Production of ammonium sulfate fertilizer from FGD waste liquors. First quarterly technical report, [January--March 1995]

PDF Version Also Available for Download.

Description

Hydrolysis of Nitrogen-Sulfur Containing Compounds (N-SCC) derived from desulfurization liquors was carried out at high temperature and pressure with varying sulfuric acid concentration in order to determine the influence of temperature and acid concentration on time required for complete hydrolysis. An ammonia specific electrode (gas sensing) was used to monitor the concentration of ammonium ion in the hydrolyzed liquor. The results indicated a large shortening of time for complete hydrolysis of the Ca salt of N-SCC but varying acid concentration did influence the rate of hydrolysis. Since the physical-chemical analysis of the N-SCC obtained by re-liming the waste scrubbing liquor ... continued below

Physical Description

39 p.

Creation Information

Randolph, A.D.; Mukhopadhyay, S. & Unrau, E. August 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Hydrolysis of Nitrogen-Sulfur Containing Compounds (N-SCC) derived from desulfurization liquors was carried out at high temperature and pressure with varying sulfuric acid concentration in order to determine the influence of temperature and acid concentration on time required for complete hydrolysis. An ammonia specific electrode (gas sensing) was used to monitor the concentration of ammonium ion in the hydrolyzed liquor. The results indicated a large shortening of time for complete hydrolysis of the Ca salt of N-SCC but varying acid concentration did influence the rate of hydrolysis. Since the physical-chemical analysis of the N-SCC obtained by re-liming the waste scrubbing liquor (containing the Fe-EDTA complex) was found to contain a high quantity of sodium, the N-SCC is believed to be a double salt of calcium and sodium. The final product, (NH{sub 4}){sub 2}SO{sub 4}, was obtained in experimentation using an evaporative crystallizer. The clean hydrolyzed liquor was neutralized with a strong NH{sub 2} solution before the final crystallization of (NH{sub 4}){sub 2}SO{sub 4}.

Physical Description

39 p.

Notes

OSTI as DE95016275

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95016275
  • Report No.: DOE/PC/92582--T2
  • Grant Number: FG22-93PC92582
  • DOI: 10.2172/97275 | External Link
  • Office of Scientific & Technical Information Report Number: 97275
  • Archival Resource Key: ark:/67531/metadc791963

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Jan. 15, 2016, 11:59 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Randolph, A.D.; Mukhopadhyay, S. & Unrau, E. Production of ammonium sulfate fertilizer from FGD waste liquors. First quarterly technical report, [January--March 1995], report, August 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc791963/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.