RELATIVISTIC ATOMIC PHYSICS
AT THE SSC

Office of Intellectual
Property Counsel

DOE Field Office, Chicago

Proposal from
The University of New Mexico, Albuquerque, New Mexico
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>II. List of Participating Scientists and Participating Institutions</td>
<td>2</td>
</tr>
<tr>
<td>III. General Background</td>
<td>3</td>
</tr>
<tr>
<td>IV. Project Description</td>
<td>5</td>
</tr>
<tr>
<td>1. Beam Diagnostics</td>
<td>5</td>
</tr>
<tr>
<td>2. Atomic Physics Research</td>
<td>7</td>
</tr>
<tr>
<td>3. Program</td>
<td>10</td>
</tr>
<tr>
<td>4. Staffing</td>
<td>11</td>
</tr>
<tr>
<td>5. Education</td>
<td>11</td>
</tr>
<tr>
<td>V. Budget Information Document</td>
<td>12</td>
</tr>
<tr>
<td>VI. Statement Concerning Matching Funds</td>
<td>16</td>
</tr>
<tr>
<td>VII. Description and Justification of Major Items of Equipment</td>
<td>17</td>
</tr>
<tr>
<td>VIII. Statement of Current and Pending Support</td>
<td>21</td>
</tr>
<tr>
<td>IX. Assurance of Compliance</td>
<td>22</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>1. Biographical Sketch</td>
<td>23</td>
</tr>
<tr>
<td>2. References</td>
<td>43</td>
</tr>
<tr>
<td>3. Existing facilities</td>
<td>44</td>
</tr>
</tbody>
</table>

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
I. EXECUTIVE SUMMARY

The first results from the SSC could well be major advances in fundamental atomic physics, rather than in fundamental particles, simply because the linac accelerating H\(^-\) up to relativistic velocities will come on line about 5 years before two 20 TeV protons will have close encounters of any kind. In its own way, a high quality, intense, beam of H\(^-\) ions with energies of the order of a GeV is just as unique in the physical world as is the beam of ultra high energy protons being produced by the big ring. Both beams allow us to make observations at the frontiers of human knowledge; in the linac case, the unique probes available would allow us to open a new window on the one— and two—electron atom and, as well, investigate the isotropy of space—time with precision in a rest frame moving near the speed of light.

This proposal is asking for support to prepare for an optimum and intelligent use of the H\(^-\) beam. Thought must go into how atomic physics measurements could be made, for example, using laser probes at the linac, and how one could make a high quality beam of H\(^+\) atoms prepared by photodetachment to be in a unique quantum state. Conversely, equipment could be developed, using known atomic beam techniques, to monitor and tailor the beam being injected into the ring structures. A cadre of scientists familiar with relativistic atomic beam physics must be built up.

We therefore propose that the group centered at the University of New Mexico presently working on relativistic atomic beam physics at LAMPF be strengthened and given the wider mandate to prepare for the SSC linac. We are asking for support for visitors from other institutions to come work with us on linac—related physics, and we are asking for more support of the real future of this field, the post docs and students.

In addition to support for people, we request a relatively modest equipment budget principally to acquire appropriate lasers, optics and high speed electronics for data acquisition for first use at LAMPF and finally at the SSC. Insofar as it is appropriate, the
UNM atomic physics group would participate in the outreach and other activities of the New Mexico Center for Particle Physics, which is being proposed in a separate document.

The research program of our group at UNM is presently supported as follows:

$110,000/per year U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research

$12,813/per year NSF (U.S.—Hungary Exchange)

Our group has been receiving an average of 3 or 4 weeks of machine time at LAMPF per year as well as year-round access to LANL facilities including laboratory and office space.

We are requesting support of $272,000 per year for the next five years from the Texas Commission, to complement our current support and to expand our level of effort in the direction of the SSC linac.

II. LIST OF PARTICIPATING SCIENTISTS AND INSTITUTIONAL AFFILIATIONS

1. Senior Scientists

As the atomic physics capabilities at the SSC are developed and recognised we expect the group at UNM and our collaborators will grow. At this point, we list those who are presently engaged in relativistic atomic beam work at LAMPF or who have expressed strong interest in joining this effort (marked with *).

Experimentalists

Dr. H.C. Bryant, The University of New Mexico

Dr. J.B. Donahue, LANL

Dr. C.R. Quick, Jr. LANL

Dr. Stanley Cohen, LANL

Dr. Joe Tiee, LANL

Dr. W.W. Smith, The University of Connecticut

* Dr. J.E. Stewart, Western Washington University

* Dr. M. Lubell, City College of New York
2. Graduate Students (UNM)

Experimental
Amir Mohagheghi (now post doc)
Chen Yau Tang
Monica Halka
Edward MacKerrow
Robert Pastel
Robert Giannelli

Theoretical
Steve Long
Li–E Li

III. GENERAL BACKGROUND

The advent of the SSC machine is widely expected to give a strong impetus to high energy particle physics in the U.S. What may not, however, have been recognized is that the new facility could also mean a major advance for an emerging branch of atomic physics
involving the study of atoms and ions moving at near luminal velocities: high energy atomic physics.

Since the late seventies, work has been going on at the 800 MeV linear accelerator (LAMPF) at Los Alamos using laser beams and other probes, such as strong fields and thin foils, to study the structure and electromagnetic interactions of the simplest of atomic systems \(\text{H}^+ \) and \(\text{H}^- \). The basic idea is to take advantage of the relativistic kinematics of an atom moving with a large \(\beta \) (at 800 MeV, \(v/c = 0.84 \)) to Doppler-shift beams from ordinary pulsed lasers into the vacuum ultraviolet, corresponding to excitation energies of the neutral hydrogen atom and its negative ion. Enormous electric fields can be induced in the atom's frame using modest laboratory magnets. Recently, continuously tunable, intense beams from the CO\(_2\) laser have been used to study for the first time multiphoton processes in the \(\text{H}^- \) ion.

To give a clearer idea of the power of relativistic kinematics in laser–ion beam studies, consider the relativistic Doppler formula

\[
E = \gamma E_L (1 + \beta \cos \alpha).
\]

Here the center-of-mass photon energy, \(E \), is given in terms of its laboratory energy \(E_L \), with \(\alpha \) being the angle between the laser beam and the particle beam, such that for head-on collisions \(\alpha = 0 \). At 800 MeV, since \(\gamma = 1.853 \) and \(\beta = 0.842 \), one can continuously tune a fixed-frequency laser through the range

\[
0.29 E_L \leq E \leq 3.4 E_L.
\]

Furthermore the laser intensity, \(I \), in the center of mass (Watts/cm\(^2\)) is related to the lab intensity, \(I_L \), by the square of the Doppler factor. That is,

\[
I = \gamma^2 (1 + \beta \cos \alpha)^2 I_L,
\]

so that one can get an intensity gain at \(\alpha = 0 \) of 11.65!

Finally, the barycentric electric field \(E \) produced by a transverse laboratory magnetic field \(B \) is given, in S.I. units, by

\[
E = \gamma \beta c B,
\]
so that a 1 Tesla lab field can result in a center of mass electric field of 4.7 MV/cm.

Before the development of relativistic beam techniques, the resonance structure of the H⁻ ion in the vacuum ultraviolet was essentially unknown except for a few electron–hydrogen scattering measurements. With our new methods we were able to demonstrate a rich structure of doubly–excited resonances in H⁻ and to study their behavior in electric and magnetic fields. We were also able to do similar studies on the low–lying states of H⁺. Precision checks on the isotropy of space–time are also possible using our technique.

In this proposal we are asking for support to increase our present level of effort to allow us to participate in the planning of the SSC linac facility and to gear up for state of the art experiments in the atomic beam at the SSC. The work already done and being planned for LAMPF may be regarded as prelude to the eventual flowering of these endeavors at the SSC, with the help of a strong group in high energy atomic physics at the University of New Mexico.

IV. PROJECT DESCRIPTION

1. Diagnostics, Monitoring and Tailoring for the H⁻ Linac at the SSC

The use of lasers to probe relativistic atomic beams, developed at LAMPF over the past twelve years, can be applied to the diagnosis, monitoring, and tailoring of the H⁻ linac beam at the SSC. The basic idea is to direct a laser beam at the H⁻ beam so that its Doppler–shifted frequency is centered on a well–defined feature in the absorption spectrum. This feature could be the well–known Feshbach resonance in H⁻, for example, at an excitation energy of 10.926 eV, whose intrinsic width is some 30 microvolts, or it could be a hydrogen resonance line excited by a 2–step process in which the H⁻ is first photodetached using a precursor infrared beam and the ground–state H⁺ is then excited. Even a three–step process might be contemplated, in which the complication of 3 separate laser beams might be exchanged for higher resolution and more convenient laboratory wave
lengths as well as a higher signal-to-noise ratio. By selective photodetachment or excitation, small regions of the overall phase space could be studied.

The energy resolution in the center of mass of a system moving at βc in a beam whose momentum dispersion is $\delta p/p$, and where the rms angular uncertainty is $\delta \alpha$, is given by

$$\frac{\delta E}{E} = \left\{ \left(\frac{\delta E}{E_L} \right)^2 + \left(\frac{\beta \sin \alpha}{1 + \beta \cos \alpha} \right)^2 (\delta \alpha)^2 + \left(\frac{\beta^2 + \beta \cos \alpha}{1 + \beta \cos \alpha} \right)^2 \left(\frac{\delta p}{p} \right)^2 \right\}^{\frac{1}{2}}.$$

Let us assume now for example that the laboratory energy resolution of the laser line is negligibly narrow, so that $\delta E/L_\perp = 0$, and that we are exciting the 1P Feshbach resonance at 10.926 eV just below the threshold for $\gamma + H^- \rightarrow H^+(2) + e$. By using a fixed-frequency laser, the observed angular width of the resonance would reflect both the angular uncertainty $\delta \alpha$ and the momentum spread $\delta p/p$ of the beam. At LAMPF $\delta \alpha$ can be as low as 10 microradians and $\delta p/p$ about 10^{-4}.

If it were possible to operate near $\cos \alpha = -\beta$ (the "magic angle"), sensitivity to $\delta p/p$ would disappear.

If it were possible to operate near $\alpha = 0$, sensitivity to $\delta \alpha$ would disappear.\(^3\)

If we wished to monitor both variables at once we would have to use one of the hydrogen lines, by first photodetaching (to either the ground state or an excited state) and then exciting the line. The use of such a technique is described in a publication of our group.\(^4\)

In Figure 1 we show as an example the laboratory intersection angle α required to excite the Feshbach resonance below $n=2$ in H^- using garden-variety pulsed lasers. The use of pulsed lasers gives a large signal to noise ratio. The availability of a tunable laser in the lab with sufficient intensity would be a great boon for this work because it would allow for continuous monitoring. A uv laser that could operate essentially CW while the H^- beam were present for example is a hollow cathode Cu+ laser which would offer unique possibilities: 1) Several uv lines together very near to the 4th YAG line (259.06, 259.90
Resonance Angle
for Feshbach 1P \(E = 10.926 \text{ eV} \)

![Graph showing resonance angle as a function of beam energy for different laser lines.]

Fig. 1. Angle of excitation of the Feshbach resonance at 10.926 eV as a function of H-$^-$ kinetic energy for several "garden-variety" laser lines of high intensity.
and 260.03 nm) would allow step-wise tuning. 2) Single mode operation with 10–15 MHz FWHM. 3) A long laser pulse that overlaps the beam pulse. 4) The excellent beam quality of the CW gas laser. On the other hand, no commercial model of such a laser has been made. Research is going on to develop such a laser in the framework of the NSF–Hungarian Academy of Sciences cooperation (Károly Rózsa). The feasibility of such a laser for the SSC should be investigated.

In order to permit flexibility in monitoring the linac beam as it is accelerated one should contemplate the provision of space between accelerating sections to insert laser beams with precision optics so that the angle \(\alpha \) may be altered at will with high resolution. The resulting electrons could be bent out of the beam at any point into a detector with a weak magnetic field. By operating near 90° and focusing the laser beam with a cylindrical lens in the transverse direction, one could examine separately small subsets of the larger diameter beam. Also one could monochromatize by photodetaching only those ions within a prescribed momentum bite.

We believe these techniques are quite promising and powerful. There are also many variations that could be studied to find the optimum arrangement for a given application. Therefore, at this point, it is important to design the space around the linear accelerator in such a way as to allow laser access to it. Equipment we are developing for use at LAMPF could be transferred over to experiments at the SSC linac.

Further development of appropriate laser systems would also be called for.

2. Atomic Physics Research

In addition to the diagnostics and other applications described above, it appears that unique basic atomic physics could also be performed at the SSC linac. Among the reasons why such work is so exciting, we can list

- A much more intense (milli—rather than pico—amps!), better quality beam with possibly a higher kinetic energy than the LAMPF beam (800 MeV). Even at 600 MeV, the beam would be very attractive.
A chance to develop an atomic physics facility from scratch rather than retrofitting it to an existing accelerator where compromises must be made, as was the case at LAMPF. With very little additional cost in the initial stages atomic physics experimental space and facilities can be accommodated, which later on would be extremely expensive to build into the system.

More visibility and support both technically and financially, since it would be part of a "flagship of American science".

Of course, in the study of something as rich in phenomena as atomic physics, many new and unexpected ideas will undoubtedly arise, but we can only plan based on what we already know. Therefore we sketch below some of the kinds of physics one could do using the H⁻ beam at the SSC.

a) High Resolution Spectroscopy of H⁻

Recently¹ we have been able to study the highly correlated, doubly-excited states in H⁻ by first exciting them through the process

\[\gamma + H^- \rightarrow H^{**} \rightarrow H^*(n) + e, \]

with subsequent motional field stripping of \(H^*(n) \) in an appropriately-chosen magnetic field. A dissertation written on this work won the Louis Rosen prize for the best done at LAMPF in the past year.⁵ The cases for which \(n = 4,5,6 \) and 7 were studied. See Fig. 2. With better signal-to-noise, the levels studied could be pushed up to much higher \(n \)'s so that the systematics could be established. We could achieve a much clearer signal by introducing a second laser beam, rather than the stripping field, to label the final \(H^* \) state, through, for example, its promotion to a higher \(n \) state, which could be unambiguously identified in an electron spectrometer e.g.

\[\gamma + H^*(n) \rightarrow H^*(12). \]

We demonstrated a "proof-of-principle" for this technique in a short experimental run at LAMPF in August 1990 (unpublished). And we obtained interesting data on the \(n=2 \) channel in a run October 3–11, 1990.
Fig. 2. High-lying resonances in the 1P continuum of H^-. The energies of these resonances can be fitted to a remarkably simple formula reminiscent of that of Balmer for neutral hydrogen.
By the application of external fields to the interaction region or by multiphoton excitation, a thorough picture of the resonance structure of H^- could be mapped out.

b) Multiphoton Studies

Currently our experimental program includes the study of multiphoton detachment of H^- using a CO$_2$ laser beam. Preliminary results are already available, and work is continuing. With the CO$_2$ beam, with a lab photon energy of 0.117 eV, at 1000 MeV we should be able to study detachment with photon numbers ranging from 2 to 24.

Because of the fundamental simplicity of the atomic system involved, along with the interesting complication of 2 electrons, these measurements merit precision work, for which conditions such as laser intensity and focal spot are carefully controlled.

This work is likely to continue to excite high interest for many years.

c) Strong-field effects

Our studies of H^- in strong electric fields have yielded surprises and such work should continue. A near–luminal H^- ion moving through a modest laboratory magnetic field experiences enormous electric fields in its barycentric frame yet is essentially undeflected because of its high magnetic rigidity.

d) Passage through thin foils and channeling

A recent Ph.D. dissertation in our group was written on the study of the excitation of $\text{H}^+(n)$ by the passage of H^- through carbon foils ranging in thickness from 20 μg/cm2 to 300 μg/cm2. In this case the foil delivers an intense perturbation to the H^- ion for times of the order of a femtosecond.

Further studies are contemplated using very thin oriented crystals of Si or sapphire (Al_2O_3) in which channeling may be expected to occur for intact atomic systems. Such work may have practical applications.
e) Searches for a preferred frame

Tests of special relativity based on the exquisitely well-known energy levels of atomic hydrogen can be contemplated for a high quality 1000 MeV H\(^-\) beam. At LAMPF we have checked the Doppler formula to the 36th power of \(\beta\).\(^{10}\) Conditions for such tests would be unique for the SSC.

3. Program

Our research plan for the next five years has two main components:

A) Collaboration with SSC linac personnel in the design and testing of laser-based diagnostic and experimental atomic beam facilities.

B) Continued experimental and theoretical work in basic atomic beam physics both at LAMPF and in our laboratories on the UNM campus.

The level of effort required for the work at the SSC site depends on the needs of the linac personnel,\(^{2}\) with whom only preliminary contact has been made. However, we believe our experience at LAMPF could be quite useful, and that the experiments developed at LAMPF could be transferred to the SSC and performed with significantly higher precision. We therefore anticipate that over the years there will be considerable travel of faculty and students between Albuquerque and Dallas. If a viable atomic physics facility is to be prepared at the SSC, planning must begin immediately. As our experience at LAMPF has shown, the retrofitting of experimental layouts to beam lines is expensive, and unfortunate compromises may have to be made.

The crystal ball is much less cloudy concerning continued experimental work at LAMPF. The present lines of research outlined above could profitably be followed for many more years. In particular we are enthusiastic about the new physics one can learn from multiphoton interactions with H\(^-\) and H\(^+\). A very intriguing branch of the multiphoton work is the study of the channeling of atoms through thin crystals. We will
submit a proposal to the LAMPF PAC for beam prepared by photodetaching H⁻ which could be used for such channeling measurements.

On campus we propose to continue the development of an experiment to look for optical harmonics generated from a dense H⁻ beam by a high–powered TEA CO₂ laser. The source of H⁻ is a surface source we have acquired and are refurbishing from Los Alamos and the CO₂ laser is a gift from the Sandia National Laboratory. We are presently exploring the spectra of laser–induced sparks in hydrogen gas.

4. Staffing

With the help of the Texas Commission we plan to add a post doctoral research associate, a technician and three graduate students to our group. To facilitate collaboration with other universities and research institutes, we plan to have a regular visitor as well. Funding is also requested for summer internships for undergraduates and secretarial help. A longer term goal (two year time scale) is to add another faculty person in this field.

5. Education

Our principal missions at the University of New Mexico are education and research, and in the atomic beam work these two mesh neatly together. So far 8 students have received Ph.D.'s for their work with us on atomic physics at LAMPF and 4 more are in the pipeline. With the help of the Texas Commission more students will be able to participate in these studies.
The University of New Mexico

<table>
<thead>
<tr>
<th>Organization: The University of New Mexico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator: H. C. Bryant</td>
</tr>
<tr>
<td>Project Director: FD</td>
</tr>
</tbody>
</table>

A. Salary Personnel, UNESCO Faculty and Other Senior Associates

<table>
<thead>
<tr>
<th>Description</th>
<th>Funded Personnel</th>
<th>Funded Referred to by Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.I. 1/3 time (academic year, 1.5 mo/summer)</td>
<td>4.5</td>
<td>30,500</td>
</tr>
<tr>
<td>Visitor(s)</td>
<td>11</td>
<td>35,000</td>
</tr>
<tr>
<td>Total</td>
<td>65,500</td>
<td></td>
</tr>
</tbody>
</table>

B. Other Personnel, Show Numbers in Brackets

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Doctoral Associates</td>
<td>12</td>
<td>30,000</td>
</tr>
<tr>
<td>Other Professional, Technical Personnel, etc.</td>
<td>12</td>
<td>33,000</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>36</td>
<td>36,000</td>
</tr>
<tr>
<td>Undergraduate Students</td>
<td>6</td>
<td>6,000</td>
</tr>
<tr>
<td>Secretarial, Clerical</td>
<td>6</td>
<td>9,203</td>
</tr>
<tr>
<td>Total</td>
<td>119,703</td>
<td></td>
</tr>
</tbody>
</table>

C. FICA Benefits (If Charged as Direct Costs)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Salaries, Wages, and FICA Benefits</td>
<td>119,414</td>
</tr>
</tbody>
</table>

D. Equipment: List Item and Dollar Amount for Each Item on Separate Page

- Total Equipment: 98,900

E. Travel: Domestic Inc. Canada and U.S. Personnel

- Foreign: 2,000

F. Other Direct Costs

- Materials and Supplies: 23,000
- Publication and Test Fees, Charges: 1,000
- Consultant Services: 3,000
- Computer Rental Services: 3,000
- Contracts and Subcontracts: 2,460
- **Equipment maintenance**

Total Other Direct Costs: 23,456

G. Total Direct Costs (a) through (f)

- 330,000

H. Applicant's Cost Sharing

- 76,000

I. Total Amount of This Proposal (Item G Less Item H)

- 272,000

PI or PD Name

Howard C. Bryant, P.I.

PI or PD Signature

[Signature]

Date

10/25/90

PI or PD Name

Ann Powell, Director of Research Administration

PI or PD Signature

[Signature]

Date

10/26/90
<table>
<thead>
<tr>
<th>Category</th>
<th>Funded Personnel</th>
<th>Charges Authorized by Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.I.</td>
<td>22.5</td>
<td>168,592</td>
</tr>
<tr>
<td>Visitor(s)</td>
<td>55</td>
<td>193,397</td>
</tr>
<tr>
<td>Total Personnel</td>
<td>77.5</td>
<td>361,929</td>
</tr>
<tr>
<td>Other Personnel; show numbers in brackets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Doctoral Associate</td>
<td>60</td>
<td>163,769</td>
</tr>
<tr>
<td>Other Professional, Technical, Programmers,</td>
<td>60</td>
<td>182,346</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>180</td>
<td>198,922</td>
</tr>
<tr>
<td>Undergraduate Students</td>
<td>30</td>
<td>33,154</td>
</tr>
<tr>
<td>Secretarial-Clerical</td>
<td>30</td>
<td>50,852</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Salaries and Wages (A + B)</td>
<td></td>
<td>992,912</td>
</tr>
<tr>
<td>fringe benefits (charged as direct costs)</td>
<td></td>
<td>198,597</td>
</tr>
<tr>
<td>Total Salaries, Wages and Fringe Benefits (A + B + C)</td>
<td></td>
<td>1,191,569</td>
</tr>
<tr>
<td>Equipment/Item and Dollar Amount for Each Item on Separate Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Equipment</td>
<td>365,923</td>
<td></td>
</tr>
<tr>
<td>Travel, 1. Domestic, incl. Canada and U.S. Foreign</td>
<td>44,000</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>11,000</td>
</tr>
<tr>
<td>Other Direct Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotals and adjustments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Management and Analysis</td>
<td>103,036</td>
<td></td>
</tr>
<tr>
<td>Publication cost freelance</td>
<td>5,402</td>
<td></td>
</tr>
<tr>
<td>Consultant Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer/Media Services</td>
<td>15,318</td>
<td></td>
</tr>
<tr>
<td>Contracts and Subcontracts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td>-365</td>
<td></td>
</tr>
<tr>
<td>Total Other Direct Costs</td>
<td>137,508</td>
<td></td>
</tr>
<tr>
<td>Total Direct Costs (A through K)</td>
<td>1,750,000</td>
<td></td>
</tr>
<tr>
<td>Applicant's Cost Sharing</td>
<td>390,000</td>
<td></td>
</tr>
<tr>
<td>Total Amount of This Request (Item C Less Item H)</td>
<td>1,360,000</td>
<td></td>
</tr>
</tbody>
</table>

Signature:

H. C. Bryant

Date: 10/25/90

Signature:

Ann Powell

Date: 10/26/90
BUDGET INFORMATION DOCUMENT (PAGE 2)

Texas National Research Laboratory Commission

Research and Development Program

Summary By Budget Period*

<table>
<thead>
<tr>
<th>Categories</th>
<th>Budget Period 1</th>
<th>Budget Period 2</th>
<th>Budget Period 3</th>
<th>Budget Period 4</th>
<th>Budget Period 5</th>
<th>Budget Periods 1-5</th>
<th>Total Project Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Senior Personnel Totals</td>
<td>65,500</td>
<td>68,771</td>
<td>72,214</td>
<td>75,824</td>
<td>79,616</td>
<td>361,929</td>
<td>361,929</td>
</tr>
<tr>
<td>B. Other Personnel Totals</td>
<td>114,203</td>
<td>119,913</td>
<td>125,909</td>
<td>132,909</td>
<td>138,814</td>
<td>631,043</td>
<td>631,043</td>
</tr>
<tr>
<td>C. Fringe Benefit Totals</td>
<td>35,944</td>
<td>37,738</td>
<td>39,625</td>
<td>41,606</td>
<td>43,687</td>
<td>198,597</td>
<td>198,597</td>
</tr>
<tr>
<td>Total of A, B & C</td>
<td>215,644</td>
<td>226,442</td>
<td>237,748</td>
<td>249,634</td>
<td>249,117</td>
<td>1,191,569</td>
<td>1,191,569</td>
</tr>
<tr>
<td>D. Equipment</td>
<td>98,900</td>
<td>86,345</td>
<td>76,340</td>
<td>59,397</td>
<td>44,941</td>
<td>365,923</td>
<td>365,923</td>
</tr>
<tr>
<td>E. Travel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Domestic</td>
<td>8,000</td>
<td>8,400</td>
<td>8,800</td>
<td>9,200</td>
<td>9,600</td>
<td>44,000</td>
<td>44,000</td>
</tr>
<tr>
<td>2. Foreign</td>
<td>2,000</td>
<td>2,100</td>
<td>2,200</td>
<td>2,300</td>
<td>2,400</td>
<td>11,000</td>
<td>11,000</td>
</tr>
<tr>
<td>F. Other Direct Costs</td>
<td>25,456</td>
<td>26,729</td>
<td>24,912</td>
<td>29,469</td>
<td>30,942</td>
<td>137,508</td>
<td>137,508</td>
</tr>
<tr>
<td>G. Total Direct Costs</td>
<td>350,000</td>
<td>350,000</td>
<td>350,000</td>
<td>350,000</td>
<td>350,000</td>
<td>1,750,000</td>
<td>1,750,000</td>
</tr>
<tr>
<td>(Item A through Item F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Applicant's Cost-Sharing</td>
<td>78,000</td>
<td>78,000</td>
<td>78,000</td>
<td>78,000</td>
<td>78,000</td>
<td>390,000</td>
<td>390,000</td>
</tr>
<tr>
<td>I. Total Amount of Request</td>
<td>272,000</td>
<td>272,000</td>
<td>272,000</td>
<td>272,000</td>
<td>272,000</td>
<td>1,360,000</td>
<td>1,360,000</td>
</tr>
<tr>
<td>(Item G. Less Item H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Budget Period</td>
<td>1/1/91 Mo/Day/Yr to 12/31/91 Mo/Day/Yr</td>
<td>1/1/92 Mo/Day/Yr to 12/31/92 Mo/Day/Yr</td>
<td>1/1/93 Mo/Day/Yr to 12/31/93 Mo/Day/Yr</td>
<td>1/1/94 Mo/Day/Yr to 12/31/94 Mo/Day/Yr</td>
<td>1/1/95 Mo/Day/Yr to 12/31/95 Mo/Day/Yr</td>
<td>1/1/96 Mo/Day/Yr to 12/31/96 Mo/Day/Yr</td>
<td></td>
</tr>
</tbody>
</table>

PI/PD Typed Name & Signature: H. C. Bryant

INSTR REP. Typed Name & Signature: Ann Powell

Date: 10/25/90

A budget period is 12 months, use the appropriate number of budget periods.
BUDGET INFORMATION DOCUMENT (PAGE 4)

Texas National Research Laboratory Commission
Research and Development Program

Summary By Participant for Total Project Period
Please Print or Type

<table>
<thead>
<tr>
<th>Categories</th>
<th>Participant 1</th>
<th>Participant 2</th>
<th>Participant 3</th>
<th>Participant 4</th>
<th>Participant 5</th>
<th>Participants 1-5</th>
<th>All Participants Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Senior Personnel Totals</td>
<td>361,929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>361,929</td>
</tr>
<tr>
<td>B. Other Personnel Totals</td>
<td>631,043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>631,043</td>
</tr>
<tr>
<td>C. Fringe Benefit Totals</td>
<td>198,507</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>198,507</td>
</tr>
<tr>
<td>Total of A, B & C</td>
<td>1,191,569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,191,569</td>
</tr>
<tr>
<td>D. Equipment</td>
<td>365,923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>365,923</td>
</tr>
<tr>
<td>E. Travel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44,000</td>
</tr>
<tr>
<td>1. Domestic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44,000</td>
</tr>
<tr>
<td>2. Foreign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,000</td>
</tr>
<tr>
<td>F. Other Direct Costs</td>
<td>137,508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137,508</td>
</tr>
<tr>
<td>G. Total Direct Costs</td>
<td>1,750,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,750,000</td>
</tr>
<tr>
<td>(Item A through Item F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Applicant's Cost-Sharing</td>
<td>390,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>390,000</td>
</tr>
<tr>
<td>I. Total Amount of Request</td>
<td>1,360,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,360,000</td>
</tr>
<tr>
<td>(Item G, Less Item H)</td>
<td>1/1/91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/1/91</td>
</tr>
<tr>
<td>Duration of Project Involvement</td>
<td>Mo/Day/Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mo/Day/Yr</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>12/31/95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12/31/95</td>
</tr>
</tbody>
</table>

PI/PD TYPED NAME & SIGNATURE: H. C. Bryant

INST. REP. TYPED NAME & SIGNATURE: Anne Powell

DATE: 10/25/90
DATE: 10/26/90
VI. STATEMENT CONCERNING MATCHING FUNDS

The University of New Mexico will share the first year costs of this proposal as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-third released time for Professor Bryant during academic year @ $65,000/9 months</td>
<td>$ 21,667</td>
</tr>
<tr>
<td>One-half stipend(s) for visitor(s)</td>
<td>17,500</td>
</tr>
<tr>
<td>One-half FTE secretarial—clerical</td>
<td>9,203</td>
</tr>
<tr>
<td>One-half stipend for three graduate students for 12 months @12,000</td>
<td>18,000</td>
</tr>
<tr>
<td>Tuition for 3 graduate students assumed to be non—resident @$2,488</td>
<td>7,464</td>
</tr>
<tr>
<td>Travel</td>
<td>4,166</td>
</tr>
<tr>
<td>Total</td>
<td>$ 78,000</td>
</tr>
</tbody>
</table>

A similar matching of funding will be available for subsequent years of the successful proposal.
VII. DESCRIPTION AND JUSTIFICATION OF MAJOR ITEMS OF EQUIPMENT

1. Major Equipment for the first three years

First Year

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCR-3-30</td>
<td>High Power Scientific Pulsed Nd:YAG Laser, 750 mJ at 1064 nm Diffraction coupled output (30 Hz)</td>
<td>$62,500</td>
</tr>
<tr>
<td>HG-2C</td>
<td>High Efficiency Harmonic Generator, Angle Tuned and Temperature Stabilized with SHG Type II, THG, and FHG KD*P Crystals</td>
<td>$7,200</td>
</tr>
<tr>
<td>PHS-1F</td>
<td>Spectrally pure separation of Harmonics (includes PB-2 Prism) for use with all Harmonics</td>
<td>$8,200</td>
</tr>
<tr>
<td>Model 6300</td>
<td>Injection seeder providing transform-limited pulses</td>
<td>$21,000</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>Total $98,900</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDL-3</td>
<td>Broadly tunable, high efficiency Nd:YAG pumped dye laser, up to 30% conversion efficiency (includes oscillator and amplifier, TSC-2 dye circulator .07 cm⁻¹ line width)</td>
<td>$29,925</td>
</tr>
<tr>
<td>MCI-2</td>
<td>RS232 Interface for Computer Controlling of Dye Scanning Motor</td>
<td>$2,700</td>
</tr>
<tr>
<td>PRA-1</td>
<td>Preamplifier Assembly for higher efficiency with UV pumped and IR dyes</td>
<td>$1,950</td>
</tr>
<tr>
<td>RS-1</td>
<td>Extremely wide range Raman Shifter</td>
<td>$8,800</td>
</tr>
<tr>
<td>WEX-1D</td>
<td>Wavelength extension system for difference frequency mixing to produce wavelengths between 1500 and 4500 nm High speed electronics and optical components</td>
<td>$29,000</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>Total $86,345</td>
</tr>
</tbody>
</table>
Third Year

TEA-840/1

CO₂ Laser, 10 pps @ 3.5 J. Line tuned (capable of operation at up to 50 pps with reduced energy) 36,000

Line tuning optics set for TEA-840 laser. Includes multimode output coupler, wavelength tuning attachment, cavity extension and master diffraction grating. 10,000

CO₂ unstable resonator output coupler 1,200

RAL 20/106(4) 20 bit hollow shaft angular encoder RMS error 1.4 arc sec 29,140

Total 76,340

2. Justification

The Need for a Better Laser System

Relativistic atomic beam work at LAMPF was strengthened greatly in 1987 by the completion of HIRAB (High Resolution Atomic Beam) facility, a dedicated experimental area, built to receive a specially-designed low-divergence H⁻ beam. This area, with its world-class beam line, was made possible by the requirements of SDI, but now is available for work of more general interest. We are anxious to put this beam to scientific use by continuing our studies of both H⁻ and H⁺ atoms in strong fields, taking advantage of the unique possibilities present when the ion velocity is near that of light. Most of our work in earlier years has been done using first a DCR1 and then a DCR2 laser, with considerable success. Our present request for a GCR3 laser ("DC" stands for "diffraction-coupled" and "GC" stands for "Gaussian-coupled"), the state of the art, seems to be a reasonable and conservative upgrade in our laser facility to match the upgrade of the laboratory, which, incidentally included the replacement of our PDP11 by a MicroVax for data acquisition. We know that we were able to get good data with the DCR2; thus, we expect that we will get even better data ("better" means more reproducible, with smaller systematic effects and over a larger range of photon energies) with the GCR3 system, which will also allow us
to take data at least 3 times faster since its repetition rate is 30 rather than 10 pps, the repetition rate of our DCR2. Taking data faster means that the statistical uncertainties can be reduced. The LAMPF accelerator produces macropulses at the rate of 120 Hz. The dye laser which can be pumped by the CGR3 gives us for the first time the opportunity to sit at a constant angle (normally this would be the "magic" or "Doppler–free" angle where to first order the energy resolution does not depend on the momentum spread $\Delta p/p$) and tune through a wavelength range. This option would be especially valuable in making a high resolution study of the magnetic substates produced in $H^+ \ 's$ emerging from a thin stripper foil, and for the examination of final states of the decay of doubly excited H^{--} following laser excitation.

The CO$_2$ laser component of our laser system would vastly improve our ability to do multiphoton studies and would also be very helpful in examining final state hydrogen levels.

More Details

In order to demonstrate more clearly the need for the new laser system, let us consider as an example one of our proposed experiments in more detail, namely, the study of the photoproduction and decay modes of high–lying doubly–excited resonances in the H^-. To be specific, let us consider the simplest case in which the resonance is excited by a single photon. Kinematically, the decay modes can include photon emission to lower–lying resonances or the ground state, presumably rare, and, much more often, the decay into various states of hydrogen plus an electron. This study would require two pulsed laser beams crossing at well–defined and measured angles (using our proposed encoder as well as our present one), with the H^- beam. The relative timing would have to be good to a few nanoseconds which would be no problem if both beams were derived from the GCR3 system. The use of the CO$_2$ laser beam of pulse duration of 100 ns and jitter of 15 ns is also feasible. One would wish to examine many cases, extending to as high an energy as
possible, in order to establish the systematics and the behavior as one approaches the two electron continuum.

The excitation of $H^{-\ast \ast}$ would be by use of the 4th harmonic of the YAG on an 800 MeV beam which would allow the production of states approaching the two-electron threshold at 14.35 eV. At a short distance downstream from the production point, the beam would be probed with a second laser beam to determine the hydrogenic states produced in the decay. The idea here, for example, would be to promote lower hydrogenic states to $n=11$. The resulting $H^\ast(11)$ would be selectively ionized and its electron detected in a downstream magnetic spectrometer. One therefore has

\[\gamma(\text{first beam}) + H^- \rightarrow H^{-\ast \ast}, \]
(1)

followed by autoionization,

\[H^{-\ast \ast} \rightarrow H^\ast(n) + e \]
(2)

followed by

\[\gamma(\text{second beam}) + H^\ast(n) \rightarrow H^\ast(11), \]
(3)

followed by

\[H^\ast(11) + \text{motional electric field} \rightarrow p + e, \]
(4)

and

\[e + \text{scintillator} \rightarrow \text{signal}. \]
(5)

Because of the large energies, processes 4 and 5 have essentially 100% efficiency. Since the cross section for process 3 is known very well, the branching ratio for process 2 can be determined. The yield from process 3 as a function of the angle of the first laser beam determines both the energy and the width of the resonance being produced in process 1. Let us consider an $H^{-\ast \ast}$ resonance whose energy exceeds that of $H^\ast(9) + e$. From Table 1 below, one can see that in order to cover the range of n from 1 to 9 for process 3, we would have to use both the YAG 1st and 4th and a CO$_2$ laser.
Table 1. Probes for hydrogen states below n=10.

<table>
<thead>
<tr>
<th>Decay State</th>
<th>Transition Energy (eV)</th>
<th>Laser Beam</th>
<th>Intersection angle (degs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺(1)</td>
<td>13.492</td>
<td>YAG 4th</td>
<td>47.9</td>
</tr>
<tr>
<td>2</td>
<td>3.289</td>
<td>YAG 1st</td>
<td>50.8</td>
</tr>
<tr>
<td>3</td>
<td>1.199</td>
<td></td>
<td>114.5</td>
</tr>
<tr>
<td>4</td>
<td>0.738</td>
<td></td>
<td>141.3</td>
</tr>
<tr>
<td>5</td>
<td>0.4317</td>
<td></td>
<td>161.7</td>
</tr>
<tr>
<td>6</td>
<td>0.2654</td>
<td>CO₂ 10.6μ</td>
<td>73.7</td>
</tr>
<tr>
<td>7</td>
<td>0.1652</td>
<td></td>
<td>105.9</td>
</tr>
<tr>
<td>8</td>
<td>0.1001</td>
<td></td>
<td>129.4</td>
</tr>
<tr>
<td>9</td>
<td>0.0555</td>
<td></td>
<td>151.8</td>
</tr>
</tbody>
</table>

To compare data-taking rates between the present and proposed laser systems, see Table 2 below.

Table 2. Data Rates

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Present</th>
<th>Proposed</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ n ≤ 5</td>
<td>10 Hz</td>
<td>30 Hz</td>
<td>3</td>
</tr>
<tr>
<td>6 ≤ n ≤ 9</td>
<td>0.5 Hz</td>
<td>10 Hz</td>
<td>20</td>
</tr>
</tbody>
</table>

STATEMENT OF CURRENT AND PENDING SUPPORT

Work on the atomic physics of the H⁺ ion has been funded at UNM by the DOE since 1977 in the amount $1,307,041. In addition, LANL provided UNM with a contract of $377,309 for related beam-sensing work relevant to SDI neutral beam concerns. We received a grant of $2,000 from the NSF to support a workshop on the H⁺ in January 1989 and we have currently in force a grant of $38,438 to support collaboration between UNM and the Hungarian Academy of Sciences to work on the H⁺ project.

Our current grants are

U.S. DOE, Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research $330,000 covering period 2/1/90 – 1/31/93

NSF 38,438 covering period 5/15/89 – 10/31/92

Pending: None other than this proposal.
ASSURANCE OF COMPLIANCE

Texas National Research Laboratory Commission

Research and Development Program

Nondiscrimination in Texas National Research Laboratory Commission Programs

The University of New Mexico (Hereinafter called the "Applicant") HEREBY AGREES to comply with Title VI of the Civil Rights Act of 1964 (Pub. L. 88-352), Section 16 of the Federal Energy Administration Act of 1974 (Pub. L. 93-275), Title IX of the Education Amendments of 1972, as amended, (Pub. L. 92-318, Pub. L. 93-568, and Pub. L. 94-482), Section 504 of the Rehabilitation Act of 1973 (Pub. L. 93-112), the Age Discrimination Act of 1975 (Pub. L. 94-135), Title VIII of the Civil Rights Act of 1968 (Pub. L. 90-284), the Department of Energy Organization Act of 1977 (Pub. L. 95-91), and the Energy Conservation and Production Act of 1978, as amended, (Pub. L. 94-385). In accordance with the above laws and regulations issued pursuant thereto, the Applicant agrees to ensure that no person in the United States shall, on the ground of race, color, national origin, sex, age, or handicap, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity in which the Applicant receives assistance from the Texas National Research Laboratory Commission (Hereinafter called the "Commission").

Applicability and Period of Obligation

In the case of any service, financial aid, covered employment, equipment, property, or structure provided, leased, or improved with assistance extended to the Applicant by the Commission, this assurance obligates the Applicant for the period during which assistance is extended. In the case of any transfer of such service, financial aid, equipment, property, or structure, this assurance obligates the transferee for the period during which assistance is extended. If any personal property is so provided, this assurance obligates the Applicant for the period during which it retains ownership or possession of the property. In all other cases, this assurance obligates the Applicant for the period during which the assistance is extended to the Applicant by the Commission.

Employment Practices

Where a primary objective of the assistance is to provide employment or where the Applicant's employment practices affect the delivery of services, programs or activities resulting from assistance extended by the Commission, the Applicant agrees not to discriminate on the ground of race, color, national origin, sex, age, or handicap, in its employment practices. Such employment practices may include, but are not limited to, recruitment, recruitment advertising, hiring, layoff or termination, promotion, demotion, transfer, rates of pay, training and participation in upward mobility programs, or other forms of compensation and use of facilities.

Subrecipient Assurance

The Applicant shall require any individual, organization, or other entity with whom it subcontracts, subgrants, or subleases for the purpose of providing any service, financial aid, equipment, property, or structure to comply with laws cited above. To this end, the subrecipient shall be required to sign a written assurance form; however, the obligation of both recipient and subrecipient to ensure compliance is not relieved by the collection or submission of written assurance forms.
Data Collection and Access to Records

The Applicant agrees to compile and maintain information pertaining to programs or activities developed as a result of the Applicant’s receipt of assistance from the Commission. Such information shall include, but is not limited to, the following: (1) the manner in which services are or will be provided and related data necessary for determining whether any persons are or will be denied such services on the basis of prohibited discrimination; (2) the population eligible to be served by race, color, national origin, sex, age and handicap; (3) data regarding covered employment, including use or planned use of bilingual public contact employees serving beneficiaries of the program where necessary to permit effective participation by beneficiaries unable to speak or understand English; (4) the location of existing or proposed facilities connected with the program and related information adequate for determining whether the location has or will have the effect of unnecessarily denying access to any person on the basis of prohibited discrimination; (5) the present or proposed membership by race, color, national origin, sex, age and handicap in any planning or advisory body which is an integral part of the program; and (6) any additional written data determined by the Commission to be relevant to its obligation to assure compliance by recipients with laws cited in the first paragraph of this assurance.

The Applicant agrees to submit requested data to the Commission regarding programs and activities developed by the Applicant from the use of assistance funds extended by the Commission. Facilities of the Applicant (including the physical plants, buildings, or other structures) and all records, books, accounts, and other sources of information pertinent to the Applicant’s compliance with the civil rights laws shall be made available for inspection during normal business hours on request of an officer or employee of the Commission specifically authorized to make such inspections.

This assurance is given in consideration of and for the purpose of obtaining grants or other assistance extended after the date hereof, to the Applicant by the Commission. The Applicant recognizes and agrees that such assistance will be extended in reliance upon the representations and agreements made in this assurance and that the United States shall have the right to seek judicial enforcement of this assurance. This assurance is binding on the Applicant, its successors, transferees, and assignees, as well as the person whose signature appears below and who is authorized to sign this assurance on behalf of the Applicant.

[Signature]
Date: 10/30/90

The Board of Regents of the
University of New Mexico

Dept. of Physics and Astronomy

Name of Applicant:

Office of Research Administration

Sandoval Hall, Room 112
Albuquerque, NM 87131
Address:

(Authorized Official)

(505) 277-3236
(Applicant’s Telephone Number)
Howard Carnes Bryant

Born: July 9, 1933, Fresno, California

Married: Mona Jordan, 1960

Children: Matthew, Clifford and Susannah

Education:
 Public Schools, California and Mississippi
 B.A. University of California, Berkeley, 1955 ($\phi\beta\kappa$)
 M.S. University of Michigan, Ann Arbor, 1957
 Ph.D. University of Michigan, Ann Arbor, 1960

Foreign Languages:
 Spanish, German and French (reading).

Positions Held:
 Professor of Physics, The University of New Mexico, 1971–present.
 Fulbright Guest Professor, Institut fur Atomphysik, Universitat Innsbruck, Austria, 1982–1983.
 Science Research Council Senior Visiting Research Fellow, Queen Mary College, University of London and the Rutherford Laboratory, 1975–1976.
 Staff Member, Stanford Linear Accelerator Center, Stanford, California, 1967–1969.
 Associate Professor, the University of New Mexico, 1965–1971.
 Assistant Professor, the University of New Mexico, 1960–1965.

Professional Organizations:
 American Physical Society (Fellow, 1980)
 Optical Society of America
 American Association of Physics Teachers

Areas of Specialization:
 Atomic Physics, Optics, Elementary Particles and Solar Energy.
Research Contracts and Grants:

<table>
<thead>
<tr>
<th>Organization and Grant Details</th>
<th>Grant Details</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandia Corporation</td>
<td>#53-2290 7/64-6/65</td>
<td>$14,296</td>
</tr>
<tr>
<td></td>
<td>#53-2290 7/65-6/66</td>
<td>$15,297</td>
</tr>
<tr>
<td>New Mexico Water Resources Research Institute</td>
<td>OWRR-A-014 7/67-6/68</td>
<td>$8,340</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>GP20197 9/61-10/72</td>
<td>$19,800</td>
</tr>
<tr>
<td>Energy Research and Development Administration (ERDA)</td>
<td>E(29-2)-3347 7/73-12/76</td>
<td>$320,228</td>
</tr>
<tr>
<td>New Mexico State Board of Education and Finance</td>
<td>BEF-161 7/75-9/76</td>
<td>$19,897</td>
</tr>
<tr>
<td>New Mexico Energy Institute</td>
<td>ERB-76-202 9/76-1/77</td>
<td>$10,000</td>
</tr>
<tr>
<td>Department of Energy</td>
<td>DE-AS04-77CS33977 4/77-6/81</td>
<td>$155,952</td>
</tr>
<tr>
<td>Department of Energy</td>
<td>DE-AS04-77ERO3998 6/77-11/86</td>
<td>$377,309</td>
</tr>
<tr>
<td>New Mexico Energy Research and Development Institute</td>
<td>2-73-4102 8/84-9/86</td>
<td>$23,470</td>
</tr>
<tr>
<td>Los Alamos National Laboratory</td>
<td>"Resonant Absorption Beam Sensing Techniques,"</td>
<td>$38,438</td>
</tr>
<tr>
<td>Department of Energy Grant</td>
<td>DE-FG0-87ERB746 7/20/87-1/31/90</td>
<td>$230,000</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>"U.S. - Hungary Research on Relativistic H-Beam Interaction with External Fields and Matter (Physics)." 5/15/89-10/31/92</td>
<td>$38,438</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>"H- Summit Meeting: Albuquerque, NM; January 1990 (Physics)" 1/1/90-12/31/90</td>
<td>$2,000</td>
</tr>
<tr>
<td>Department of Energy</td>
<td>DE-FG 04-87 AL 13746, Amd. No. A003 "Relativistic Atomic Beam Spectroscopy II" 2/1/90-1/31/93</td>
<td>$330,000</td>
</tr>
</tbody>
</table>
PUBLICATIONS

Refereed Journal Articles

Invited Papers

"H- as Quantum Mechanical Interferometer". Invited talk at the Foundations of Quantum Mechanics Workshop, Santa Fe, NM, May 29, 1990.

"Recent Results from HIRAB" invited talk at the 24th LAMPF Users Group Meeting, Los Alamos National Laboratory, August 14, 1990.

BOOK REVIEWS

ABSTRACTS OF CONTRIBUTED PAPERS

a) "Determination of the Total Inelastic Photon–Proton Cross Section from Low q^2 Muon–Proton Inelastic Scattering" paper 367, page 455;
b) "Inelastic Muon Scattering on Carbon" paper 369, page 455; and
c) "Form Factors in Inelastic Muon–Proton Scattering at q^2 up to 2.0 (GeV/c)2" paper 370, page 455.

a) "Form Factors in Inelastic Muon–Proton Scattering at q^2 up to 2.0 (GeV/c)2" BI 13, p. 46.
b) "Determination of the Total Photon–Proton Cross Section from low q^2 Muon–Proton Inelastic Cross Section" BI 14, p. 46.
c) "Inelastic Muon Scattering on Carbon" DD3, p. 50.

"Ternary association reaction of CH\textsubscript{3}+ and CH(OH)+ with H\textsubscript{2}O in He Buffer". XVI ICMPG (International Conference on Phenomena in Ionized gases) Dusseldorf, Aug. 29–Sept. 2, 1983, H. Villinger, A. Saxer, H. Bryant and W. Lindinger.

TECHNICAL REPORTS

Research Project Technical Completion Report to the Water Resources Research Institute, New Mexico State University, 20 June 1968. H. C. Bryant.

82/2 "Oscillatory motions in the nonconvective layer of a solar pond," R. Almanza and H.C. Bryant.

82/3 Solar pond as a source for a flash evaporation chamber," R. Almanza and H. C. Bryant.

82/5 "Recent work on salt–gradient ponds at UNM," H. C. Bryant, A. L. Salamah, R. Almanza and H. Fang.

82/6 "A colloidal solar pond," H. C. Bryant.

82/7 "Atomic Physics with Relativistic Beams 1984" C. J. Harvey and H. C. Bryant
Abstract for Atomic Physics Program Contractor’s Workshop, U. S. DOE May 13–14, 1985 (page 68), University of North Carolina, Chapel Hill.

POPULAR ARTICLES

RECENT TALKS AND COLLOQUIA

Talk and demonstration on solar ponds to students from Aztec Elementary School, Aztec, New Mexico, May 7, 1982 (at UNM).

Colloquium: Max—Planck—Institut fur Quanten Optik, Garching, West Germany, Dec. 8, 1982. "Experimental Spectroscopic Studies of the H+ Ion at Relativistic Velocities."

Colloquium for the Institut fur Experimental Physik, Canisianum, U. of Innsbruck, Innsbruck, Austria, March 10, 1983, "Outdoor drifttube: the physics of the salt—gradient solar pond."

Colloquium for the Physics Department, University of Kragujevac, Kragujevac, Yugoslavia, March 31, 1983, "The origin of the electromagnetic force."

Colloquium for the Physics Department, University of Belgrade, Belgrade, Yugoslavia, April 1, 1983, "Atomic Physics near the speed of light."

Colloquium for the Institut fur Experimental Physik, University of Freiburg, Germany, April 23, 1983, "Atomic Physics near the speed of light."

Seminar for the Physics Department at the Universite Degli Studi, Povo, Trient, Italy, May 7, 1983, "Atomic Physics near the speed of light."

Seminar for visiting engineers from Jordan (Royal Scientific Society, Jordan) at Physics and Astronomy building, UNM, Sept. 25, 1983, "The future for salt gradient solar ponds."

Talk to Prof. Gross's class ME 425: (visitors from U. of Khartoum, Sudan), Nov. 29, 1983, "Salt Gradient Solar Ponds."

Colloquium for UNM Physics and Astronomy Department, March 2, 1984, "Atomic Spectroscopy Near the Speed of Light."

Talk to Harvena Richter and Fred Strum's, "Creative Principles in Arts and Sciences" English 411/511, "Light and Color", March 20, 1984, UNM.

"Atomic Physics with Relativistic Beams" talk to Physics Division (1 hour), Los Alamos National Lab, MP 215, Nov. 8, 1984.
Colloquium for UNM Physics and Astronomy Department, January 25, 1985 "Progress in Understanding Simple Atoms".

Talk to "La Vida Llena" 10501 Lagrina de Oro, Albuquerque, Feb. 21, 985, 7 p.m., "The Glory".

30th Annual Faculty Research Lecture, April 1, 1985, Physics Lecture Hall, 8 p.m. "A Physicist's Journal: from the Glory to the Two–electron Ion".

Sandia Colloquium, Sandia National Laboratory, Albuquerque, N.M., 9–10 a.m. 13 Sept 1985, "Tweedle Dee and Tweedle Dum near the Speed of Light", (on film, transcript also available).

Seminar, Los Alamos National Laboratory, Conference Room TA3, Bldg. 215, Rm 281, 1 pm, July 16, 1986, "Photodetachment Study of H⁻ ions at Relativistic Velocities."

Colloquium, Dept. of Physics and Atmospheric Science, Drexel University, Philadelphia, 1 pm, May 4, 1987, Disque Hall, Room 12–919, "Experimental Verifications of Special Relativity."

Bag Lunch Seminar, MP Division Auditorium, 12 noon June 8, 1987, "A New Test of Special Relativity."

1. What good is relativity?
2. The Structure of the H⁻ Ion.
3. Photodetachment of H⁻.
4. Effects of Fields: The Tale of Two Resonances.
5. The Atomic Interferometer and Beam Me Up, Scotty!

Colloquium, Dept. of Physics and JILA, University of Colorado, Boulder, CO, Oct 5, 1988, "Atomic Physics Near the Speed of Light."

Series of 3 Lectures given at the 1989 Los Alamos Theoretical Atomic Physics Summer School, July 18, 19, 20, 1989:

1. What good is relativity?
2. The Structure of the H⁻ Ion.
4. Effects of Fields.

Colloquium: Institute of Nuclear Research "Atomki" Debrecen, Hungary, October 26, 2:00 pm "An Atomic Interferometer".

Colloquium: Department of Physics, University of Wyoming, Laramie "Recent advances in the Physics of the H-Ion", February 27, 1990.

Seminar: Tungsram Factory, Budapest, "Atomic Physics at the Linear Accelerator at Los Alamos", June 6, 1990, 10:00 am.

Appendix 2

References

9. Károly Rózsa, a collaborator from the Hungarian Academy of Sciences, has been investigating the manufacture of oriented crystal foils of submicron thickness.

Appendix 3

Existing Facilities

On the UNM campus our group has two large general purpose laboratories and a class 100 laminar down-flow clean room. The department has a well-equipped machine shop with three machinists.

At LAMPF we have been allocated adequate office space for at least 6 people, and we are the sole users of the High Resolution Atomic Beam (HIRAB) facility, a dedicated experimental area built to receive a specially-designed low-divergence H\(^{-}\) beam. Laser-ion beam studies are performed on a 4-foot thick isolation slab embedded in the floor along the beam line. The heart of our data acquisition system is a microvax computer. At present we have 2 CO\(_2\) lasers, 1 DCR2 YAG laser, 1 DCR1 YAG laser, and a Lambda Physik excimer laser system. The YAG lasers as well as the CO\(_2\) lasers need to be upgraded to higher rep rate and power. The DCR1 laser is presently inoperable, having been cannibalized for parts for the DCR2. The DCR2, in view of its age and infirmities, is marginal for use in long accelerator runs.