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Abstract

We report on a successful implementation of a wavelet-
based Poisson solver for use in 3D particle-in-cell (PIC)
simulations. One new aspect of our algorithm is its abil-
ity to treat the general (inhomogeneous) Dirichlet bound-
ary conditions (BCs). The solver harnesses advantages af-
forded by the wavelet formulation, such as sparsity of oper-
ators and data sets, existence of effective preconditioners,
and the ability simultaneously to remove numerical noise
and further compress relevant data sets. Having tested our
method as a stand-alone solver on two model problems, we
merged it into IMPACT-T to obtain a fully functional serial
PIC code. We present and discuss preliminary results of
application of the new code to the modelling of the Fermi-
lab/NICADD and AES/JLab photoinjectors.

INTRODUCTION AND MOTIVATION

PIC simulations are widely used in large-scale compu-
tational modeling in application fields as diverse as ac-
celerator physics, galactic dynamics, plasma physics, and
solid state device design. The PIC method [1] models the
multiparticle dynamics of the system by tracking a set of
tracer particles that sample the initial phase-space distri-
bution function of the system. In quasi-static approxima-
tion, where the dynamics is modeled as the solution of
the Vlasov-Poisson system of equations, the efficiency of
the self-consistent inter-particle force calculation can be
increased significantly by depositing the charge/mass dis-
tribution onto a computational grid, and solving the field
equation on the grid. In accelerator physics applications,
it is important that the on-grid Poisson solver used in PIC
modeling be able to satisfy the following requirements:

1. account for multiscale dynamics, because even the
fluctuations on smallest scales can lead to global insta-
bilities and fine-scale structure formation, as exempli-
fied by halo formation and microbunching instability
observed in beam dynamics experiments [2, 3],

2. minimize the numerical noise due to the fact that the
number of particles used to sample the phase-space
distribution function in the N -body simulation is sev-
eral orders of magnitude smaller than the number of
particles in the physical system which is being mod-
eled, and
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Figure 1: Flow-chart outline of the wavelet-based Poisson
solver using (constrained) PCG method. The gray boxes
represent the wavelet space; the physical space is in white.
Constraining the PCG method is applied in the bottom mid-
dle box. The current version of the code does not have this
step implemented yet.

3. be as efficient as possible in terms of computational
speed and storage requirement, without compromis-
ing accuracy.

DESCRIPTION OF THE SOLVER

We have built on earlier work of Beylkin and co-workers
[4, 5, 6] to design and implement an iterative algorithm for
solving the Poisson equation in three dimensions on the
grid, subject to general (inhomogeneous) Dirichlet bound-
ary conditions. A combination of three circumstances
makes iterative solver particularly attractive in the current
setting: Firstly, the (Laplacian) operator remains sparse in
a wide variety of wavelet bases. Secondly, precondition-
ers for the Laplacian exist that are effectively diagonal in
a wavelet basis. Finally, the fact that the Poisson equa-
tion has to be solved repeatedly, with the source term not
changing significantly from one timestep to the next, sim-
plifies to some extent the choice of the initial approxima-
tion (one can, e.g., use the potential computed on the pre-
vious timestep as the initial approximation for the present-
time potential).

As can be seen from the flow-chart in Figure 1, one
begins by introducing a rectangular computational grid
that envelopes tightly the density distribution, and whose
boundaries may or may not coincide with the physical
boundaries of the system on which the boundary condi-



tions are specified. After computing the potential on the
surface of the computational grid, one performs a Fast Dis-
crete Wavelet Transform (FDWT) [7] on the source term
and the Laplacian operator, solves the Poisson equation in
the wavelet space, and performs the inverse FDWT to re-
cover the on-grid potential in the physical (configuration)
space. We now proceed to describe the boundary condition
implementation in one important special case, and present
the basic details of the preconditioned conjugate gradient
(PCG) algorithm that forms the core of our solver.

Implementation of Boundary Conditions

A (Dirichlet) boundary condition often encountered in
practice with beam dynamics simulations is that of the zero
potential on the walls of an infinite pipe of rectangular
cross-section, with open BCs in the longitudinal (z) di-
rection. The Green’s function for such BCs is analytically
known, so that the corresponding potential can be found by
solving the set of equations
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where ρ is the charge distribution, φ is the potential, αl =
lπ/a, βm = mπ/b, γ2

lm = α2

l + β2

m, ε0 is the permittivity
of vacuum and the geometry of the pipe is given by 0 ≤
x ≤ a and 0 ≤ y ≤ b [8, 9]. Eq. (3) is evaluated only on the
surface of the computational grid, and for the predefined
number of expansion coefficients Nx and Ny.

Preconditioned Conjugate Gradient

The 3D Laplacian is a sparse, positive definite opera-
tor. The same holds true of the wavelet-decomposed Lapla-
cian, assuming that one applies to it a thresholding pro-
cedure whereby all coefficients with magnitudes below a
user-specified threshold are set equal to zero. In this set-
ting, a conjugate gradient (CG) algorithm [10] provides an
efficient way to invert the operator, the convergence rate
depending on the condition number κ [10] as
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A major advantage of working in a wavelet basis is the ex-
istence of a diagonal preconditioner (first reported in [4]
for the case of periodic BCs) that lowers κ from O(N 2) to
O(N). Our preconditioned conjugate gradient (PCG) al-
gorithm is a combination of the operator formulation of the
CG method with a wavelet-basis preconditioner.
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Figure 2: Comparison of IMPACT-T (solid lines),
IMPACT-T with PCG and Nx = Ny = 30 expansion
coefficients (dashed lines) and IMPACT-T with PCG and
with Nx = Ny = 100 expansion coefficients (dotted lines)
for the Fermilab/NICADD photoinjector (bunch charge of
1 nC).
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Figure 3: Comparison of IMPACT-T (solid lines),
IMPACT-T with PCG and Nx = Ny = 30 expansion co-
efficients (dashed lines) and PARMELA for the AES/JLab
low-charge photoinjector (bunch charge of 133 pC).

Finally, we note that the thresholding operation per-
formed both on operators and potential/density data sets
is the simplest possible way to effect simultaneous com-
pression and denoising. We are currently working on com-
bining sparse array storage and manipulation algorithms
with advanced, adaptive techniques for simultaneous com-
pression and denoising to achieve new multiscale, high-
efficiency, high-fidelity PIC simulation capabilities.



Figure 4: Comparison of IMPACT-T (left column) and
IMPACT-T with PCG (right column) for transverse distri-
butions at different z-locations along the AES/JLab low-
charge photoinjector (bunch charge of 133 pC).

PHOTOINJECTOR SIMULATIONS

Having tested the solver in the stand-alone mode on two
three-dimensional test density distributions, one mimick-
ing a charged particle beam and the other a galaxy [12],
we have merged it into the IMPACT-T [8, 9] PIC code
(replacing IMPACT-T’s standard Poisson solver based on
the use of Green’s functions and the FFTs). Figures 2
and 3 present the results of simulations performed using
IMPACT-T with the “native” solver and IMPACT-T with
the new PCG solver. Figure 2 shows a standard set of rms
diagnostics computed in a 200000-particle simulation of
the Fermilab/NICADD photoinjector when electron trans-
verse distribution is highly non-uniform. In this case, only
true 3D algorithms, such as the one we discuss here, should
be used. Figure 3 shows the same set of rms diagnostics
for the AES/JLab photoinjector [11] for a uniform trans-
verse distribution. The agreement among the results is
clearly quite good. Going beyond the rms characteriza-
tion of dynamics, Figure 4 illustrates the level of agree-
ment in resolving the fine-scale structure of the charge den-

sity distribution; the latter was computed in simulations of
the AES/JLab photoinjector performed with 200000 sim-
ulation particles with non-uniform transverse initial dis-
tribution. As for the computational efficiency of the new
solver, in serial simulations, runtimes for the two versions
of IMPACT-T are within 10% of each other (the exact ratio
depending on the total simulation length). Implementation
of the denoising and compression will lead to further im-
provements in performance.

CONCLUSIONS

A new, wavelet-based 3D solver for the Poisson equa-
tion subject to general (inhomogeneous) Dirichlet bound-
ary conditions has been implemented and successfully in-
tegrated into IMPACT-T. The solver is based on the op-
erator formulation of the preconditioned conjugate gradi-
ent method. It takes full advantage of sparsity of wavelet-
decomposed operators and data sets, existence of efficient
(diagonal) preconditioners in wavelet bases, and recur-
sive nature of the PIC method. The new solver has been
tested using standard IMPACT-T simulation results as a
benchmark, and subsequently used in modeling the Fermi-
lab/NICADD and AES/JLab photoinjectors. To our knowl-
edge, work reported here and in [12] constitutes the first
application of the wavelet-based multiscale methodology
to beam dynamics simulations.
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