*) pmutate
read (l,*) ise~ect

read (l,*) ielite

read (l,*) min

read (l,*) smult

read (l,*) istr

read (l,*) stmult

read (l,*) irestart

read (l,*) nrestart

read (l,*) idum

read (l,*) mixint

read (l,*) xmixprob

close (1)

nchrome=nbi ts*nparam

c––-––Initiate generation counter

icount=l

c––--–Open Genalg.in and generate the parmin and parmax arrays

open (unit=2, file=’genalg. in’ ,status=’old’)

do 200 i=l,nparam

read(2,*) parmin(i),parmax(i)

200 continue

close (2)

c--–––If this run is a restart then read in old parameters to

c––---the ichild array

if (irestart.eq.1) then

call restart (modpop,nchrome)
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c------Otherwise, generate modpop random models from model space

else

call start (modpop,nchrome)

end if

c--––––Begin main processing loop

400 continue

c------Decode the binary strings to real nuniber arrays and test

c-----their fitness with the fitness function

call evaluate (icount,min, ibest, kbest, fmax,fitavg)

rcount=amod(float (icount) ,float(nrestart))

c--––--Write to restart file if count/nrestart=O

if (rcount .eq.O.O.and- icount.ge.nrestart) then

call wrestart(iparent)

end if

print 13, ‘ Finished Generation Number ‘,icount

if (icount.eq.imax) then

call output(kbest)

go to 800

end if

c--––––Enter population into selection, crossover and mutation

c--––––First select parents from the population U,sing either

c--––––tournament selection, roulette wheel selection, or

c--––––stochastic remainder selection
if (iselect.eq.0) then

call tselect

else if (iselect.eq.1) then

call rselect

else if (iselect.eq.2) then

call uselect

end if

c--––––Then apply either single–point or uniform crossover

if (icross.eq.0) then

call cross(pcross)

else

call ucross(pcross)

end if

c------Then mutation

call mutate(iparent)

c---––-If elitism is used, check to see if best individual was

c--––––replicated and replicate if not.

if (ielite.eq.1) then

call elite(ibest)

end if

iremain=mod (icount,mixint )

if (nisland. gt.l.and.iremain. eq.0) then

call migrate(ichild)

end if

icount=icount+l

c--––––If this is not the last generation continue loop.

if(icount. le.imax) go to 400

800 close (4)

print *, ‘‘

print 16, ‘==== Finished run successfully ====’
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END
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Starting a new run

This

once

subroutine generates the initial binary iparent array randomly. It is called

at the beginning of each run if irestart is not equal to 1 (the run is not a

restart).

SUBROUTINE start (modpop, nchrome )

PARAMETER (npopmax=2OO,nparmax=48, nchrmax=38 4,nis lmax=l 00 )

DIMENSION ichild(npopmax,nchrmax) ,iparent (npopmax,nchrmax)

COMMON / gen2 / iparent,ichild

do 100 i=l,modpop

do 110 j=l,nchrome

rtemp=ranl (idum)

iparent(i, j)=l

if (rtemp.lt.O.5

110 continue

100 continue

RETURN

END

iparent(i,j)=O

Restartingaprevious run

If irestart is equal to 1, the following subroutine reads in the binary restart.inp file

atthebeginning oftherun.

SUBROUTINE restart (modpop,nchrome

PARAMETER (npopmax=200,nparmax=48

DIMENSION ichild(npopmax,nchrmax)

COMMON / gen2 / iparent,ichild

32 format (384(i2))

nchrmax=384 ,nislmax=l 00

iparent(npopmax ,nchrmax

open (unit=30, file=’restart .inp’ ,status= ’unknown’)

do 200 i=l,modpop

read (30,32) (iparent(i,j) ,j=l,nchrome)

200 continue

close (30)



RETURN

END

Single Point Crossover

For each pair of consecutive strings in the iparent array, if randl is less than or

equal to the crossover probability pcross, the following subroutine performs

single-point crossover to generate two new strings. This is done until the ichild

amay is filled.

SUBROUTINE cross (pcross )

PARAMETER (npopmax=2OO,nparmax=48, nchrmax=38 4,nis lmax=l 00 )

DIMENSION ichild(npopmax, nchrmax) ,iparent (npopmax, nchrmax)

COMMON / gen2 / iparent,ichild

COMMON / gen3 / nbits,nparam,modpoprnchrome

200

do 100 i=l,modpop,2

randl=ranl (idum)

if (randl.le.pcross) then

icross=2+int (real(nchrome–1) *ranl(idum) )

do 200 j=l,icross-1

iparent (i,j)=ichild(i, j)

iparent(i+l, j)=ichild(i+l, j)

continue

do 300 j=icross,nchrome

iparent(i,j )=ichild(i+l, j)

iparent (i+l,j)=ichild(i, j)

300 continue

else

do 400 j=l,nchrome

iparent (i,j)=ichild(i, j)

iparent(i+l, j)=ichild(i+l, j)

400 continue

end if

100 continue

RETURN

END



179

Uniform Crossover

For each pair of consecutive strings in the iparent array, if randl is less than or

equal to the crossover probability pcross, the following subroutine performs

uniform crossover to generate two new strings. This is done until the ichild array

is filled.

200

300

100

SUBROUTINE ucross (pcross )

PARAMETER (npopmax=2OO,nparmax=48, nchrmax=38 4,nislmax=l 00 )

DIMENSION ichild (npopmax, nchrmax) ,iparent (npopmax, nchrmax)

COMMON / gen2 / iparent, ichild

COMMON / gen3 / nbits, nparam, modpop, nchrome

do 100 i=l,modpop,2

randl=ranl (idum)

if (randl.le.pcross) then

do 200 j=l,nchrome

rand2=ranl (idum)

if (rand2.le.O.5) then

iparent(i,j) =ichild(i,j )

iparent (i+l, j)=ichild(i+l, j)

else

iparent(i,j )=ichild(i+l, j)

iparent(i+l,j )=ichild(i, j)

end if

continue

else

do 300 j=l,nchrome

iparent (i,j)=ichild(i, j)

iparent(i+l, j)=ichild(i+l,j)

continue

end if

continue

RETURN

END

Mutation

The following subroutine performs mutation on the entire population of binary

strings. For each bitin the array ichild, if randnis less than or equal to the

mutation probability pnmtate, the bit is flipped (note that this gives a mutation

rate twice ashigh asifanew bitis generated).
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SUBROUTINE mutate(ichild)

PARAMETER (npopmax=200,nparmax=48, nchrmax=384,nislmax=100)

DIMENSION ichild(npopmax,nchrmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen4 / pcross,pmutate

do 100 j=l,modpop

do 110 k=l,nchrome

randn=ranl (idum)

if (randn. le.pmutate) then

if (ichild(j,k) .eq.0) then

ichild(j,k) =1

else

ichild(j,k)=O

end if

end if

110 continue

100 continue

RETURN

END

Tournamen tSelection

The following subroutine selects the fittest members of the population according

to the ’’Tournament” method, in which two members of the parent array are are

drawn randomly, andtheone with the higherfitness fills aslotin

(pre-crossover) ichild array. This is repeated until the ichild array

21.0

SUBROUTINE ts~lect

the intermediate

is filled.

PARAMETER (npopmax=200,nparmax=48,nchrmax=384,nislmax=100

DIMENSION parent (npopmax,nparmax) ,fit(npopmax)

DIMENSION ichild(npopmax,nchrmax) ,iparent (npopmax,nchrmax

COMMON / genl / parent,fit

COMMON / gen2 / iparent,ichild

COMMON / gen3 / nbits,nparam,modpop, nchrome

COMMON / gen7 / islpop,nisland,xmixprob

do 100 k=l,nisland

kdum=(k-1)’islpop

do 200 i=l,islpop

iranl=int (real(islpop) *ranl(idum) )+l+kdum

if (iranl.gt. islpop+kdum) iranl=islpop+kdum

iran2=int (real(islpop) *ranl(idum) )+l+kdum
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if (iran2.gt. islpop+kdum) iran2=islpop+kdum

if (iran2.eq.iranl) go to 210

if (fit(iran2) .gt.fit(iranl)) then

mate=iran2

else

mate=iranl

end if

do 220 j=l,nchrome

ichild(i+kdum, j)=iparent (mate,j)

220 continue

200 continue

100 continue

RETURN

END

Roulette Wheel Selection

The following subroutine selects the fittest members ofthe population according

to the “Roulette Wheel” method, in

selected is proportional to its fitness.

ichikiarrayare filledbyrepeated spins.

SUBROUTINE rselect

PARAMETER (npt

DIMENSION fit

DIMENSION ich:

COMMON / genl

COMMON / gen2

COMMON / gen3

COMMON / gen7

which an individual’s chance of being

Slots in the intermediate (pre-crossover)

pmax=200,nparmax=48 ,nchrmax=384 ,nislmax=100 )

npopmax) ,parent (npopmax,nparmax)

ld(npopmax,nchrmax) ,iparent(npopmax ,nchrmax)

/ parent,fit

/ iparent,ichild

/ nbits,nparam,modpop,nchrome

/ islpop,nisland,xmixprob

do 100 k=l,nisland

kdum=(k-l)’islpop

pfitsum=O.O

do 110 l=l,islpop

pfitsum=pfitsum+fit (l+kdum)

110 continue

do 200 i=l,islpop

partsum=O.O

rand=ranl (idum) *pfitsum

do 300 j=l,islpop

partsum=partsum+fit (j+kdum)

if (partsum.ge.rand) then

mate=j+kdum
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go to 400

end if

300 continue

400 continue

do 500 n=l,nchrome

ichild(i+kdum, n)=iparent (mate,n)

500 continue

200 continue

100 continue

RETURN

END

Stochastic Universal Selection

The following subroutine selects the fittest members of a population by the

Stochastic Universal method, an efficient implementation of Stochastic

Remainder selection.

SUBROUTINE uselect

PARAMETER (npopmax=200,nparmax=48,nchrmax=384,nislmax=100)

DIMENSION fit(npopmax),parent (npopmax,nparmax)

DIMENSION ichild(npopmax,nchrmax) ,iparent (npopmax,nchrmax)

COMMON / genl / parent,fit

COMMON / gen2 / iparent,ichild

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen7 / islpop, nisland,xmixprob

do 100 k=l,nisland

kdum=(k-1)’ islpop

pfitsum=O.O

do 110 l=l,islpop

pfitsum=pfitsum+fit (l+kdum)

l:LO continue

divf=pfitsum/real (islpop)

rand=ranl (idum) *divf

addsum=rand

do 200 i=l,islpop

partsum=O.O

do 300 j=l,islpop

partsum=partsum+fit (j+kdum)

if (partsum.ge.addsum) then

do 400 n=l,nchrome

ichild(i+kdum,n) =iparent(j ,n)

continue

addsum=addsum+divf

go to 200

400
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end if

300 continue

200 continue

100 continue

call shuffle(ichild)

RETURN

END

Shuffling

The following subroutine shuffles the position ofeachmemberof theichildarray

in preparation for two by two crossover. This is required after using Stochastic

Universal Selection.

SUBROUTINE shuffle(ichild)

PARAMETER (npopmax=200,nparmax=48,nchrmax=384,nislmax=100)

DIMENSION ichild(npopmax,nchrmax) ,itemp(nchrmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen7 / islpop, nisland,xmixprob

do 100 k=l,nisland
kdum=(k-1)’islpop

do 200 i=l,islpop

iranl=int (real(islpop) *ranl(idum) )+l+kdum

do 300 j=l,nchrome

itemp(j )=ichild(i+kdum, j)

300 continue

do 400 j=l,nchrome

ichild(i+kdum, j)=ichild(iranl ,j)

400 continue

do 500 j=l,nchrome

ichild(iranl, j)=itemp(j )

500 continue

200 continue

100 continue

RETURN

END

Evaluating thepopulation

This subroutine evaluates the fitness of the model population by decoding the

binarystrings into sets ofreal parameters, calling the fitness function~uncforeach
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set and then converting the objective function value into a fitness value in the

following way:

if minimization is the object,

fit(i) = max(obj) - obj(i)

if maximization is the object,

fit(i) = Obj(i)

where @(i) is the fitness function value for the if~ member of the population,

max(obj) is the maximum objective function value for the entire population, and

obj(i) is the objective function value for the i~~member of the

If a selection method other than tournament selection is used,

is applied and if istr=l, sigma truncation is performed to

“lethals” from the population.

population.

linear fitness scaling

remove low fitness

SUBROUTINE evaluate (icount, rein,ibest, kbest, fmax, fitavg)

PARAMETER (npopmax=2OO,nparmax=48, nchrmax=38 4,nis lmax=l 00 )

DIMENSION parent (npopmax, nparmax ),iparent (npopmax, nchrmax)

DIMENSION fit (npopmax) ,objfunc (npopmax )

DIMENSION ichi ld (npopmax, nchrmax)

DIMENSION ibest(nislmax, nchrmax) ,kbest(nislmax)

COMMON / genl / parent, fit

COMMON / gen2 / iparent,ichild

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen5 / iselect, smult,stmult

30 format (i4,4(lx,f10.3))

31. format (i4,6(lx,f10.3))

omax=O.O

Osum=o.o

fmax=O.O

fitsum=O.O

c--––-Decode the binary strings to real number arrays and test

c--–––their fitness with the objective function

do 460 j=l,modpop

call decode (j,parent, iparent)

objfunc(j) =func(j,parent )
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if (objfunc(j) .gt.omax) then

omax=objfunc (j)

jtempl=j

end if

460 continue

omin=omax

do 470 j=l,modpop

if (objfunc(j) .lt.omin) then

omin=objfunc (j)

jtemp2=j

end if

470 continue

if (icount.eq.1) omperm=omax

c–––––If the object is minimization, map the objective function

c–––––into a fitness function
if (min.eq.1) then

jworst=jtempl

jbest=jtemp2

do 480 j=l,modpop
fit(j) =omax-objfunc (j)

480 continue

call findbest (fmax,ibest, fitsum, sigma,kbest)

fitavg=fitsum/real (modpop)

if (icount.eq.imax) then

call output(kbest)

end if

if (iselect.eq.0) go to 540

c-----If istr=l, apply sigma truncation to fitnesses

if (istr.eq.1) then

call strunc( fit,fitavg,sigma)

end if

c–––––Scale fitness for minimization by linear scaling

call lscale(fit, fitavg,fmax, fitsum, sfitsum,smult)

sfmax=fit(jbest)

530 sfitavg=sfitsum/real (modpop)

write (4,31) icount, omin,fitavg,

& omperm-omin ,sfitavg,s fmax

540 if (iselect.eq.0) then

write (4,30) icount, omin,fitavg, fmax

end if

c–––––If maximization is the object, use objective function for

c-----fitness function

else

600

end

do 600 j=l,modpop

fit(j)=objfunc(j)

continue

jbest=jtempl

fitavg=osum/real (modpop)

fmax=omax

sfitsum=osum

write (4,*) icount, fitavg,fmax

call findbest (fmax,ibest, fitsum, sigma,kbest)

if
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RETURN

END

Migration between islands

If the population is divided into islands, this subroutine mixes the members

according to the parameter xmixprob. It is called every mixint generations.

SUBROUTINE migrate (ichild )

PARAMETER (npopmax=200,nparmax=48,nchrmax=384,nislmax=100)

DIMENSION ichild(npopmax,nchrmax) ,itemp(nchrmax)

COMMON / gen3 /,nbits,nparam,modpop,nchrome

COMMON / gen7 / islpop, nisland,xmixprob

do 100 i=l,modpop

randl=ranl (idum)

if (randl. le.xmixprob) then

iran2=int(real (modpop)*ranl (idum) )+1

do 200 j=l,nchrome
itemp(j )=ichild(i,j )

200 continue

do 300 j=l,nchrorne

ichild(i,j )=ichild(iran2, j)

300 continue

do 400 j=l,nchrome

ichild(iranl, j)=itemp(j)

400 continue

end if

100 continue

RETURN

END

Decodingthe binary strings into real numbers

Th.e following subroutine decodes the binary parent amay ofdimension (nchrome

X,modpop)intoa realnumberarray ofdimension(nparam Xmodpop).

SUBROUTINE decode (i,parent, iparent)

PARAMETER (npopmax=200,nparmax=48 ,nchrmax=384,nislmax=100)

DIMENSION parent (npopmax,nparmax) ,iparent (npopxnax,nchrmax)
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DIMENSION parmin(nparmax),parmax(nparmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen6 / parmin,parmax

m. ()

do 100 k=l,nparam

iparam=O

sum=O .0

do 200 j=l,nbits

iparam=iparam+iparent (i,j+m*nbits )*(2**(nbits–j ))

sum=sum+2. O**(j–1)

200 continue

parent (i,k)=parmin (k)+real(iparam) *(parmax(k)-

& parmin(k))/sum

m=m+ 1

100 continue

RETURN

END

Elitism

The following subroutine implements elitism if ielite = 1 by first checking to see

ifthe best individual in each island was reproduced and replicating the model into

arandom slotin theiskmdifnot.

SUBROUTINE elite(ibest)

PARAMETER (npopmax=200, nparmax=48,nchrmax=384, nislmax=100)

DIMENSION iparent (npopmax,nchrmax)

DIMENSION ichild(npopmax,nchrmax)

DIMENSION ibest(nislmax,nchrmax)
COMMON / gen2 / iparent,ichild

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen7 / islpop,nisland,xmixprob

c-––-–Check to see if best parent was replicated in each

c–––––population

nelite=O

do 100 l=l,nisland

ldum=(l-1)’islpop

do 200 i=l,islpop

do 210,j=l,nchrome

if (iparent(i+ldum, j) .eq.ibest(l,j)) nelite=l

if (nelite.eq.nchrome) melite=l

210 continue

200 continue

c–––––If the best parent was not replicated, replicate in a random



c-----slot

if (melite.eq.0) then

rand=ranl( idum)

irand=l+int (real(islpop) *rand) +ldum

do 120 k=l,nchrome

iparent(irand, k)=ibest(l, k)

120 continue

end if

100 continue

RETURN

END

Findingthebest modelineach island

This subroutine finds the best model in each island and copies the binary

parameters of each into the array ibest.

SUBROUTINE findbest (fmax, ibest,fitsum, sigma,kbest)

PARAMETER (npopmax=200,nparmax=48,nchrmax=384,nislmax=100)

DIMENSION fit(npopmax), iparent (npopmax,nchrmax)

DIMENSION ibest(nislmax,nchrmax) ,kbest(nislmax)

DIMENSION parent (npopmax,nparmax) ,ichild(npopmax,nchrmax)

COMMON/ genl /

COMMON / gen2 /

COMMON / gen3 /

COMMON / gen5 /

COMMON / gen7 /

var=O .0

fitsum=O.O

parent,fit

iparent,ichi ld

nbits,nparam, modpop,nchrome

iselect, smult,stmult

islpop,nisland, xmixprob

do 100 k=l,nisland

fmax=O.O

kdum=(k-l)’islpop

do’200 i=l,islpop

fitsum=fitsum+fit (i+kdum)

var=var+fit (i+kdum) **2.O

if (fit(i+kdum) .gt.fmax) then

fmax=fit(i+kdum)

kbest(k)=i+kdum

do 110 j=l,nchrome

ibest(k,j) =iparent(i+kdum, j)

110 continue

end if

200 continue

100 continue

sigma=sqrt (var/real(modpop) )
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RETURN

END

Sigma Truncation

This subroutine applies Sigma Truncation to the fitness array. This is useful to

remove low fitness “lethals” from the population and allow abetter linear scaling.

SUBROUTINE strunc (fit, fitavg, sigma)

PARAMETER (npopmax=200, nparmax=48, nchrmax=384, nislmax=100)

DIMENSION fit(npopmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen5 / iselect, smult,stmult

do 100 n=l,modpop

fit(n) =fit(n) -( fitavg-stmult’sigma)

if (fit(n) .lt.O.0) fit(n)=O.O

100 continue

RETURN

END

LkearScaling

This subroutine applies linear scaling to the fitness array. The fitnesses are

pivoted about the average value inorder to lessen the slope early inthe run and to

steepen itlater in the run.

SUBROUTINE lscale(fit, fitavg,fmax, fitsum,sfitsum)

PARAMETER (npopmax=200, nparmax=48 ,nchrmax=384,nislmax=100)

DIMENSION fit(npopmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen5 / iselect, smult,stmult

sfitsum=O .0

if (fmax.gt. (smult*fitavg)) then

delta=fmax-fitavg

a=(smult–1.O)*fitavg/delta
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b=fitavg’ (fmax-smult’”fitavg) /delta

else

sfitsum=fitsum

go to 200

end if

do 100 n=l,modpop

fit(n)=a’fit(n)+b

sfitsum=sfitsum+fit (n)

100 continue

200 RETURN

END

Writing totheoutput file

This subroutine writes the best model parameters for each island to the file

genalg.out.

SUBROUTINE output(kbest)

PARAMETER (npopmax=200,nparmax=48,nchrmax=384,nislmax=100)

DIMENSION parent (npopmax,nparmax)

DIMENSION fit(npopmax)

DIMENSION kbest(nislmax)

COMMON / genl / parent,fit

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen7 / islpop,nisland,xmixprob

17 format (i3rlx, f8.3,1x,48(lx,f8. 3))

open (unit=12, file=’genalg.out ‘,status= ’unknown’)

do 100 j=l,nisland

jdum=kbest(j )

write (12,17)

& jdum,fit(jdum), (parent (jdum, k),k=l,nparam)

100 continue

close (12)

RETURN

END

Writing tothe restart file

This subroutine writes the binary iparent array to the file restart.inp. It is called

every nrestart generations.



191

20

100

SUBROUTINE wrestart(iparent)

PARAMETER (npopmax=200,nparmax=48,nchrmax=384,nislmax=100)

DIMENSION iparent (npopmax,nchrmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

format (384(i2))

open (unit=30, file=’restart .inp’ ,status= ’unknown’)

rewind 30

do 100 i=l,modpop

write (30,20) (iparent (i,j),j=l,nchrome)

continue

close (30)

RETURN
END

PartiallyMatched Crossover(PMX) inversion operator

This subroutine implements Goldberg’s Partially Matched

operator, combining inversion andcrossover into one step.

Crossover inversion

Two new arrays must be added to the main routine that contain theorder of the

binary parent array andthebinary child array. Also, the decoding subroutine must

be modified slightly (see below).

27

110

SUBROUTINE order(pcross)

PARAMETER (npopmax=200,nparmax=48,nchrmax=384)

DIMENSION ichild(npopmax,nchrmax) ,iparent (npopmax,nchrmax)

DIMENSION iplocus (npopmax,nchrmax) ,iclocus (npopmax,nchrmax)

DIMENSION itempl(nchrmax) ,itemp2(nchrmax)

DIMENSION itemp3(nchrmax), itemp4 (nchrmax)

COMMON / gen2 / iparent,ichild

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen7 / iplocus,iclocus

format (48(1x,12))

do 100 j=l,modpop,2

randl=ranl (idum)

if (randl.gt.pcross) go to 100

irandl=l+int (real(nchrome–1 )*ranl(idum) )

irand2=l+int (real(nchrome-1 )*ranl(idum) )

if (irand2. eq.irandl) go to 110
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410

420

560

550

icrossl=min (irandl,irand2 )

icross2=max (irandl,irand2 )

do 200 k=l,nchrome

iplocus (j,k)=iclocus (jJk)

iplocus(j+l,k) =iclocus(j+l,k)

do 210 i=icrossl+l, icross2

if (iclocus(j,k) .eq.iclocus(j+l,i))

& iplocus(j,k) =–1

if (iclocus(j+l,k) .eq.iclocus(j,i))

& iplocus(j+l,k) =-1

210 continue

2C0 continue
m. 1

do 410 k=icross2+l, nchrome

itempl(m)=iplocus (jrk)

itemp2(m)=iplocus (j+l,k)

itemp3(m)=ichild(j ,k)

itemp4(m) =ichild(j+l, k)

m=m+ 1

continue

do 420 k=l,icross2

itempl(m)=iplocus (j,k)

itemp2(m)=iplocus (j+l,k)

itemp3 (m)=ichild(j ,k)

itemp4(m) =ichild(j+l, k)

m=m+ 1

continue

do 500 k=l,nchrome+icrossl-icross2
if (itempl(k) .lt.0) then

do 510 l=k,nchrome
if (itempl(l).gt.0) then
itempl(k)=itempl (1)
itemp3 (k)=itemp3 (1)
itempl(l)=-1
go to 500
end if

510 continue

end if

500 continue

do 550 k=l,nchrome+icrossl-icross2

if (itemp2(k) .lt.0) then

do 560 l=k,nchrome

if (itemp2(l) .gt.0) then

itemp2(k)=itemp2 (1)

itemp4(k)=itemp4 (1)

itemp2(l)=–1

go to 550

end if

continue

end if

continue

m= 1

do 600 k=icross2+l,nchrome

iplocus(j,k) =itempl(m)
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600

710

810
100

iplocus (j+l, k)=itemp2 (m)

iparent (j,k)=itemp3 (m)

iparent (j+l, k)=itemp4 (m)

m=m+ 1

continue

do 710 k=l,icrossl
iplocus(j,k) =itempl(m)
iplocus(j+l,k) =itemp2(m)
iparent(j, k)=itemp3(m)
iparent(j+l,k) =itemp4(m)
m=m+ 1

continue

do 810 k=icrossl+l, icross2

iplocus(j,k) =iclocus(j+l,k)

iplocus(j+l, k)=iclocus (j,k)

iparent (j,k)=ichild(j+l ,k)

iparent(j+l,k) =ichild(j,k)

continue

continue

RETURN

END

This routine decodes abinary string into areal number. It is modified slightlyto

handle allele information.

SUBROUTINE decode (i,parent, iparent, iplocus)

PARAMETER (npopmax=200, nparmax=48,nchrmax=384)

DIMENSION parent (npopmax,nparmax) ,iparent (npopmax,nchrmax)

DIMENSION parmin(nparmax),parmax(nparmax)

DIMENSION iplocus (npopmax,nchrmax)

DIMENSION itemp(nchrmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen6 / parmin,parmax

do 100 k=l,nchrome

iduml=iplocus (irk)

itemp(iduml) =iparent(i, k)

100 continue
m. O

do 200 k=l,nparam

iparam=O

sum=O .0

do 300 j=l,nbits

iparam=iparam+itemp (j+m*nbits) *(2**(nbits–j ))

sum=sum+2. O**(j–l)

300 continue

parent(i,k) =parmin(k)+real (!.param)* parmax(k)-



parmin(k))/sum&
m=m+ 1

200 continue
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RETURN

END

Niching

The following subroutine adjusts fitness according to diversity. It uses Goldberg’s

triangular sharing function (Goldberg, 1989) to continuously update sharing and

caJculate the normalized similarity from members of new generation instead of

parent generation (Oei, 1991). This method solves the instability problems of the

standard niching approach. A binaty array must be added to the main routine

w’lich stores a” 1“ for each parameter that niching is desired for and a “O” for the

ones that it is not. This routine must be called by the modified tournament

selection routine given below, and the main program must also be modified so

that the new generation slots are filled by calling the tournament selection routine

repeatedly until the slots are filled.

SUBROUTINE niche (ii, jpick, sumshar)

PARAMETER (npopmax=2OO,nparmax=48, nchrmax=38 4 )

DIMENSION fit (npopmax )

DIMENSION parent (npopmax, nparmax ),chi ld (npopmax, nparmax )

DIMENSION parmin (nparmax ),parmax (nparmax)

DIMENSION iniche (nparmax )

COMMON / genl / parent, child, fit

COMMON / gen3 / nbits, nparam, modpop, nchrome

COMMON / gen6 / parmin, parmax

COMMON / gen7 / iniche, nichesum

itotal=ii–1

sumshar=O .0

do 100 j=l, itotal

de12=0.O

do 200, k=l,nparam
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if (iniche(k) .eq.1) then

de12=de12+ ((parent(jpick, k)-child(j,k) )/

& (parmax(k) -parmin(k) ))’’2.0

end if

200 continue

dell=sqrt((de12 )/float(nichesum) )

if (dell .lt. float(nichesum) ) then

sumshar=sumshar+l -dell

else

sumshar=sumshar+l .0

end if

100 continue

sumshar=sumshar/ float(itotal )

RETURN

END

This is the modified tournament selection routine that must be used with the

niching routine:

SUBROUTINE tselect (i,mate,fit)

PARAMETER (npopmax=200,nparmax=48 ,nchrmax=384)

DIMENSION fit(npopmax)

DIMENSION iniche(nparmax)

COMMON / gen3 / nbits,nparam,modpop,nchrome

COMMON / gen7 / iniche,nichesum

iranl=int (real(modpop) *ranl(idum) )+1

if (iranl.gt.modpop) iranl=modpop

100 iran2=int (real(modpop) *ranl(idum) )+1

if (iran2.eq.iranl) go to 100

if (iran2.gt.modpop) iran2=modpop

if (i.gt.2.and.nichesum.ne. O) then

call niche (i,iranl,sumsharel)

call niche(i,i:

fitl=fit(iranl

fit2=fit(iran2

else

fitl=fit(iranl

fit2=fit(iran2

end if

if (fit2.gt.fitl) then

mate=iran2

else

mate=iranl

end if

RETURN

END

an2,sumshare2 )

/sumsharel

/sumshare2
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Appendix B: A pattern search algorithm in FORTRAN

This Pattern search algorithm roughly follows the method outlined in the paper

by Hooke and Jeeves (1961), with the exception that the step size is decreased

exponentially rather than arithmetically. This code is currently set to handle a

maximum of 200 parameters. The parameter statements must be changed in the

main program and the subroutines in order to use higher values.

Program variable definitions

base The basepoint (starting model).

maxit Maximum number of iterations.

min = O for function Maximization.

= 1 for function Minimization.

newbase The next basepoint.

nparam Number of input parameters.

nparmax Maximum number of parameters allowed.

step = Initial step size (should be on the order of 1/10 of the desired

search space).

xfac = The factor that is multiplied by the initial step size after each

iteration.

Subroutine Descriptions

adjust Adjusts the step size.

explore Takes exploratory steps.

output Writes output to converge.out.

pattern Makes pattern move.



Input files

Sample pattern.in file:
5 Ilnparam
1 Ihnin
10 //maxit
5 llmaxrun
3.4 ().4 ().5 //base(l),step( l),xfac(l)
4.6 0.40.5 //base(2), step(2),xfac(2)
5.110.50.5 //base(3),step(3 ),xfac(3)
5.2! 0.5 0,5 /lbase(4),step(4),xfac(4)
5.3 0.5 0.5 //base(5),step(5),xfac(5)

Main Routine

PROGRAM PATTERN

PARAMETER (nparmax=200)

DIMENSION base(nparmax) ,trial(nparmax)

DIMENSION step(nparmax),xistep (nparmax) ,xfac(nparmax)

13 format (A26,16)

18 format (i6,3x,f9.4)

c---––Open input and output files

c–----Read in input file parameters

open (unit=l, file=’pattern. in’ ,status=’old’)

read (l,*) nparam

read (l,*) min

read (l,*) maxit

read (l,*) maxrun

do 100 i=l,nparam

read(l,’) base(i), step(i),xfac (i)

xistep(i)=step(i)

100 continue

close (1)

c---–– Initiate iteration and run counter

icount=l

irun=l

open (unit=4, file=’converge out’ ,status=’unknown’ )

objO=func(base ,nparam)

objl=objO

write (4,18) O,objl

iflag=O

c––-–-Begin main processing loop

200 continue

objt=objl

c––-–-Make exploratory moves and if successful a pattern move
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call explore (base, trial, step, nparam, objt)

if (objt.lt.objl) then

objl=objt

c--––-If pattern moves and trial moves are both unsuccessful

c---–-adjust the step size

else

if (icount.lt.maxit) then

call adjust (step,xfac,nparam)

iduml=icount+ (irun-l)*maxit

print 13, ‘Finished Iteration Number ‘,iduml

write (4,18) iduml,objl

call flush (4)

icount=icount+l

else

go to 300

end if

go to 200

end if

go to 200
300 if (irun.lt.maxrun) then

do 400 i=l,nparam

step(i)=xistep(i)

400 continue

irun=irun+ 1

icount=l

go to 200

end if

close (4)

c–––--When finished, write results to output

call output (base,nparam)

print *, ‘‘

print 16, ‘--- Finished run successfully ---’

STOP

END

Exploratory moves

This subroutine makes exploratory moves, perturbing each parameter one at a

time and checking to see if the solution is improved. If there is overall

improvements patternmovecan bemade, andif notthestepsize isdecreased.

SUBROUTINE explore (base, trial, step,nparam, objO)

PARAMETER (nparmax=200)

DIMENSION base(nparmax), trial(nparmax)
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DIMENSION step(nparmax)

objl=objO

do 100 i=l,nparam

trial(i)=base(i)
100 continue

c----–Make exploratory steps for each parameter

c-––--individually.

do 200 i=l,nparam

trial (i)=base (i)+step(i)

obj2=func( trial,nparam)

if (obj2.gt.objl) then

trial (i)=base (i)-step(i)

obj2=func(trial ,nparam)

if (obj2.gt.objl) then

trial(i)=base(i)

else

objl=obj2

end if

else

objl=obj2

end if

200 continue

c–--––If exploratory moves are successful trial point

c-––––becomes new basepoint, base and trial are switched,

c---––and pattern move is made

if (obj2.lt.objO) then

do 300 i=l,nparam

duml=trial(i)

trial(i)=base(i)

base(i)=duml

300 continue

call pattern(base, trial,nparam, obj2)

objO=obj2

end if

RETURN

END

Patternrnove

If exploratory moves are successful, the successful series ofmoves is repeated

here if it improves the solution. This step makes the algorithm very efficient

because amajorimprovernen tin the solution can bemade with only 1 objective

function evaluation.
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SUBROUTINE pattern(base, trial,nparam,objO)

PARAMETER (nparmax=200)

DIMENSION base(nparmax), trial(nparmax) ,test(nparmax)

do 100 i=l,nparam
diff=base(i) -trial (i)

test(i) =base(i)-diff

100 continue
objl=func( test,nparam)
if (objl.lt.objO) then

do 200 i=l,nparam
base(i)=test (i)

200 continue
objO=objl

end i.f

RETURN

END

Decreasingthestep size

If exploratory moves are unsuccessful, the step size vector is decreased by

multiplying itby the factorxjizc.

SUBROUTINE adjust (step,xfac,nparam)

PARAMETER (nparmax=200)

DIMENSION step(nparmax),xfac (nparmax)

do 100 i=l,nparam

step (i)=step(i)*xfac (i)

100 continue

RETURN

END

Writing to the output file

This subroutine

params.out.

writes the best model parameters for each island to the file
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SUBROUTINE output (param,nparam)

PARAMETER (nparmax=200)

DIMENSION param(nparmax)

10 format (i5,2x,f10.5)

open (unit=12, file=’params out’ ,status=’unknown’ )

do 100 i=l,nparam

write (12,10) i,param(i)

100 continue

close (12)

RETURN

END


