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Abstract 
The part-load behavior of a typical 3 0 - W e  SEGS plant was studied using a detailed 
thermodynamic model. As part of this analysis, a new solar field model was derived, based 
on measurement results of an LS-2 Collector and accounting for various conditions of 
receiver tubes, lost mirrors and measured reflectivih. 

A comparison was made of the model results to real plant conditions for a winter and 
summer day in order to test the accuracy of the model.. The effects of bare tubes. different 
wind speeds, mirror reflectivity and other factors were studied showing, e g .  that heat 
losses due to wind are predicted to be very low. The comparison also sholvs that the 
model still lacks the capability to hlly account for actual solar field conditions. The model 
was also compared to the SOLERGY model, showing differences benveen the 
assumptions used in both models. 

Finally different operating conditions of the plant were studied for a summer, fall, and 
winter day to provide a better understanding of hen- changing solar field outlet 
temperatures affect gross and net output of the plant. This clearly indicates that the lowest 
possible superheating temperature maximizes the goss electric output. On a net basis this 
conclusion is modified due to the high parasitics of the HTF pumps. It was found that the 
optimum operating strategy depends on the insolation conditions, e.g., different 
superheating temperatures should be chosen in summer, fall and winter. If the pressure 
drop in the solar field is reduced due to replacement of flex hoses with ball joints, 
increasing the HTF flow is more reasonable, so that at low insolation conditions the 
lowest possible superheating temperature also leads to the maximum net output. 
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1. Introduction 

In order to project the annual performance of solar electric plants, simulation programs 
using simplified energy transfer models such as SOLERGY (Stoddard et al., 1987) or the 
FLAGSOL model (Flachglas Solartechnik, 1994) have been developed. These programs 
account for the most important variables that influence the electricity generated, such as 
the solar field performance and turbine start-up times, so that is possible to predict the 
electricity production of different systems at different locations. The programs therefore 
provide important information for hture erection of plants. 

To increase the output of existing plants, more detailed models are necessary, since the 
results now depend not only on the actual plant conditions but also on the operating 
strategy of the plant. For this, thermodynamic models for heat exchangers, turbine stages, 
condenser, and other power cycle components have to be included in the calculations. One 
example of a simulation program that can be used for detailed calculations of flow cycles 
is the EASY code (Wahl, 1992). This program provides the possibility of calculating any 
user-defined flow cycle and examining different operating conditions. 

In this study EASY is used to simulate the plant performance of a SEGS plant operating in 
the pure solar mode. A model for the solar field used in the calculations is derived from 
measurements for a LS-2 Collector. The results are compared to measured plant data so 
that both the accuracy of the model for the Rankine cycle as well as the applicability of the 
solar field model to represent the plant conditions will be shown. The model is also 
compared to the SOLERGY model, which gives important hints for fbture improvements 
of this simplified model. 

Different operation strategies are compared in order to know how the output of the plant 
can be maximized. Such different operation modes can be the highest possible solar field 
outlet temperature, a constant mass flow rate through the solar field, or in general 
different main steam superheating temperatures. It is also possible to change the Rankine 
cycle by taking out feedwater heaters. As the operating conditions depend on the 
radiation, the comparison is made for three characteristic days in summer, springfall and 
winter. 

2. EASY Model for the 30 M W e  SEGS Plant 

The 30 MWe solar electric generating systems (SEGS) located at Kramer Junction and 
operated by KJC Operating Company consist of two separate major subsystems: the solar 
field and the turbine-generator (Fig. 1). In the first subsystem thermal oil as the heat 
transfer fluid (HTF) is circulated through the solar field and used in heat exchangers to 
produce steam for a conventional Rankine cycle. In the second system - the Rankine cycle 
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- an additional gas-fired boiler is also used to run the plant when no or insufficient solar 
energy is available. 

d :.. \- 4 ................................ 4 
.................. -.---...--~YyI~-~,'...--- 

Fig. 1: Flow Diagram of a typical 30 MWe SEGS Plant (Miller, 1992) 

Figure 2 shows how this flow cycle can be divided into components and streams in the 
EASY model if pure solar operation is considered. In the model, the two parallel solar 
heat exchanger trains shown in Fig. 1 are treated together and, for reasons of simplicity 
and because the results aren't affected much by this change, only the main three low 
pressure (LP) preheaters are considered in the Rankine cycle. Heat losses in all the piping 
in the solar field and in those of the huge expansion vessel are accounted for by an 
additional heat exchanger (named pipelosses) at the outlet of the solar field. 

As can be seen in Fig. 2 the model includes two leakage streams, one before the high 
pressure (HP) turbine, the other before the inlet of the LP turbine. One intent was to study 
the influence of increasing leakages, which was not done in this study but can be done 
later if necessary. Since the condensate and the feed water pump are operated at constant 
speed, the plant control valves are needed to reduce the pressure at the outlet of these 
pumps. In addition to these two valves, another is installed at the inlet of the HP turbine to 
control the main steam pressure if desired. Note that leakage and constant main steam 
pressure are only included in the calculations to compare the results with design 
calculations. 

2 



o11FmmFmM 
solarField 

0 oilpump 

waterToPmheater 

r 

I oilPrehomer oilsoiler oilSuperhemer I 
I 

oilFmmReheater 

oIIT0 
Rebater 

sfeamToReheater 

rmterToHpPmh2 
oilReheater HpValVe 

hpPrah2 

H&eam 

leakage 
SpMsri 

leakagsl 

deamToH 
pvatve 

4 

deamToHpTurb1 

waterToHpPmh2 

waterfmfe6dfu 

feedWatarTank 

walerToFaedTsnk 

lpSpliner2 IpTurbina2 
IPBkd2 

IpPreh3 n 

deamFmmLpTurb2 
dsamToLpTwbJ lpCondensale1 

waterToLpPmh3 

rpcond IpTuItsme3 
ToPmh2 IPBktbdJ ipsprmen - 

U 

IpPreh deamFmmLpTuA3 Merger1 

IpPreh2 

sfeamToLpTurt4 

IpCondsnsete2 

waterToLpPreh2 

B M O  

IpPmhl IpSpMer4 IpTurbme4 n 
lpCond 
ToPmhl 

U 
IpPreh 
Merger2 Msrger4 deamFmmLpTurW 

dsamToLDTurb5 

1eak;e @Bl- 
IpPrshl 

waterToLpPmh2 bleedws~er~oocond Condenser 
condPumoValve water fm 

Fig. 2: EASY Model for the SEGS Plant (Components--bold, Streams--italic) 
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3. Model Parameters for Design Conditions 

3.1. Parameters for the Components 
Prior to a detailed analysis of a plant performance, the input parameters needed in the 
model, such as heat exchange areas, heat transfer coefficients, pressure drop 
dependencies, turbine stage efficiencies, etc. have to be defined. In EASY these input 
parameters are divided into design values and part load dependencies. The design values 
are therefore needed first. Since in EASY all parameters can be treated as variables, it is 
possible to calculate these out of flow conditions known or by defining a reasonable and 
sufficient set of water-steam properties along the Rankine cycle. Such water-steam 
properties, for example,. are the temperatures and pressures along the main water-steam 
path, the pressures and enthalpies of the extraction streams and the pressures and the 
qualities (saturated water) of the extraction streams having passed the preheaters. EASY 
then calculates all necessary internal design parameters such as the turbine stage design 
efficiencies or the overall heat transfer coefficients of the heat exchangers. 

For this study, the necessary properties can be taken out of the technical description 
(Kearney et al., 1988) where water-steam conditions throughout the Rankine cycle are 
given for different operating conditions, e.g., different solar loads or with additional gas- 
firing. From the cases presented there, the VP4 mode with 100% pure-solar load (gross 
output = 35 MWe ) is considered to be the design case. Figure 3 shows the heat balance 
for this case (see Appendix A for all diagrams in English units). 

The HTF temperatures and the pressures throughout the solar cycle are taken either from 
the Operations Manual (LUZ Engineering Corporation, 1989) or the technical description. 
In order to describe the pressure loss of the solar field accurately (this is done in EASY 
using the Moody equations) the measured pressure drop of about 300 PSI (KJC Operating 
Company, 1994) at maximum flow is used and the roughness of the solar field piping is 
adjusted to match this. 

In analyzing the available data, it appeared that the information provided was not always 
consistent. One example is the last LP-extraction stream for which a specific enthalpy 
lower than the LP outlet enthalpy is given. Because of this, the efficiency of the fourth LP 
turbine stage cannot be calculated (considering the enthalpy at the last extraction), but the 
enthalpy must be determined assuming a reasonable turbine stage efficiency for the fourth 
stage. In this study, 88% is used for this stage efficiency. This causes the overall efficiency 
to be slightly higher than mentioned in the technical description of the plant. 

In analyzing the pure solar heat rates of the feasibility study, it can also be found that a 
generator efficiency of 97% is included in the data. This must also be accounted for in the 
EASY calculations. 
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Fig. 3:  Design Heat Balance at 100% Solar Load (Kearney et al., 1988) 
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3.2. Plant Parasitics and Pump Efficiencies 
In characterizing the plant’s performance, the plant parasitics play an important role. In 
the thermodynamic cycle, these are mainly those of the pumps and the cooling tower fans, 
and only these are included in the calculation. All other parasitics have to be accounted for 
“outside” the results; this study ignores them. 

For the description of the part-load behavior of the pumps, it is assumed, that they reach 
their optimum efficiency at the design flow rate - this is also assumed for all other 
components of the plant such as turbine stages, heat exchangers, etc. This is not 
necessarily true, but no better information was available for this study. No design 
information was available on pump efficiencies, so reasonable values had to be used. The 
efficiencies used in this analysis, which are adopted to the design data, are summarized in 
Table 1. 

Description 
condensatepump Condensate Pump 
feedPump Feedwater Pump 
oilpump HTF Pump 
coolWaterPump Cooling Water Pump 

Pump motor variable speed 
efficiency efficiency drive efficiency 

0.75 0.95 
0.75 0.95 
0.75 0.95 0.95 
0.75 0.95 

As there is no model for the cooling tower available in EASY yet, the power consumption 
of the fans must be treated in the calculations by adding their parasitics to the parasitics of 
the cooling water pump. This can be done by increasing the pressure drop of the cooling 
water cycle so that the parasitics in design load are equal to the sum of the parasitics of 
the cooling water pumps and the fans. 

3.3. Simulation Results 
Figure 4 shows the EASY result for the heat balance at 100% pure solar (VP4) operation. 
Comparing the results with the design conditions (Fig. 3), it can be seen that most of the 
water-steam conditions in the Rankine cycle match the design heat balance quite well. This 
is, of course, not possible for those locations where inconsistent data (as mentioned in 
Chapter 3.1) were found. 

Considerably different from the design conditions and also from real plant operation is the 
HTF flow rate predicted by the EASY model. The reason for this is that the specific heat 
capacity of the HTF included in EASY’ is slightly higher than actual, resulting in a lower 
mass flow rate through the solar field. However the part load predictions shouldn’t be 
affected by this if the lower mass flow rate is considered as a “numerical design value”. 
Then temperature and pressure drop dependencies are again treated accurately. 

‘The functions included in EASY to describe the properties weren’t changed during this study since only an 
executable was provided by ZSW. 
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The predicted parasitics of the pumps are given in Table 2. The values are dose to the 
design parasitics of the HTF pump and a little too low for the balance-of-plant equipment. 

Calculated Parasitics 
MWe 

0.19 + 0.88 = 1.07 condensatepump + feedPump 
oilpump (HTF Pump) 1.56 
cool WaterPump 0.99 

Design Values, MWe 
(Kearney et al., 1989) 

1.50 
1.60 
0.91 

Due to the necessary adaptation of the LP turbine stage efficiency, the gross electric 
efficiency of the predicted Rankine cycle is 38.2%; this is a little higher than the 37.5% 
presented in the technical description. The net energy output at 100% solar operation 
becomes 3 1.4 W e .  

In Table 3 all the component design parameters are summarized. It shows that the 
roughness of the solar field piping, including the effect of flex hoses, is calculated to be 
1.9mm and that the efficiencies of the turbine stages are within a reasonable range. 

Table 3 : Design Parameters adopted by EASY (see Section 4) 
solarField.1 = 753.6000 [m] ; solarField.di = 0.0650[m]; 
solarField.da = 0.0700 [m] ; solarField. roughness = 0.0019 [m] ; 
solarField.number0fPipes = 50.0000[-] ; solarField.tAmb = 30.0000 ["C] ; 

feedWaterTank.kpCold = 20.6848[-] ; feedWaterTank.kpHot = 1127.5664[-1; 

( 
( 

oilPreheater 
oilsuperheater 
oilReheater 
hppreheaterl 
hpPreheater2 
1pPreheaterl 
lpPreheater2 
lpPreheater3 
Condenser 

kpc ol d , kpHot, 
[-I I [-I I 

: 132 -5543, 0.8956, 
:132.5543, 0.5971, 
: 135.018 6, 8.7249, 
:860.8224, 28479, 
:397.6629, 154930, 
:491.0749, 720.4526, 
:134.4515, 5094.1179, 
: 124.1091, 48907, 
: 0.4824, 0.5171, 

oilBoiler.kpCold = 132.5543 [-3 ; 
oilBoiler.kpHot = 1.4927[-1; 
oilBoi1er.A = 2699.1843 [mA2] ; 
oilBoiler. kO = 1.000 [ kW/mA2/K] ; 
oilBoiler.mHot0 = 316.9956[kg]; 
oifBoiler.mCold0 = 38.8435 [ kg] ; 

( mFeedO , 
hpTurbinel:38.6415, 
hpTurbine2:35.7326, 
lpTurbinel:32.8068, 
lpTurbine2:30.7936, 
lpTurbine3:29.0324, 
lpTurbine4:27.4158, 
lpTurbine5:26.6117, 

( [kg/sl, 
pFeedO , 
[bar1 , 

100.0000, 
33.6100, 
17.1000, 
7.9770, 
2.7280, 
0.9625, 
0.2868, 

A* kO , 
[kW/Kl I 

48.8084, 
282.2158, 
478.9268, 
839.8529, 
663.1151, 
456.7598 , 
642.3171, 
191.7188, 
7418.6914, 

mHotO, 
[kgl I 

316.9956, 
316.9956, 
47.8779, 
5.5334, 
2.9089, 
4.4831, 
3.3778, 
1.7612, 
31.0949, 

mColdO) ; 
[kg/sl); 
38 - 8435; 
38.8435; 
33.1081; 
38.8435; 
38.8435; 
31.0949; 
31.0949; 
31.0949; 
1133.6929; 

( etas0, mFeedO) ; 

condensatepump : 0.7125, 31.09; 
f eedPump : 0.7125, 38.84; 
oilPump : 0.6769, 364.87; 
coolWaterPump : 0.7125 , 113369; 

( [-I [kg/sl) ; 

pDrain0, etaso, genPower) ; 

33.6100, 0.8376, 7643.538; 
18.5800, 0.8463, 3480.355; 
7.9770, 0.8623, 5730.183; 
2.7280, 0.9170, 6697.607; 
0.9625, 0.9352, 5045.830; 
0.2868, 0.8800, 4505.279; 
0.0800, 0.6445, 2979.683; 

[bar] I [-I, [kwl); 
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Fig. 4: EASY Results for the Heat Balance at 100% Solar Load. 

8 



4. Modeling Part Load Characteristics of Components 

The second step in modeling the plant is to define the parameters that describe the part 
load characteristics of the components. Here it is necessary to know about the models 
included in the calculations. These are described briefly in the following section starting 
with the solar field, the most important one. 

4.1. Solar Field Thermal Performance 

4.1.1. LS-2 Performance Equation 
The solar field thermal performance model is based on tests conducted by Sandia National 
Laboratories for an LS-2 Collector on the rotating platform (Dudley et al., 1994). From 
the results of these tests, efficiency equations were derived for HCEs with vacuum, air in 
the annulus, or for bare tubes as a hnction of fluid temperature, incident angle, insolation 
and, for bare tubes, of wind speed. 

In defining the thermal efficiency, qth, of the collector as the ratio of absorbed power 
(in %), Qabs, to the direct normal insolation, I (in W/m2), the general equation 

AT  AT^ - K [ A  +B( AT)] + C-+ D- 
I I 77th = I - 

was found to be adequate for the description of all HCE conditions except for bare tubes. 
In this equation, A accounts for the optical efficiency of the trough and the absorbtivity of 
the selective coating without considering the losses at the end of a collector row (see 
Chapter 4.2). B, C and D describe the heat losses of the HCE dependent on its conditions 
with AT as the temperature difference between the HTF and the ambient in degrees 
Kelvin. The incident modifier, K, is a fbnction of the incident angle Ia: 

K = C O S ( I ~ ) - O . O O O ~ ~ ~ ~ ( I ~ ) - O . O O O O ~ ~ ~ ~ ( I ~ ) ~  . (2) 

For bare tubes, no dependency on insolation was found but there was a strong influence by 
the wind. The following equation is given for Cermet as the selective coating: 

776are = 74.7 - 0.042( AT) - 0.00073 1( AT)2 - 0.00927( A T ) v , ” ~ ~ ~  (3) 

which can be transformed to a form similar to Eq. (1) 
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r 

Cermet, vacuum 
Cermet, air 
Cermet, bare 
Black Chrome, Vacuum 
Black Chrome, air 

1 

73.3 
73.4 
74.7 
73.6 
73.8 

Table 4 summarizes the parameters as they were found in the test results. 

Table 4: LS-2 Thermal Performance Coefficients 

I A  B 

-0.007276 
-0.004683 

-0.042-0.00927*~\Vm,~K 
-0.004206 
-0.006460 

(4) 

C I D  
-0.496 
-14.40 
0.00 
7.44 

-12.16 

-0.069 1 
-0.0637 

-0.00073 1 *I 
-0.0958 
-0.064 1 

4.1.2. Solar Collector Assembly End Losses 
The efficiency equations derived by Dudley et al. (1994) do not include the end losses of a 
parabolic trough row. These are simply a hnction of the focal length, f ,  of the collector 
and the incident angle, Ia, as shown in Fig. 5 .  

sun 

Fig. 5: End Losses of a Collector Row 

The receiver length, z, which is not illuminated by the sun, then is 

z = f tan( IC[) . 

Relative to the total length, lSCA, of the solar collector assembly (SCA), the amount of heat 
concentrated on the whole receiver tube therefore has to be reduced by the factor M 

lSCA -' = f tan( la)  
M =  

1 
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M has to be included in Eq. (1) so that this becomes2 

AT  AT^ 
77th = m[ A + B( AT)] + C - + D - 

I I (7) 

4.1.3. Performance Equation Considering Different HCE Conditions 
In the calculations carried out in this study, not every HCE in the solar field is treated 
separately. Only a single element with a performance equation like Eq. (1) is used. The 
parameters for this equation therefore have to account for the different HCE types found 
in the field as well as for broken mirrors and, what has not been mentioned yet, 
“fluorescing” tubes. For the latter HCE type, the coating is defective and partially coats 
the inner wall of the glass envelope which then reflects the concentrated light so that no or 
only a little sunlight reaches the absorber tube. This means that such HCEs, which still 
cause heat losses, can be approximated by using zero for factor A in Eq. (1). The same is 
true for HCEs whose mirrors are broken. 

Another important factor to be included in the calculations is the cleanliness of the 
mirrors, $M. Measurements show that the reflectivity of the mirrors drops considerably 
between two washing cycles without rain. The measured data can be used to get $M by 
comparing it to the maximum reflectivity achieved right after a wash - which is about 
90.5% for the LS-2 Collector (Kolb’ , 1994): 

actual reflectivity 
maximum reflectivity 

@M = 

Dirt also reduces the transmittance of the glass envelope, but no information is available 
on that. A reasonable assumption, however, is that the cleanliness or the reduction in 
transmissivity of the mirrors and the glass envelopes is about the same. Since light has to 
pass two times through dirt on the mirrors (reflective side at the back of the glass) and one 
time through the glass envelope, the cleanliness factor for the glass envelope, $E, can be 
calculated by 

1+@M 
@E = 

2 (9) 

Finally, when setting up the parameters for the performance equation, the influence of 
each HCE type must be weighted. Considering the percentage \vi of HCEs of a particular 

As an example for an LS-2 Collector (f = 1.49m, lscA= 47.1m), the factor M becomes 94.9% at noon on January 1 
(Ia = 58’). 

‘ see footnote 5, page 20 

11 



state and the assumption that all types of HCEs are distributed homogeneously over the 
solar field this can be done by3 : 

BField = Bi 'Yi 
I 

I 

with as an additional factor that can be used to vary the overall optical efficiency or 
modifL the overall absorptivity and qLost ~i~~~ as the percentage of broken mirrors 
throughout the solar field. Note, that 

applies (with C=Cermet, BC=Black Chrome). 

4.2. Piping and Expansion Vessel Heat Losses 
In the operation of a distributed solar power plant, the heat losses in all the piping are 
important and have to be included in the model. Additionally, the heat losses in the 
expansion vessel, which has a large surface area, should be included in the calculations. 
Both heat losses are treated in the EASY model through the heat exchanger named 
"pipeLosses" at the outlet of the solar field, as shown in Fig. 2. 

Both heat losses are considered to be temperature dependent, which is different from the 
SOLERGY model, where a constant solar field outlet temperature is assumed. The 
following dependency was implemented in the model 

' Example: If 88% of the HCEs are intact, 3.0% contain air, 7.4% are bare tubes, 1.6% have defective coatings and 
0.18% of mirrors are broken the performance parameters for HCEs with Cermet become: A=72.1, 
B =-0.00977 - 0.000686 VWmd / K, C =-0.8786, D =-0.0638 - 5.4094e-6 * I 
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Here, heat losses of all the piping of 20W per square meter aperture area, &F, are 
assumed at full solar power at a mean solar field temperature above ambient of about 
6 8 s ~  = 343°C (649°F) (Kolb, 1994). The radiation and mixed convection heat losses of 
the expansion vessel were estimated to be 2.57MWlh at 300°C (572°F) field outlet 
temperature (275°C mean field temperature) assuming poor insulation conditions 
experienced in the plant under consideration in 1994. 

- 

4.3. Turbine Stages 
EASY accounts for changes in the efficiencies of turbine stages during part load by 
modifying the design efficiency qs0 dependent on the pressures pl and p2 at the inlet and 
outlet of the stage: 

2 
--E = 1 + .( P1 J Pl0 - 1) 
77,o P2 J P20 

with plo and p20 as the design values. In the calculations only a slight dependency for all 
stages, a = 0.1, is assumed. The pressure difference over a turbine stage is calculated by 

2 2  
m2 - PI -P2 

m02 - P?o - P20 2 .  

4.4. Heat Exchangers 
In all heat exchangers, the pressure drop, Ap, of every stream is proportional to the square 
of the mass flow rate: 

Ap=kpm2 . 

As a first-order estimate k, is assumed to be constant and is calculated based on the 
pressure drop known at design conditions. The heat transfer coefficient k between the hot 
and the cold fluid is described as linearly dependent to the two mass flow rates by 

with the dependency factor k rn and k, as the design value. In this study k,=l was used so 
that the heat transfer coefficient is proportional to the mass flow rates. 
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4.5. Pumps 
In a system like the SEGS plant, many pumps are used for different purposes and in a 
variety of configurations. Some of them are operated in parallel, others, such as the HTF 
pumps, are connected in series. Additionally, different operating modes of the pumps such 
as constant speed or variable speed operation are used. 

An example of a complete characterization of a centrifbgal pump, including iso-efficiency 
curves, is shown in the upper diagram of Fig. 6 (Lazarkiewicz et al., 1965). Since no 
better information was available for the pumps in the system, this was taken as the basis 
for the calculations. 

In Fig. 6 the head H of the pumps is plotted as a function of flow rate Q for speeds 
varying from 0.51 and 1.3n and the iso-efficiency curves are eliptical curves with the 
optimum efficiency4 of 80% at design conditions (WH,=lOO%, Q/Qn=100%). The 
parabolas through the origin represent curves of similar flow conditions. Figure 6 shows 
how the efficiency of a pump operated at constant design speed can be derived. This is 
done by plotting the efficiencies found along the constant-speed path for different flow 
rates, as shown in the lower diagram in Fig. 6. 

It is also possible to derive a complete characterization of two variable-speed pumps that 
are operated in series, where one of those is bypassed until a particular flowrate is 
achieved (Fig. 7). If two pumps are operated in series, the flow rate through both of them 
is the same and each pump has to provide half the head necessary to pump the flow 
through the system. If the system pressure drop is a function to the square of the flow 
rate, curve A-B-C-D in Fig. 7 then represents the head of one of the two pumps operated 
in series. If only one pump is used in the system at low flow rates, this pump has to 
provide the full head, which is represented by curve A-E-F. 

The corresponding efficiency curves for the two operating strategies are plotted in the 
lower diagram in Fig. 7. These show that an optimum efficiency is reached if two pumps 
are operated in series down to mass flow rates of about 70%. Below that, only one pump 
should be operated. 

In EASY, the thermal efficiency, qs, of a pump at part load conditions is described as a 
hnction of mass flow rate by 

with q,, as the efficiency of the pump at design conditions, mo as the design mass flow rate 
and em, as a parameter defining the shape of the efficiency curve. For constant speed 
pumps %,= 0 is a good choice because the calculated efficiency corresponds to the 

4This optimum efficiency is valid for the special case shown in the diagram. It has to be modified dependent on the 
pump under consideration (75% as shown in Table 1). 
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characteristic shown in the lower diagram in Fig. 6 for lower than design mass flow rates. 
A mean efficiency curve for the two HTF pumps in series can be described by G~ = -0.4. 
With the parasitic power calculated for the HTF pump at design flow (1.56MWe, Table 
2), this leads to Table 5 if constant HTF properties are assumed. 

Table 5:Parasitic power consumed by the HTF pump 
(G~ = -0.4, Pe~,0=1.56MWe) 

Flow [%I I 100 I 7 5  I 50 I 25 
Parasitics w e ]  I 1.56 I 0.72 I 0.30 I 0.12 

Fig. 6: Complete characterization of a centrifbgal pump, including iso-efficiency 
curves, in a two-dimensional system (Lazarkiewicz et al., 1965). 
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Fig. 7: Characteristics of two centrifugal pumps operated in series. 
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5. Validation of the Model 

In order to validate the model, its results are compared in the following first to the part- 
load conditions predicted in the technical description (Kearney et al., 1988) and then to 
the real plant behavior. After that, the energy balances are compared to what SOLERGY 
predicts in order to evaluate how differences in the model’s assumptions influence them. 
This gives hints for future improvements to the models. 

5.1. VP2 and VP3 Solar Operation Mode 
The technical description includes ABB predictions for the part load conditions of the 
Rankine cycle for rated and derated solar and hybrid operation assuming a constant main 
steam pressure and equality in temperature of main steam and reheat steam. As described 
in Chapter 2 the pure solar, VP4, mode was used as the design case for this study. Now, 
as the parameters for the description of the part load conditions of the plant have been 
defined, it is also possible to compare the EASY results to the predictions of the technical 
description for the other solar cases. 

As the solar field is not included in these calculations, the solar field conditions (mass flow 
rate and insolation) are predicted by the model to meet the output power. Figures 8 and 9 
show the results for the VP3 and VP2 solar-mode as predicted by EASY. 

Comparison of EASY results with predictions of the technical description show that the 
flow conditions and the heat balances are generally close to each other. Nevertheless, 
there are small differences in the flow rates which are, again, due to the difficulties in 
defining the LP turbine efficiency for the fourth stage mentioned in Chapter 3. Besides 
this, the agreement between the two models is good, which means that both models for 
the Rankine cycle are similar. 

5.2. Comparison to Real Plant Operation 
Since in a real plant not only transient effects but also changes in the operating strategy 
play an important role, a comparison of the steady-state EASY model to real plant data is 
much more complicated. In addition, the solar field conditions are also subject to change 
and the actual reflectivity of the mirrors throughout the field are only approximately 
known as are the field locations of HCEs with broken glass envelopes or lost vacuum. 

In comparing results to real plant data, it is possible to show how different field conditions 
affect the results. This study shows how the results compare to the real plant conditions 
for a summer and a winter day. This allows first the optical performance model and then 
the heat loss assumptions to be validated, since the latter influence the results much more 
in the wintertime than on a summer day. 
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Fig. 8: EASY results for the VP3 Solar-Mode. 
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5.2.1. Clear Summer Day 
Figure 10 shows the insolation conditions and the wind speed measured during a clear 
summer day. For this day, the plant behavior was predicted with EASY assuming different 
field conditions as shown in Table 5 and a constant superheating of the main steam in 
every case. Case S1 fhctions as the base case for all the calculations. For this prediction, 
as much information as possible about the solar field conditions for that day were 
included. The mean reflectivity5 of the solar field is set to 87.1% and a wind speed of I d s  
(2.2mph) was chosen, which was valid until about 11 a.m. The second case S2 considers a 
somewhat reduced absorbtivity of all bare tubes due to degradation of the selective 
coating (Mahoney, 1994). Cases 3-5 are based on this, from which case S3 shows how an 
additional reduction in the absorbtivity of all receiver tubes influences the result 
(Mahoney, 1994), S4 shows the effect of increased wind speed, and S5 shows the effect of 
increasing piping heat losses. 

In Fig. 11 the actual, measured gross electric output of the plant is compared with the 
EASY results. In the EASY calculations, start-up of the plant is not modeled, and no 
thermal energy is stored in the solar field; this causes the simulation results to be different 
from the measured data at the beginning and end of the day. No comparison is therefore 
possible for these times. It can be seen that the model predicts too high an output for all 
cases but case S3 and that S5 gets close to the actual output. 

In comparing the predictions for different wind speeds (cases 1 and 4) with the real plant 
behavior, it can be seen that the convection losses of bare tubes do not have much 
influence on the output. On the other hand, this means that generally the optical 
parameters or the thermal losses of all HCEs or the piping heat losses must be worse than 
estimated. But here a small change greatly influences the results, as indicated by the 
differences between cases S2 and S3. 

Figures 12 through 15 compare temperatures and pressures predicted by the model for 
case S3 (for which the predicted gross output is closest to the measured one) with actual 
plant data. In Fig. 16 the parasitics predicted for the different cases with the actual plant 
data are shown. Generally a very good agreement between the model and the real plant 
behavior is found. Major differences only occur for the steam pressures at the inlet of the 
HP turbine. Here the model predicts about 10 bar more than actually found in the system, 
which is is not surprising since the model was not fine-tuned to the plant and it seems that 
the turbine has a higher capacity than assumed in the feasibility study. 

The optical efficiency has to be scaled by the reflectivity experienced in the solar field compared to the reflectivity 
assumed for the test collector during the tests. The latter was first assumed to be spray-washed, resulting in a 
typical cleanliness of 96.3% or a reflectivity of 90.5% achieved after a wash. However, after finishing the 
calculations, it was found, that the test collector was hand-washed, resulting in a better cleanliness of the mirrors. 
Assuming that the test collector had a reflectivity of about 93 0% the calculated gross output therefore has to be 
multiplied by a factor of 97.3%, resulting in a better comparison to the real, measured output. 
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Table 6: Case definitions for the summer day 

Case I 
s 1 I  

HCE/Field Conditions 
88.8% with vacuum 
2.8% with air 
6.2% bare (wind speed 1 mk2.2mph.) 
1.6% with defective coating 
0.6% affected by cooling tower problem (5 SCA o/s) 
0.27% of mirrors broken, 100.0 % of SCAs tracking 

s3 
s 4  
s5 

Mirror Reflectivity 87.1% 
case S1 with an additional reduced absorbtivity of bare tubes 

case S2 with additional "field degradation factor" 95% 
case S2 with stronger wind (4m/s=8.8mph) 
case S2 with increased piping heat losses (40W/m2) 

11 to 75% due to dewadation 
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Fig. 10: Insolation and wind speed during a clear summer day. 
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Fig. 1 1 : Actual and predicted gross electric output during a clear summer day. 
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Fig. 12: HTF Temperatures during a clear summer day. 
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Fig. 13: Actual and predicted steam temperatures during a clear summer day. 
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Fig. 14: Actual and predicted 
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steam pressures during a clear summer day. 
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Fig. 15: Actual and predicted condensate back pressures during a clear summer day. 
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5.2.2. Clear Winter Day 
Figure 17 shows the insolation conditions and the wind speed for a winter day. Again 
calculations were made for this day assuming different solar field conditions, as 
summarized in Table 6, and a constant superheating of the main steam. 

Figure 18 then shows how the gross output predicted by the model for the different cases 
match the actual measurements. Out of this all predictions can be seen to be too high even 
at a generally reduced absorbtivity of all HCEs6 (case W4). A time-shift of about half an 
hour can be seen between the predictions and the real output due to the time delay of the 
solar cycle and the heat exchangers. 

There are three possible explanations for the high predicted output: 

First, the HCE absorbtivity or the optical efficiency might be lower than for case W4. 
But this would reduce the output too much for the summer day as shown by case S3 in 
Fig. 11. 

The second explanation is that the solar field conditions, such as the reflectivity, the 
number of broken mirrors or the number of bare tubes, are worse than known. But for 
the winter day, the solar field conditions could be defined more accurately than for the 
summer day, since better information was available for that period. 

Third, the piping losses, which are assumed to be temperature dependent, are 
underpredicted by the model (see Chapter 5.3 for the influence of constant piping heat 
losses on the result for a winter day). Here a more detailed study is necessary to find 
out the real losses. In the calculations, it was also difficult to define the heat losses of 
the expansion vessel since its actual condition was not exactly known. 

Considering the summer day, a combination of reduced optical efficiency and higher 
thermal losses might be adequate to represent the real conditions. Comparing the 
predicted temperatures and pressures for case W3 with the measured data (Figs. 19 
through 22), again, temperatures are seen to be close to the actual and HP-Inlet pressure 
is higher than observed. Finally, the predicted parasitics (Fig. 23) show the same tendency 
as the gross output and are a little too high. 

w10 

HCEXeld Conditions 
87.3% with vacuum, 3.0% with air, 7.5% bare (wind 1 m/s=2.2mph), 
1.6% with defective coating, 0.6% affected by cooling tower problem (5 SCA o/s) 
0.34% of mirrors broken, 100.0 YO of SCAs tracking, Reflectivity 90.5% 
additional assumption that absorbtivity of bare tubes 
is reduced to 75% (degradation) 
stronger wind (2ds4.4mph) 
same as case W 3  with additional field degradation factor of 95% 
same as case W3 with increased uiDing heat losses of (40W/m2) 

As noted in footnote 5 on page 20, the results should be scaled by 97.3%. Considering that, case W4 represents the 
actual conditions best. Considering higher piping losses, the results then will be close to the actual, measured 
output 
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Fig. 17: Insolation and Wind Speed during a clear winter day. 
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Fig. 18: Actual and predicted gross electric output during a clear winter day. 
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Fig. 19: HTF Temperatures during a clear winter day. 
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Fig. 20: Actual and predicted steam temperatures during a clear winter day. 
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Fig. 21: Actual and predicted pressures during a clear winter day. 
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Fig. 22: Actual and predicted condensate back pressures during a clear winter day. 
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Fig. 23 : Actual and predicted parasitics during a clear summer day. 

5.3. Comparko f i  with SOLERGY-Results 
By comparing the EASY results with the SOLERGY model, the influences of the different 
assumptions used in the two models can be seen. It is also possible to show clearly how 
the results are affected by changes in the operating conditions. In SOLERGY, in which 
only energy balances are used for the calculations, it is assumed that the heat losses of the 
solar field and all the piping are constant for all loads. For the solar field, 20MWth was 
used in the calculations based on an estimate of the actual number of broken and low 
vacuum HCEs for Cermet and black chrome. For the piping 3.7MWth was used. 

For comparative purposes, the EASY model was adapted to the SOLERGY parameters 
so that the solar field losses were the same at design load. To achieve 20MWth in EASY, 
Cermet for the selective surface and lost vacuum was assumed for all HCEs. For the 
piping heat losses, a constant value of 3.7MWth was implemented in EASY. 

In Fig. 24, the power absorbed by the solar field during a winter day is shown as it is 
predicted by SOLERGY and with the EASY model for three different operating 
conditions. The first operating mode considered by the EASY calculations is that the HTF 
flow rate is held constant at the design value. Second, a constant field outlet temperature 
is assumed and the third, most realistic assumtion is that the superheating of the main 
steam is held constant for all loads. The corresponding HTF temperatures at the inlet and 
outlet of the solar field predicted by EASY for these three cases are shown in Fig. 25. 
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Fig. 24: Absorbed power calculated by SOLERGY and EASY for a winter day. 

As can be seen, the power absorbed by the solar field is highly influenced by the operating 
mode. It decreases with increasing HTF temperatures, which is reasonable since the heat 
losses of the solar field increase under that condition. For the case with constant design 
outlet temperature, which is assumed in the SOLERGY model, the EASY results compare 
well with the SOLERGY results. 

The gross output predicted by the two models is shown in Fig. 26. Again, the three 
different operating modes mentioned above are presented. Now small differences occur 
between the two models for a constant field outlet temperature, indicating that the 
Rankine cycle efficiencies are different between the two models. Since the solar field 
losses calculated with EASY decrease if the outlet temperature decreases, these 
differences increase at the other two operating modes and the gross output is higher for 
those cases. 

The net output is plotted in Fig. 27. Again the two models are close to each other at 
constant field outlet temperature. It is also obvious that the differences between the net 
output predicted for the three operating modes are smaller than for the gross output. This 
is due to higher parasitics of the HTF pump needed at higher HTF flow rates with lower 
field outlet temperature. Therefore, the case using a constant HTF flow rate, which shows 
the highest gross output power (Fig. 24), is, on a net basis, less than on a gross basis. But 
this changes with the load as can be seen in Fig. 27, where a constant field outlet 
temperature produces the lowest net output at the lowest load at noon, but at the higher 
load at morning and evening this is as high as at a constant superheating of the steam. 
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Fig. 25: Solar field inlet and outlet temperatures calculated by EASY for a winter day. 
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6. Efficiency Optimization by Changing the Solar Field 
Outlet Temperature 

The following section shows how different operating conditions influence the resulting 
output of the SEGS plant and how the efficiency can be optimized by changing the solar 
field outlet temperature. The comparisons are made for three characteristic days - a 
summer, a winter and a fall day. The same solar field conditions as in Chapter 5 are used 
for calculations of the summer and winter day; those for the fall day are adopted to the 
plant conditions found on that. 

6.1. Summer Day 
Figure 28 shows the gross output of the plant for a summer day. In this, S2 refers to the 
plant conditions summarized in Table 6. These are also used for cases S6 and S7, where 
only the operating conditions are changed. In case S6, the superheating of the steam is 
reduced to 50°C (9O”F), in case S7 the solar field outlet temperature is held at its 
maximum of 391°C (736°F) with superheating temperatures between 65°C (1 17°F) at noon 
and 93°C (168°F) at 6 p.m. This compares to 59 “C (106°F) superheating at the design 
conditions, which is used for case S2. 

Obviously, for a summer day, the gross output of the plant is the highest at the lowest 
superheating temperature of 50°C (9O”F), for which the steam quality at the exit of the 
turbine reaches 90%, and the lowest at the maximum HTF temperature of 391 “C (736°F). 
Integrating7 the results over the day - neglecting start-up and shut down times - and 
comparing the results to each other, the gross output of case S6 is 1.6% higher than 
predicted for case S2 and 2.6% higher than at the maximum HTF temperature. 

The net output of the plant for the three operating conditions is compared in Fig. 29. 
There, the lower superheating of case S6 is no longer the best, in fact, the net output then 
is 3.7% lower than at the maximum HTF temperature. The reason for that lies in the high 
parasitics consumed by the HTF pump in case S6 as shown in Fig. 30, which are probably 
already beyond its limits. But this is not indicated by the results; the HTF flow rate is 
predicted to be close to the maximum flow rate of the pumps. 

Summarizing the results, it seems that a high solar field outlet temperature always 
produces the highest net output due to high Rankine cycle efficiencies or, what is more 
important, low HTF pump parasitics. But the differences, relative to a constant 
superheating of the main steam of 59 “C (106”F), are smaller at a lower load in the 
morning and the evening (Fig. 29). But over the day the net output is still 1% higher than 
in case 2. 

A trapezoidal integration method was applied herefore. 7 

33 



35 , 

I I ..... o : ... Case S7 (Toil=391C=MGF): 293.7 M (gross) I 
I I I 
I I I I I I I , 

8 9 10 11 12 13 14 15 16 17 18 

Time[h] 

Fig. 28: Gross output for different superheating temperatures on a summer day. 
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Fig. 29: Net output for different superheating temperatures on a summer day. 
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One change made in the existing plants is that flexible hoses are replaced with ball joints 
every time a flex hose has to be replaced. The pressure drop in the solar field is predicted 
to be reduced by approximately 44% after all flex hoses are replaced (KJC Operating 
Company, 1994). The question then is how this changes the net output at the different 
operation conditions. As shown in Fig. 31, the differences between the cases are very 
small under such conditions. Cases S2 and S7 produce nearly the same net output, and 
case S7 is only 0.5% lower over the day. 

6.2. Writer Day 
For a sunny winter day, Figs. 32 to 34 show the results for case W2 (dTsup=59 “C=106”F, 
Table 6), compared with higher and lower superheating temperatures, cases W6-9 and 
case W5 respectively.. Again, on a gross basis, the plant produces the highest output at 
the lowest superheating temperature and a decreasing one with increasing superheating of 
the main steam. On a net basis (Fig. 33) it can be seen that case W2 is the optimum 
operating mode. It produces a slightly, 0.1% higher net output than case W6, about 0.7% 
more than case W5, and about 3.4% more than case W9. If the pressure drop in the solar 
field is reduced this changes so that the operating conditions of case W5 
(dTsup=5O0C=90”F) produce 0.5% more electricity than case W2 (dTsup=59”C=l06”F) 
and 1.15% more than case W6 (dTsup=67”C=121”F). 
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Fig. 32: Gross output for different superheating temperatures on a winter day. 
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Fig. 35: Gross output for different superheating temperatures on a fall day. 
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Fig. 36: Net output for different superheating temperatures on a fall day. 
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6.3. Fall Day 
For a day in fall, the results show the same tendency as seen before on a gross basis (Fig. 
35) but noy an optimum superheating temperature (67"C=121'?) with a maximum net 
output can be found (Fig. 37). This means that for operating conditions in the middle load, 
the superheating should be increased compared to the design value but should not be 
chosen as high as possible. At reduced HTF pump parasitics, a small increase in HTF flow 
rate relative to the design conditions leads to a higher net output. 

6.4. Summary 
Table 8 summarizes the relative changes of the gross and net output of the plant for the 
different operating conditions. In all cases, the gross output reaches its' maximum at the 
lowest solar field outlet temperature, and a strong dependency on the HTF temperature is 
found. On a net basis it is found that, depending on the time of the year, different 
superheating temperatures should be chosen. In summer, the highest possible HTF 
temperature is the best operating mode, but this changes in fall, when it should be 
decreased somewhat. By doing this, about 1.5% more net electricity could be produced 
compared to an operation with maximum HTF temperature. But the superheating should 
still be slightlt increased over the design value. At low load such as on a winter day, it can 
be seen that the superheating should be chosen at the design value or slightly higher. 
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In general changes in the operating strategy influence the output more on a summer day 
than on a winter day, since the parasitics of the HTF pump then are at a higher level. The 
influence of the parasitics of the HTF pump also becomes clear by looking at the net 
output predicted for the different operating conditions, assuming a lower pressure drop in 
the solar field. Then an increase in HTF flow or a decrease of the solar field outlet 
temperature is favorable most of the year. 

As mentioned above, the calculations were made for actual solar field conditions with 6- 
7% broken HCEs. Therefore, the heat losses are higher than if the plant were in design 
condition. Estimating the effect of this, one can say that changes in temperature play a 
minor role if the plant is in good condition, and a higher field outlet temperature then can 
be chosen. On the other hand, Chapter 5 showed that the heat losses in the model are 
underestimated compared with the real plant. Therefore the influence of changing the 
operating conditions could be larger than the comparisons show, and the tendency of 
having a higher net output would be greater. 

Integrated Gross 
Output related to 

maximum 

Table 8: Relative changes of gross and net output power at different operating conditions 

Integrated Net Integrated Net Output 
Output related related to maximum at 
to maximum reduced SF pressure loss 

50°C 

59°C 

Summer I Day 

90°F Max. -3.66% -0.47% 

106°F -1.63% -0.96% Mag. 

I MiUL -0.3 6% Toil = 391°C 1736°F -2.55% 

Fall I Day 

50°C 

59°C 

90 9; Mag. -2.1% Max. 

1069; - 1.75% -0.37% -0.10% 
I 1 

67°C 121°F -2.91% 

-5.81.% Toil = 391°C / 736 "F 

Mag. -0.56% 

-1.47% -2.87% 
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Winter 

Day 

50°C 90°F Mag. -0.70% Mag. 

59°C 106°F -1.40% MaxLH. -0.47% 

67°C 121°F -2.50% -0.10% -1.14% 

85°C 153°F -4.69.% -1.50% -3.09% 

100°C 180°F -6.67% -3.40% -5.17.% 



7. Summary 

In this study, the simulation program EASY is used for detailed thermodynamic 
calculations of the part-load conditions of a SEGS plant. In the calculations, a solar field 
performance equation is included that was developed out of measurement results of an 
LS-2 collector (Dudley et al., 1994). The model results are compared with the real plant 
behavior for a winter and a summer day and they are also compared with the SOLERGY 
model. Finally, the code is used to evaluate how different operating conditions, e.g. 
different solar field outlet temperatures or different main steam superheating temperatures, 
affect the gross and net output and how this can be maximized at different insolation 
conditions. 

The comparison with the real plant conditions shows that there is still a lack of 
information concerning actual solar field conditions. It is shown that the effect of wind is 
predicted by the model to be low. It also seems that the heat losses of the solar field are 
underestimated since the results are too high on winter and on summer days. Here it is 
likely that, in particular, the piping heat losses assumed in the calculations were too low. It 
may also be that the optical efficiency of the solar field was worse than estimated, which is 
logical, since Sandia's single trough was aligned very well compared with the troughs in 
the solar field. 

When the gross output predicted by the model is close to the actual value, then all the 
temperatures match the actual plant conditions quite well. For pressures, it is found that 
these are higher than measured, indicating that the turbine has a higher capacity than 
assumed. 

Comparison with the SOLERGY model shows that at a constant solar field outlet 
temperature the results are the same for both models. It could also be shown that a 
reduction of HTF temperature at lower load, which is done at the actual plant, increases 
the output due to reduced thermal losses of the solar field. To match the actual plant 
operation varying field and pipe losses should be considered in hture SOLERGY 
calculations. 

Finally different operating conditions are shown to affect the output on a summer, fall and 
winter day. The result for the actual plant conditions is that the gross output always 
reaches its maximum for the lowest superheating temperature. On a net basis, the high 
parasitics of the HTF pump change that picture so that the optimum operational strategy 
depends on the insolation conditions. For a summer day, this optimum operational strategy 
is to run the plant at the highest allowed HTF temperature of 391°C (736°F). In fall and 
winter, superheating temperatures slightly above the design value should be chosen, but 
not as high as possible. 

If the solar field pressure drop is reduced by replacing all flex hoses with ball joints, then 
the optimum operational strategy changes. In this case an increase in HTF flow does not 
increase the parasitics significantly, so that on a net basis the output is the highest at the 
lowest possible superheating temperatures in winter and fall. In summer the field outlet 
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temperature should also be reduced; a constant superheating at the design value is found 
to be the best here. 

Summarizing the results, it can be said that the .EASY model agrees well with the real 
plant conditions but needs to be refined. Some work is also necessary to improve the 
performance model for the solar field and the thermal loss model for the piping. 
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9. Appendix A: Diagrams using English Units 
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Fig.3b: Design Heat Balances at 100% Solar Load (Kearney et al., 1988) 
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Fig. 12b: HTF Temperatures during a clear summer day. 
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Fig. 13b: Actual and predicted steam temperatures during a clear summer day. 
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Fig. 14b: Actual and predicted steam pressures during a clear summer day. 
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Fig. 15b: Actual and predicted condensate back pressures during a clear summer day. 
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Fig.2lb: Actual and predicted steam pressures during a clear winter day. 
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Fig.22b: Actual and predicted condensate pressures during a clear winter day. 
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