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Jamming at zero temperature and zero applied stress: The epitome of disorder
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We have studied how two- and three-dimensional systems made up of particles interacting with finite range,
repulsive potentials jam~i.e., develop a yield stress in a disordered state! at zero temperature and zero applied
stress. At low packing fractionsf, the system is not jammed and each particle can move without impediment
from its neighbors. For each configuration, there is a unique jamming thresholdfc at which particles can no
longer avoid each other, and the bulk and shear moduli simultaneously become nonzero. The distribution offc

values becomes narrower as the system size increases, so that essentially all configurations jam at the same
packing fraction in the thermodynamic limit. This packing fraction corresponds to the previously measured
value for random close packing. In fact, our results provide a well-defined meaning for ‘‘random close
packing’’ in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold,
point J, occurring at zero temperature and applied stress and at the random-close-packing density, has prop-
erties reminiscent of an ordinary critical point. As pointJ is approached from higher packing fractions,
power-law scaling is found for the divergence of the first peak in the pair correlation function and in the
vanishing of the pressure, shear modulus, and excess number of overlapping neighbors. Moreover, near point
J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges atJ.
However, pointJ also differs from an ordinary critical point: the scaling exponents do not depend on dimension
but do depend on the interparticle potential. Finally, as pointJ is approached from high packing fractions, the
density of vibrational states develops a large excess of low-frequency modes. Indeed, at pointJ, the density of
states is a constant all the way down to zero frequency. All of these results suggest that pointJ is a point of
maximal disorder and may control behavior in its vicinity—perhaps even at the glass transition.
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I. INTRODUCTION

The nature of the glass transition has been called prob
‘‘the deepest and most interesting unsolved problem in so
state theory@1#.’’ The nature of granular materials has als
been said to lead to equally deep questions in statis
physics: ‘‘One might even say that the study of granu
materials gives one a chance to reinvent statistical mecha
in a new context@2#.’’ Indeed, only a few years ago, the sta
of understanding of granular matter was compared to ‘‘
level of solid-state physics in 1930@3#.’’ There is no doubt
that there are hard and deep problems associated with
types of systems and it may seem, at the outset, foolish to
to study both problems simultaneously. However, there h
been significant advances in both fields of study that indic
that these problems are perhaps intimately related. They
deal with amorphous systems of particles in which the
namics is perched precariously near a transition betwee
flowing and a static state; that is, both systems are close
jamming threshold where all dynamics ceases. One ques
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that one can ask is whether there is something generic a
such transitions so that the freezing of a liquid into a gla
can profitably be compared to the arrest of a flowing granu
material, or a suspension, as external stresses are red
below the yield stress. In other words, can one study syst
that can explore different states either through thermal fl
tuations or through externally applied stresses, and searc
unifying concepts that describe their arrested dynamics
different aspects of a more general ‘‘jamming’’ behavior@4#?

Our approach to this problem is to describe both gla
systems and granular ones using the concept of a ‘‘jamm
phase diagram.’’ In such a diagram, the ‘‘phase bounda
marks the point where the response of the system has
come so sluggish as to make it appear solid on any exp
mental time scale. Using this framework, one can gain
sight into the relationship between athermal jamming a
thermal glass transitions, and appreciate what are the co
variables that govern dynamical slowing down under ma
different conditions. In this paper, we describe simulations
a model liquid with frictionless, finite-range repulsive inte
actions. Because the potentials fall to zero at some fi
finite radius, such a system may be a starting point for
derstanding macroscopic granular or colloidal systems
well as liquids. For such potentials, there is one special po

g,
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at zero temperature and zero applied shear stress on the
face separating the jammed and unjammed regions, w
has exceptional and unique properties. The goal of this pa
is to elucidate some of the important properties of this s
cific jamming transition in depth. We have found that t
transition near this point has some aspects that resemb
critical point and other properties that are not expected fo
normal second-order transition. However, just as with a m
conventional critical point, there is the tantalizing possibil
that it may control the region around it and thereby gov
the nature of the entire jamming surface in the phase
gram.

We will first describe what is meant by jamming and wh
systems may profitably be studied under this rubric. We w
then describe the jamming phase diagram and show the
portant consequences that can be drawn from it. The na
of the transition at zero temperature and zero applied s
stress will then be described to show why it is such an
portant and unique transition.

A. Systems that jam

Jamming occurs when a system develops a yield stres
a disordered state@4#. In many cases, it is difficult to tel
whether a system has an infinite stress relaxation time~and
hence a yield stress!, or whether it has a finite stress rela
ation time that exceeds the time scale of one’s measurem
Therefore, an alternate definition is that jamming occ
when a system develops a stress relaxation time that exc
a reasonable experimental time scale in a disordered s
According to these definitions, many systems jam. Gran
materials can flow when they are shaken or poured throu
hopper, but jam when the shaking intensity or pouring rat
lowered@5#. Colloidal suspensions of particles are fluid, b
jam when the pressure or packing fraction is raised@6#.
Foams and emulsions~concentrated suspensions of defor
able bubbles or droplets! flow when a large shear stress
applied, but jam when the shear stress is lowered below
yield stress@7#. It should be emphasized here that granu
materials, foams, and dense emulsions are athermal in
sense that ordinary room-temperature thermal fluctuat
are too insignificant to allow the system to explore pha
space. However, for other systems—typically those cons
ing of smaller particles, such as molecular liquids
temperature plays an important, if not dominant, role. Th
liquids jam~if crystallization does not intervene first! as tem-
perature is lowered or density is increased—this is the g
transition@8#. There are a number of striking similarities
the phenomenology of these different transitions. Des
much effort, no significant static structural signature—as
posed to a kinetic slowing down—of jamming has been
served experimentally in any of these systems@9#. However,
we have proposed that such a signature can be observed
quantity initially measured for granular materials@10#. An-
other similarity among the different systems is that the
crease of the stress relaxation time tends to be su
Arrhenius as a function of the control parameter@11#. In
addition, all systems show kinetic heterogeneities near
onset of jamming, where particle mobilities become hete
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geneous in space and intermittent in time@12#. However, the
parameters that control jamming~temperature for the glas
transition, applied shear stress for a foam, packing frac
for a colloidal suspension! are so different that previously i
was difficult to see how to compare the jamming transitio
at a quantitative level.

B. Jamming phase diagram

We proposed in Ref.@13# that different routes to kinetic
arrest can be tied together by a ‘‘jamming phase diagra
shown schematically in Fig. 1. The shape of the jamm
surface may be different for different systems. The choice
axes is dictated by the parameters that control the trans
to jamming in different systems, namely, temperatureT, den-
sity or packing fractionf, and shear stressS. Note thatT
andf are traditional axes for phase diagrams, butS is not.
In the unjammed regime, the system flows at nonzeroS, so
S is a nonequilibrium axis. Why should there be such an a
in the jamming phase diagram? One reason is that s
stress introduces fluctuations in the unjammed regime
forcing the system to explore different packing configu
tions. Recent studies show that such fluctuations can be
scribed by an ‘‘effective temperature’’ that has many of t
attributes of a true temperature@14–17#. Moreover, the dy-
namics of a sheared system whose effective temperatu
lowered toward jamming are quantitatively similar to the d
namics of an equilibrium system whose temperature is lo
ered toward the glass transition@18,19#. These results help to
justify the existence of shear stress as an axis on the p
diagram.

The ordinary phase diagram for the glass transition lies
the vertical plane coming out of the page of Fig. 1, name
the (1/f)-T plane. At high packing fraction, there is a tra
sition between a supercooled liquid and a glass that occu
Tg . ~Although the relaxation times appear as if they w
diverge close to the transition line, it is impossible in pract
to track their increase past the times scales accessible to
periment. Thus, the transition lineTg marks the position
where the relaxation time has reached some large thresh
Its exact position may depend to a small extent on the larg
time that an experimentalist is willing to run an experime
This definition corresponds to the conventional one used

FIG. 1. ‘‘Jamming phase diagram.’’ The jammed region, ne
the origin, is enclosed by the depicted surface. The point labeleJ
is the boundary of the jammed region atT50 andS50. Adapted
from Ref. @13#.
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JAMMING AT ZERO TEMPERATURE AND ZERO . . . PHYSICAL REVIEW E68, 011306 ~2003!
Tg in glass-forming liquids.! As the packing fraction is low-
ered,Tg normally decreases@20#. This glass-transition line is
represented by the curve separating the jammed~i.e., glass!
and unjammed~i.e., liquid! regions in the (1/f)-T plane.
The ordinary phase diagram for a foam or emulsion wo
be in the horizontal plane coming out of the page, nam
the (1/f)-S plane of Fig. 1. At a fixed packing fraction, on
must apply a shear stress higher than the yield stress in o
for the system to flow at an experimentally measurable sh
rate. Thus, the yield stress as a function of packing fractio
the curve that separates the jammed and unjammed reg
in this plane. As the packing fraction decreases toward c
packing, the yield stress typically decreases, as indicate
Fig. 1 @21,22#.

Mode-coupling theorists suggested years ago that the
loidal glass transition and molecular glass transition are
same despite the fact that the control variables are diffe
@23#. More recently, mode-coupling theories have been
tended to include shear stress@24# or other control variables
not derivable from Hamiltonians@25#. The jamming phase
diagram suggests a reason why different jamming transit
might be related, independent of the validity of the mod
coupling approximation.

While it has long been recognized that temperature, pa
ing fraction, and stress can all control the stress relaxa
time, the concept of the jamming phase diagram is a prod
tive way to correlate jamming in different amorphous sy
tems. The diagram implies that these three control par
eters are important to all systems, so that one can stu
single system as a function of all three variables. The d
gram has proved to be a useful way to think about exp
ments, as shown recently by Trappeet al. @26# on solidifica-
tion of attractive colloids. It also explicitly suggests ne
experiments to be done. For example, it suggests that
should measure how the relaxation time in a glass-form
liquid depends on applied stress. It also suggests that
introduction of a temperature to an otherwise jammed ath
mal system can help the system to flow. That is, tempera
is a relevant variable for these transitions. This is, of cou
in qualitative accord with the daily experience that shak
an otherwise jammed material can reinitiate flow. Perh
the most significant implication of the diagram is that t
jammed region might control the behavior nearby and t
this is why different systems behave so similarly as th
slow down on their approach to the jammed state.

II. JAMMING AT POINT J

Perhaps the most daunting problem in studying any ja
ming transition is that the jammed surface depicted in Fig
is typically not sharp, and is defined by the system’s rel
ation time exceeding experimental time scales. Howe
there is one point on the jamming phase diagram that is w
defined@27#, namely, the point labeledJ in Fig. 1. This point
exists at zero temperature and zero applied shear stres
systems with repulsive, frictionless, finite-range potentia
This section is devoted to the special properties of pointJ.

A. Method

To explore pointJ, we have studied potentials of the fo
lowing form:
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V~r i j !5H e~12r i j /s i j !
a/a for r i j ,s i j ,

0 for r i j >s i j ,
~1!

wheree is the characteristic energy scale of the interacti
r i j is the separation between the centers of particlesi and j,
ands i j is the sum of the radii of particlesi and j. We study
three different potentials, namely,a52 for repulsive har-
monic springs,a53/2 for repulsive nonlinear springs tha
are harder than harmonic springs, anda55/2 for repulsive
Hertzian interactions that are softer than harmonic spri
@28#. It is important to note that the interactions are finite
range—particles do not interact unless they overlap. Po
tials of this form were motivated by granular materials whe
particles have a well-defined diameter and do not inter
except for a strong repulsive force that keeps the partic
from deforming too much. In our two-dimensional~2D!
simulations, we have used 50-50 mixtures of particles wit
size ratio of 1.4 in order to prevent crystallization@29,30#.
The diameter of the smaller particle is denoted bys. In three
dimensions~3D!, we have studied the same bidisperse m
ture as well as monodisperse systems with particle diam
s. We have studied the finite-size effects by varying t
number of particles in the sample between 4,N,4096 in
2D and 3D.

Of crucial importance is the protocol for the creation
configurations atT50 and a given packing fractionf. To
obtain such states, we start each simulation with a fixed n
ber of particlesN, with the particle positions chosen com
pletely at random~this corresponds toT5`) within a square
or cubic box with side lengthL and periodic boundary con
ditions. Starting with randomly generatedT5` states guar-
antees that we sample all phase space equally. We then b
the system to the nearest potential-energy minimum by c
stantly moving downward on the potential energy surfa
We do this using conjugate-gradient techniques@31#. Each
conjugate gradient energy minimization is terminated wh
one of the following two stopping criteria is satisfied:~1! the
total potential energy per particle satisfiesV/N,10216 ~this
corresponds to a very small pressure,p,10210) and~2! V/N
for successive iterations deviates by less than 10215. This
procedure brings the system extremely close toT50. Note
that this procedure is identical to that for finding the ‘‘inhe
ent structures’’ of theT5` states@32#.

In addition to studying theT50 states generated by th
protocol described above, we explore their properties by p
turbing them slightly. We compress them, decompress th
or apply shear strains. After each infinitesimal perturbati
we can again employ the conjugate-gradient technique. S
this technique takes the system to the bottom of its lo
potential well, the quantities we measure in this way a
related to the static, or infinite-time (t5`), response~the
static bulk or shear moduliB` or G`) of the configurations.
We have also measured thet50 moduliB0 andG0 by mea-
suring the response to a perturbation immediately after it
been applied~before minimizing the energy by the conjuga
gradient technique!. The shear and bulk moduli are obtaine
by measuring the response of the pressure tensor@33#
6-3
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pab52L2d(
i . j

r i j a

r i j b

r i j

dV

dri j
~2!

to shear and compression perturbations, wherer i j a is thea

component ofrW i j andd is the dimensionality of the system
To measure the bulk modulus, we calculateB5fdp/df,
where the pressure isp5(apaa /d. To measure the shea
modulus, we calculateG5dS/dg, whereS52pxy , after
applying a shear strain in thex direction with a strain gradi-
ent in they direction. The pressurep, stressS, bulk modulus
B, and shear modulusG are measured in units ofe/sd,
lengths are measured in units ofs, and time scales or invers
frequencies are measured in units ofsAm/e where all par-
ticles have equal massm.

B. J represents the onset of jamming for a single configuration

It is important to note that each initialT5` state can
yield a different value of the packing fractionfc , where the
pressure and potential energy first become nonzero. De
this ambiguity about the value of the thresholdfc , we find
that there are robust results when we measure properties
function off2fc , including scaling laws, that appear to b
the same for all initial configurations. In Sec. II C, we w
examine the nature of the distribution of these values offc .
In this section, we will show that it is possible to locate
well-defined onset of jamming,fc , for each initial state.

To test whether a givenT50 state is jammed or not, two
separate criteria must be met: a jammed state must ha
nonzero static~i.e., infinite time! value of both the bulk
modulus and the shear modulus. As we show below, for e
state that we have studied, the static bulk and static s
moduli approach zero at the same densityfc . Thus, fc
specifies the onset of jamming for each state.

At T50 andS50, no two particles can interact if th
density is low enough. If two particles were to overlap, th
repulsive potentials would simply push them apart during
conjugate gradient energy minimization process until they
longer touched. Since there is neither thermal energy
shear stress to compete with the particles’ potential ene
they will never be forced back into contact. Thus, at su
ciently low densities, there are no particle overlaps and
final potential energyV and the pressurep are both zero so
that the system has a zero static bulk modulus. At the thre
old packing fractionfc , particles just come into unavoidab
contact since there is no longer enough free space to a
them to move apart. As the system is compressed further
particles overlap, the energy and pressure are nonzero
the bulk modulus is nonzero because the pressure incre
upon compression.

For each initialT5` state, we first obtain aT50 state
using conjugate gradient minimization. For thatT50 state,
we measure a precise value offc , as follows: If the con-
figuration has zero pressure, we compress the system~by
increasing the size of each particle by the same fixed f
tion! in very small steps, applying conjugate-gradient ene
minimization after each step, until the pressure becomes n
zero atfc . Conversely, if the configuration has a nonze
01130
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pressure, we decompress the system in small steps, app
conjugate-gradient energy minimization after each step, u
the pressure reaches zero atfc . We insure that the system
does not cross over any energy barriers during these pr
dures by compressing~or decompressing! in successively
smaller increments. As the density variation is made fi
and finer, we make sure that we end up in precisely the s
configuration for all the particles independent of the size
the increment. Increments were in the rangeDf
5@1026–1024#, with smaller increments used for smalle
systems and systems closer tofc .

At each packing fraction, we measure the static sh
modulusG` , by applying a very small shear strain, min
mizing the energy with the conjugate gradient technique,
measuring the final induced stress.~Again, we insure that no
energy barriers are crossed by applying successively sm
increments of shear strain. The strain increments were in
range @531028–1025# with smaller increments used fo
smaller systems and systems closer tofc .) The shear modu-
lus is calculated by measuring the linear relation betwe
stress and strain, as shown in Fig. 2.

Figure 3 shows the results for the pressurep as a function
of f2fc for monodisperse systems in three dimensions
ing both harmonic (a52) and Hertzian (a55/2) potentials.
We also include our earlier results for bidisperse system
two and three dimensions using those same two poten
@27#. We find that the data forp as a function off2fc
collapse onto a single curve for different initial states~each
set of points corresponds to data from five different state!.
Thus, although each initial state has a different value offc ,
all states behave the same way as a function off2fc when
compressed abovefc .

In Fig. 4, we show the static shear modulusG` for the
same initial states as shown for the pressure. Again, we
that data for different initial states collapse on a single cu
whenG` is plotted againstf2fc . Note thatfc was deter-

FIG. 2. The infinite-time stressDS5S(g)2S(0) following an
applied shear straing. The resulting stress-strain curve is linear f
sufficiently small strains and independent of the sign of the str
Open ~filled! symbols indicate negative~positive! strains. These
curves were generated using 3D monodisperse systems (N5512)
with harmonic repulsions. Circles and squares represent sys
with packing fractionsf2fc51022 and 1024, respectively. The
solid lines have slopes equal to 1. The shear modulus, yield st
and yield strain~where stress vs strain becomes nonlinear! tend to
zero asf approachesfc , wherefc is the onset of jamming for a
given configuration.
6-4
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JAMMING AT ZERO TEMPERATURE AND ZERO . . . PHYSICAL REVIEW E68, 011306 ~2003!
mined by where thepressureapproaches zero, not by whe
the static shear modulus first approaches zero. Thus, Fig
and 4 show that the static shear modulusG` and the pressure
p ~and therefore, the static bulk modulusB` as well! ap-
proach zero at the same packing fractionfc to a precision of
better than two parts in 105 for the monodisperse system
Each state develops a bulk modulus and shear modulus a
same packing fraction. This is true for all polydispersitie
dimensionalities, and potentials studied. Thus,fc truly
marks the onset of jamming for a given initial state.

Note that in measuring the static shear modulus, we ap
a shear stress in a given direction. Although we have sho
that every studied state can withstand a shear stress in
direction for f.fc , it is not obvious from these measur
ments that every state can withstand a shear stress inany
arbitrary direction. To address this, we have studied the
genvalues of the dynamical matrix@34# for our T50 con-
figurations with harmonic repulsions. We find that at least

FIG. 3. Upper curves: Pressurep vs f2fc for 3D monodis-
perse~circles!, 3D bidisperse~diamonds!, and 2D bidisperse~left-
ward triangles! systems with harmonic repulsions (a52). The
solid line has slope of 1.0. Lower curves:p vs f2fc for 3D mono-
disperse~squares!, 3D bidisperse~upward triangles!, and 2D bidis-
perse~downward triangles! systems with Hertzian repulsions (a
55/2). The solid line has a slope of 1.5. These symbols for
different systems are used throughout the text.N51024 (N5512)
particles were used for the 2D~3D! systems.

FIG. 4. Upper curves: Static shear modulusG` vs f2fc for
3D monodisperse~circles!, 3D bidisperse~diamonds!, and 2D bid-
isperse~leftward triangles! systems with harmonic repulsions (a
52). The solid line has a slope of 0.5. Lower curves:G` vs f
2fc for 3D monodisperse~squares!, 3D bidisperse ~upward
triangles!, and 2D bidisperse~downward triangles! systems with
Hertzian potentials (a55/2). The solid line has a slope of 1.0.N
51024 (N5512) particles were used for the 2D~3D! systems.
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f2fc>1026, the only zero-frequency modes correspond
isolated clusters of ‘‘rattlers,’’ i.e., particles that do not ove
lap with any other particles and to uniform translations of t
entire system. The lack of any nontrivial zero-frequen
modes shows unambiguously that the system can withsta
shear stress in all directions. We will discuss the statistics
rattlers in greater detail in Sec. II E and the properties of
dynamical matrix in more detail in Sec. II G.

C. Onset of jamming is sharp in the limit
of infinite system size

In the preceding subsection, we showed that different
tial random (T5`) states have inherent structures (T50
states! that jam at different threshold valuesfc . Here we
measure the distribution of jamming thresholds. For ea
system sizeN and packing fractionf, we start with at least
500 (100 for the largest system sizes! random (T5`) con-
figurations and use the conjugate gradient method to que
each configuration infinitely rapidly toT50. We then find
the fraction of these final states that are ‘‘jammed,’’ i.e., th
have a finite pressure and static shear modulus. The resu
fraction f j of jammed states is shown as a function off in
Fig. 5~a! for a two-dimensional bidisperse system and in F
5~b! for a three-dimensional monodisperse system with h
monic repulsions. Similar graphs were shown for thre
dimensional bidisperse systems with harmonic repulsion
Ref. @27#.

In measuring these distributions, the system remains
one fixed, well-defined density since we donot dilate or

e

FIG. 5. Fractionf j of jammed states as a function off for ~a!
2D bidisperse systems and for~b! 3D monodisperse systems wit
harmonic and Hertzian repulsions. In~a! and ~b!, the lines~down-
ward triangles! represent potentials witha52 (a55/2). f j for 2D
bidisperse systems witha53/2 are also shown in~a! using plus
symbols. Each curve represents a different system sizeN.
6-5
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O’HERN et al. PHYSICAL REVIEW E 68, 011306 ~2003!
shrink the particles. Also, during the quench itself, there
no dynamics. The system only travels on the potential ene
surface and descends via the most rapid route to the ne
local potential-energy minimum. This distribution is ther
fore not a function of the dynamics used in obtaining t
final configurations, but depends only on the fixed potent
energy landscape. By starting withT5` states, we are sam
pling configuration space uniformly. Thus, the result sho
in Figs. 5~a! and 5~b! is a measure of the total fraction o
configuration space~i.e., the probability! that belongs in the
basins of attraction of final configurations that are jamme

Figures 5~a! and 5~b! show that the fraction of jamme
states depends sensitively on system size. For the 2D b
perse system@Fig. 5~a!#, the curves progressively sharpe
with increasingN, eventually approaching a vertical jum
The 3D monodisperse system@Fig. 5~b!# shows a similar
behavior forN.64. For smaller values ofN, there is enough
partial crystallization to produce additional structure in t
curves.

We calculate the distribution of jamming threshol
Pj (fc) by differentiating the data in Fig. 5 with respect
f. We find that the distributions are insensitive to the int
particle potential used. This is illustrated in Fig. 6~a! for 2D
bidisperse systems at a fixed system sizeN564. In this fig-
ure, we overlay the distributions fora55/2 ~Hertzian repul-
sions; downward triangles! anda53/2 ~plus symbols! on top

FIG. 6. ~a! Distribution of jamming thresholdsPj (fc) for a 2D
bidisperse system withN564 for the three different potentials stud
ied (a53/2, 2, and 5/2).Pj (fc) for ~b! 2D bidisperse systems,~c!
3D bidisperse systems, and~d! 3D monodisperse systems with ha
monic and Hertzian potentials for various system sizes. In~a!–~d!,
the pluses, lines, and downward triangles represent potentials
a53/2, 2, anda55/2, respectively. The distributions for small 3
monodisperse systems (N,64) were not shown in~D! because we
wanted to emphasize the monotonic behavior of the peak inPj (fc)
at largeN.
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of the a52 ~harmonic; solid lines! distributions. In Figs.
6~b!–6~d!, we overlay the distributions fora55/2 on top of
those fora52 for all systems studied~2D bidisperse, 3D
bidisperse, and 3D monodisperse! at several system sizesN.
Within numerical error, the different potentials yield iden
cal distributions at eachN.

Figure 6 also shows that it is unlikely that a jammin
thresholdfc will be found at very low packing fraction
where almost all states are unjammed, or at very high pa
ing fraction, where almost all states are already jammed.
small systems, the distributions are broad; asN increases,
they become sharper and taller. To quantify the change of
distributions with system size, we extract the full width
half maximum of the distribution,w, for eachN. The results
are plotted in Fig. 7 and are not monotonic inN. At very
smallN, there are only a few distinct configurations availab
to a static packing, so the distribution of jamming thresho
is narrow. The width grows with increasingN to a maximum
~nearN510 for bidisperse systems and nearN530 for 3D
monodisperse systems!. Above this value, the width de
creases with increasingN. At the system size where the dis
tributions are widest,N'10 there is a reasonable probabili
of systems jamming at packing fractions as low as roug
f50.80 in 2D bidisperse systems andf50.58 in 3D bidis-
perse and monodisperse systems. Perhaps this is a co
dence, but it is interesting that the value in 3D correspond
previous estimates of ‘‘random loose packing’’ from expe
ments@35#. It has been reported that hard particle metho
~methods that strictly prohibit particle overlap! can produce
jammed states with packing fractions that are much low
than the peak in the distribution of jamming onsets@36#.
However, we have carried out similar hard particle simu
tions and find that these low-f states are not jammed accor
ing to our definition given above. Instead, these states
unjammed and fall apart when they are slightly compres
or sheared.

In the largeN regime, Fig. 7 shows that the full width a
half maximum of the distribution scales as

w5w0N2V ~3!

with V50.5560.03 andw050.1660.04 for all of the sys-

ith

FIG. 7. Width of the distribution of jamming thresholdsw vs the
number of particlesN for 2D bidisperse, 3D bidisperse, and 3
monodisperse systems with harmonic and Hertzian potentials.
solid curve has a slope of20.55. The symbols have the sam
meaning as in Fig. 3.
6-6
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JAMMING AT ZERO TEMPERATURE AND ZERO . . . PHYSICAL REVIEW E68, 011306 ~2003!
tems studied. This implies that asN diverges, the width ap-
proaches zero and the distribution of jamming thresholds
proaches ad function. In other words, in the thermodynam
limit, essentially all of phase space jams at the same pac
fraction f* . This means that pointJ in the jamming phase
diagram is well defined as the onset of jamming.

D. Point J is random close packing in an infinite-size system

Our results are relevant to hard-sphere systems bec
the T50 configurations obtained by this protocol are
lowed hard-sphere configurations if none of the partic
overlap. Thus, at sufficiently lowf, the conjugate gradien
minimization technique will invariably yield allowed hard
sphere states. Our protocol yields special insight into
nature of random close packing, a highly reproducible
heretofore somewhat vaguely defined state.

We make the connection to random close packing by a
ing what is the limitingN→` value of the jamming thresh
old f* . We calculate it by extrapolating the peak positio
f0 of the distributions shown in Fig. 6 with respect to th
system size. In Fig. 8, we plot the deviation off0 from f*
as a function ofL[N1/d, whered is the dimensionality. The
peak position approaches its limiting asymptotic value a
power law inL:

f02f* 5d0L21/n. ~4!

By fitting the data to this form, we obtainn50.7160.08 and
d050.1260.03 for all systems studied. Previously@27#, we
obtainedf* for bidisperse systems in two and three dime
sions. For monodisperse three-dimensional systems, we
find

f* 50.63960.001. ~5!

We find thatf* does not vary with potential; this follow
from our result that the distributions of jamming thresho
are independent of potential (a53/2,a52,a55/2) within
the uncertainty of the measurement. Note that the value
f* in Eq. ~5! for monodisperse three-dimensional system
very close to what has been reported for random close p

FIG. 8. Deviation of the peak in the distribution of jammin
thresholds from its asymptotic valueuf02f* u vs L for 2D bidis-
perse, 3D bidisperse, and 3D monodisperse systems with harm
and Hertzian potentials. The solid curve has a slope of 1/n51.40.
The symbols have the same meaning as in Fig.~3!.
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ing. Our value should be compared to other recent estim
of random close packing,f rcp'0.64@37,38#. This similarity
is not a coincidence.

Random close packing cannot be defined in a mathem
cally precise way because the terms ‘‘random’’ and ‘‘clo
packed’’ are at odds with one another@38#. Because the
close-packing density of an fcc packing isp/A18'0.74
.0.64, one can always make the system more highly cl
packed ~but less random! by introducing some degree o
crystalline order. How random the system should be ver
how close packed it should be is arbitrary. Torquatoet al.
therefore propose another term, ‘‘maximally random jamm
state.’’ By ‘‘jammed,’’ they mean that any particle or set
particles cannot be translated relative to any of the rest of
particles in the system, and by ‘‘maximally random,’’ the
suggest a definition based on minimization of order para
eters characterizing the extent of crystalline order, bond
entational order, etc.@39#.

Here we suggest an alternate interpretation for rand
close packing using the language of a maximally rand
jammed state, but with different meanings attached to ma
mally random and jammed. In our case, the valuef* is
obtained by extrapolating the peak of the distribution of ja
ming thresholds to infinite system size. The peak of the d
tribution corresponds to the packing fraction with the ma
mum fraction of phase space~i.e., themaximum entropy! that
belongs to the basin of attraction of jamming thresholds
the thermodynamic limit. We therefore propose that anot
way to define maximally random is by where the entropy
initial states is maximum, and that another way to defi
jammed is by the disappearance of zero-frequency mode
the dynamical matrix~with the exception of isolated cluster
of rattlers!. This definition has the advantage of avoiding t
order parameter description, which will always be subjec
uncertainty since one never knows if one has calculated
proper order parameter. It also provides a cleaner defini
of the word jammed, since it depends on the nature of ze
frequency modes of the dynamical matrix. If one is testi
whether a system is jammed by shifting particles, it is u
likely that one will hit on the exact combination of partic
shifts that is characterized by the eigenvector of a ze
frequency mode. Finally, we note that our finding that virt
ally all initial states jam at the same valuef* in the thermo-
dynamic limit may explain why the value of random clo
packing is so robust despite the fact that it has not been
defined in the past. Although regions of the system can c
tallize, such states are extremely rare and therefore unlik
to be observed for sufficiently large systems.

The above definition of random close packing, or t
maximally random jammed state, is completely well defin
for soft, finite-ranged repulsive potentials. What can be s
about hard spheres? We can approach the hard-sphere
by making the potential harder and harder, that is, by mak
the exponent in the potential,a, @see Eq.~1!# approach 0.
Measuringf* as a function ofa will then produce a limiting
hard sphere, value for random close packing. Note that
results forf* are the same, within measurement error,
a53/2, a52 ~harmonic!, anda55/2 ~Hertzian!. Thus, the
value of f* is insensitive toa, suggesting that the hard

nic
6-7
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O’HERN et al. PHYSICAL REVIEW E 68, 011306 ~2003!
sphere limit off* is the same as the value we have given
Eq. ~5!. Of course, it is not clear that the hard-sphere limit
well defined; different ways of taking the hard-sphere lim
may lead to different results. If that is indeed the case,
would argue that hard spheres are a singular limit and t
unphysical. One should therefore concentrate on softer
tentials for which unambiguous definitions can be co
structed.

Another way that has often been employed to study ha
sphere configurations near random close packing is to c
duct density ramps. For example, in the Lubachevs
Stillinger algorithm @40#, a hard-sphere system at lo
packing fraction is suddenly compressed~by increasing the
radii of all the particles at some fixed rate! to a higher pack-
ing fraction. In the limit of infinite quench rate, one finds th
the system jams at a random-close-packing density. One
vantage to our protocol for systems with softer but s
finite-ranged repulsive potentials is that, since the densit
always held constant, we can quench the system to the
state within a fixed energy landscape. In the Lubachevs
Stillinger algorithm, the energy landscape changes throu
out the density ramp because the density necessarily v
throughout the procedure.

One of the strengths of our procedure is that dynamics
no role. If we introduce dynamics by quenching the tempe
ture of the system at some finite rate, we bias the distri
tions of jamming thresholds toward higher values off.
These distributions no longer represent features only of
potential-energy surface, but now also depend on dynam
through the quench rate. By contrast, our distributions
solely a geometric property of the potential-energy surfa

E. Point J is an isostatic point

An isostatic configuration is defined by having the nu
ber of contacts in the system,NZ/2, equal to the number o
force balance equations@41#, whereZ is the average numbe
of contacts per particle. When this occurs, there is a uni
solution for the forces between particles in a static packi
because the number of equations equals the number o
knowns. For purely repulsive, frictionless systems of sph
cal particles, the number of force balance equations isNd so
the isostatic condition isZ52D, whered is the dimension-
ality of the system. We find@27# that there is a discontinuou
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jump in Z at the jamming threshold,fc , of a given state. For
f5fc

2 , there are no overlapping neighbors,Z50, while for
f5fc

1 there areZc overlapping neighbors. The value ofZc

can be obtained by measuringZ at values just abovefc , as
shown in Fig. 9. The straight lines in the plots are fits to t
data of the form

Z2Zc5Z0~f2fc!
z, ~6!

where z50.5060.03 for all potentials, dimensions, an
polydispersities studied.

As mentioned in Sec. II B,'5% of the particles are rat
tlers with no contacts at all, which do not contribute to t
connected network. If we exclude the rattlers~so that we are
only studying properties of the connected network! and as-
sumez50.5, then we obtain precise values forZc , listed in
Table I. These results are consistent withZc52d in all cases,
implying that the jamming threshold is an isostatic point.
the thermodynamic limit,fc→f* , so pointJ is an isostatic
point. Note that our results forZ show that pointJ is theonly
point at which the packing is isostatic; abovef* , we find
Z.2d so additional equations~the constitutive relations for

FIG. 9. Upper curves: Excess number of contacts per part
Z2Zc vs f2fc for 3D systems: monodisperse, harmonic~circles!;
monodisperse, Hertzian~squares!; bidisperse, harmonic~dia-
monds!; and bidisperse, Hertzian~upward triangles!. Lower curves:
Z2Zc vs f2fc for 2D systems: bidisperse, harmonic~leftward
triangles! and bidisperse, Hertzian~downward triangles!. N51024
(N5512) particles were used for the 2D~3D! systems. The sym-
bols have the same meaning as in Fig. 3.
)

TABLE I. Coefficients and exponents for the power-law scaling of pressurep, shear modulusG` , and
coordination numberZ2Zc for all systems studied.

Power-law scaling
System Quantity

p G` Z2Zc

D Polydispersity a p0 (60.05) c(60.03) G`
0 (60.05) g(60.05) Z0(60.5) z(60.04) Zc(60.03

2 Bi 2 0.34 1.01 0.24 0.47 3.6 0.49 3.98
2 Bi 5/2 0.27 1.50 0.21 0.99 3.3 0.48 3.98
3 Bi 2 0.28 1.03 0.21 0.48 8.4 0.47 5.98
3 Bi 5/2 0.18 1.51 0.17 1.02 7.4 0.49 5.98
3 Mono 2 0.48 1.01 0.34 0.49 7.7 0.51 5.98
3 Mono 5/2 0.35 1.50 0.14 0.95 7.7 0.47 5.98
6-8
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JAMMING AT ZERO TEMPERATURE AND ZERO . . . PHYSICAL REVIEW E68, 011306 ~2003!
the particles, which depend on the potential used! are needed
to solve for the forces between particles.

A more stringent condition for isostaticity is that the co
nected network~i.e., all particles in the system excludin
rattlers! has no zero-frequency modes. As discussed in S
II B, we have looked for zero-frequency modes in packin
abovefc , and have tested configurations with packing fra
tions as little as 1026 above fc . For all configurations
tested, we have seen no zero-frequency modes except
associated with rattlers or with uniform translations. Th
suggests that pointJ has no nontrivial zero-frequency mode

We have studied the fractionf r of particles that are rat
tlers as a function off2fc for both 2D bidisperse and 3D
monodisperse systems with harmonic interactions. We s
in Figs. 10~a! and 10~b! that the fraction of rattlers decreas
with increasing packing fraction. We show in Fig. 10~a! that
the fraction of rattlers is independent of system size forN
.64 in 3D. For the 2D bidisperse system, we have a
studied the distribution of rattler cluster sizes. We find th
most clusters have a single rattler and larger clusters
more rare. This is shown in Fig. 10~c!.

F. g„r … diverges at point J: A vanishing length scale

A signature of jamming at pointJ manifests itself in the
pair correlation functiong(r ). At this point, the particles jus
begin to touch so an important length scale—the dista
between nearest-neighbor particles—goes to zero. This

FIG. 10. ~a! Fractionf r of particles that are rattlers as a functio
of f2fc for a 3D monodisperse system with harmonic repulsio
at several system sizesN. ~b! f r vs f2fc for a N51024 bidisperse
system with harmonic repulsions in 2D.~c! Number of clustersNc

containingNr rattlers for fiveN510 000 2D bidisperse system
with harmonic repulsions atf2fc'1022.5.
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ishing length scale gives rise to a divergence ing(r ) in the
form of d functions atr 5s i j , the sum of the radii of neigh-
boring particles. For simplicity, we will focus on monodis
perse systems. Recall from Sec. II E that atfc

2 there are no
contacts, whereas atfc

1 , Z jumps to the isostatic valueZc

52d. This discontinuity inZ implies that there must be ad
function in g(r ) just atfc and that the area underneath th
d function must be exactly the coordination number at ja
ming: Zc52d. This divergence is distinct from the dive
gence associated with the power-law increase above the
peak in g(r ) @where g(r );(12r /s)21/2 as r→s1 @42##
since that power law is integrable whereas this one ha
nonzero area.

Figure 11~a! shows g(r ) for a monodisperse, three
dimensional system at two different values off2fc . Note
that asf approachesfc from above, the first peak grow
higher and narrower. We can trace the evolution of the fi
peak by measuring its height as a function off2fc @Fig.
11~b!#. We find that the height of the first peak atr 0 diverges
as a power law:

g~r 0!5g0~f2fc!
2h, ~7!

with g050.9060.02 andh50.99360.002. Previous hard
sphere simulations@43# have measured, with much less pr

s
FIG. 11. ~a! The radial distribution functiong(r ) for a N

51024 monodisperse system with harmonic repulsions in 3D
f2fc51021 and 1022. The height of the first peakg(r 0) and its
left-hand widths are defined.~b! Height of the first peak ofg(r ) as
a function off2fc for the same system as in~a!. The solid line
has slope21. ~c! Left-hand widths of the first peak ofg(r ) as a
function off2fc for the same system as in~a!. The solid line has
slope 1.
6-9
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O’HERN et al. PHYSICAL REVIEW E 68, 011306 ~2003!
cision, the height of the first peak asfc is approached from
below and found a similar exponent.

In Fig. 11~c!, we plot the left-hand width at half-height o
the first peak ofg(r ) as a function off2fc . This width
approaches zero asf→fc

1 as a power law:

s5s0~f2fc!
D, ~8!

wheres050.3960.04 andD51.0160.005.

G. There is an excess low-frequency contribution
to the density of vibrational states at pointJ

The normal modes of vibration provide a complete ba
set to describe the motions of the particles in a jammed
tem. There have been many studies of normal modes in
ordered systems@44–51#. In this section, we describe th
normal mode spectrum as a function of packing fract
abovefc . A zero-frequency mode would indicate that som
possibly complicated, set of cooperative displacements of
particles could be made with no cost in energy. There sho
always bed such modes corresponding to the simple unifo
translation of the system for each of thed dimensions. Every
rattler particle will likewise contributed zero-frequency
modes. If a configuration atf5fc is isostatic, as we
claimed in Sec. II E, then abovefc the only zero-frequency
modes should be the trivial uniform translations of the en
system and the rattlers. As we mentioned above, we h
found no other, nontrivial, zero-frequency modes. On
other hand, we must expect some change in the nature o
low-frequency modes as the packing fraction for a jamm
configuration is lowered towardfc . At this point, some ex-
tended mode or modes must approach zero frequency sin
is precisely atfc that the system ‘‘falls apart’’ and become
unjammed withdN zero-frequency modes. How does th
density of states evolve asf2fc approaches zero? In orde
to compute the normal modes and frequenciesv of the sys-
tem, we diagonalize the dynamical matrix of the system@31#.
The eigenvalues are the squares of the frequencies an
eigenvectors are the polarization vectors of the particle
each mode.

As in a crystal one expects the low-frequency excitatio
to be the long-wavelength sound~longitudinal and trans-
verse! modes. This assumption gives a density of norm
mode frequencies,D(v), proportional tovd21. An earlier
simulation@46# found an increase in the low-frequency de
sity of states as the number of nearest neighbors in a g
was reduced. As we will show, our present results supp
this claim. In the previous study@46#, nearest-neighbo
bonds were severed at random with some probability. H
we control the number of overlaps by varying the pack
fraction, and we can reduceZ all the way down to the isos
tatic value by approachingfc

1 . In Fig. 12, we show the
density of states obtained for a monodisperse harmonic
tem in three-dimensions withN51024 particles atT50.
Figure 12~a! contains the familiar result for compressed sy
tems with packing fractionsf that are far abovefc . The
largestf2fc studied is comparable to typical liquid dens
ties in an equivalent Lennard-Jones system@52#. For the
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highest packing fractions, we see that there is an identifia
region whereD(v) increases asv2, as expected. As the
packing fraction is lowered, however, we see that the reg
of v2 behavior shrinks, reminiscent of the results found
Ref. @46#. In Fig. 12~b!, we show the behavior ofD(v) asf
approachesfc more closely. For this 1024-particle system
we see no sign of anv2 region when (f2fc)<0.1. This
region has presumably been pushed to low frequencies
are inaccessible in a system of this size because the ex
tions would have wavelengths that exceed the linear siz
the system. Even though there is nov2 behavior atf2fc
50.1, Fig. 12~b! shows thatD(v) drops asv goes to zero.
However, asf2fc decreases still further, this drop inD(v)
disappears. Byf2fc51026, there is no evidence of it at al
andD(v) appears to approach a constant at zero freque
This striking result is unanticipated. As the packing fracti
is lowered, the density of states approaches a limiting, c
stant, nonzero value, instead of vanishing as expected
long-wavelength sound modes. Thus, there is a prolifera
of anomalous low-frequency modes as pointJ is approached
from above.

H. Power-law scaling near pointJ

So far, we have discussed a number of quantities
scale as power laws withf2fc as the jamming threshold i
approached from the high-density side. Such quantities
clude pressurep ~Fig. 3!, static shear modulusG` ~Fig. 4!,
and coordination number,Z2Zc ~Fig. 9!. In addition, we
have shown that the widthw ~Fig. 7!, and peak positionf0
~Fig. 8!, of the distribution of jamming thresholds displa

FIG. 12. Density of statesD(v) vs v for a 3DN51024 system
with harmonic repulsions at packing fractions~a! far from fc and
~b! close tofc .
6-10
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JAMMING AT ZERO TEMPERATURE AND ZERO . . . PHYSICAL REVIEW E68, 011306 ~2003!
power-law scaling with system size. Here we discuss
power-law exponents and their implications.

Figure 3 shows that the pressure vanishes as a power
asf→fc

1 :

p5p0~f2fc!
c. ~9!

The values forp0 andc are listed in Table I. Our results fo
c are consistent with

c5a21, ~10!

independent of polydispersity or dimensionality.
The static shear modulus scales as

G`5G`
0 ~f2fc!

g, ~11!

whereG`
0 andg are listed in Table I. The results are cons

tent with

g5a23/2, ~12!

independent of polydispersity or dimensionality.
As discussed earlier in Sec. II E, the coordination num

Z2Zc scales as a power law withf2fc @see Eq.~6!# with
an exponent consistent with

z51/2, ~13!

independent of potential, dimensionality, and polydispers
This result is consistent with earlier estimates from simu
tions in both 2D and 3D@27,42,53,54#.

The height of the first peak ofg(r ) scales as a power law

g~r 0!5g0~f2fc!
2h ~14!

with h50.99360.002. This result was obtained for a thre
dimensional monodisperse system with harmonic repulsio
Similarly, the left-hand width of the first peak ofg(r ) scales
as a power law:

s5s0~f2fc!
D, ~15!

whereD51.0160.005.
Finally, recall the form of the fits to the width and pea

position of the jamming threshold distributions, Eqs.~3! and
~4!, where the width scales asw;N2V and f* 2f0
;L21/n. Figure 7 shows thatV appears to be independent
potential, polydispersity, and dimensionality. We findV
50.5560.03, consistent with

v51/2. ~16!

For the peak position, Fig. 4 shows thatn is independent of
potential, polydispersity, and dimensionality. We findn
50.7160.08, consistent with

n52/3. ~17!
01130
e

aw

-

r

.
-

s.

1. Interpretation of power-law exponents

Some of the exponents for the scalings withf2fc are
straightforward to understand, while others are, as yet, w
out explanation.

Pressure and bulk modulus.The exponent for pressure
c'a21, can be explained if the system responds perfe
affinely to compression. If the deformation is affine, o
would expect the exponent for the pressure to be the sam
for the force law; this argument yieldsc5a21. Similarly,
we would expect the bulk modulus to behave as a power l

B;~f2fc!
b, ~18!

with b5a22, because the bulk modulus is related to t
derivative of pressure with respect to packing fraction. W
can check to see if the response of the packing to comp
sion is truly affine by comparing the zero-time bulk modul
B0 to the infinite-time, or static, bulk modulusB` . To obtain
B0, we apply a compression~or expansion! and measure the
change of pressure without allowing any of the particles
relax their positions. By construction, the compression~ex-
pansion! is perfectly affine throughout the sample becau
we increase~decrease! the radii of all of the particles by the
same fixed fraction.~This is different from how one com
presses a sample in a laboratory experiment, where the
turbation is applied at the boundaries of the sample.! To ob-
tain B` , on the other hand, we first apply the affin
compression~or expansion!, then allow the particles to shif
their positions by minimizing the energy using the conjug
gradient technique. If the response to compression is
fectly affine, then the particles will not shift during the co
jugate gradient process because the energy is already a
mum. In that case, we would expectB`5B0. The results are
shown in Fig. 13. For all potentials, polydispersities, a
dimensions studied, we consistently find thatB`,B0, but
that they both scale with the same power, consistent witb
5a22. These results show that nonaffine deformations
to disorder in the packing do reduce the coefficient of
scaling of the bulk modulus, but do not change the expon
It is not obvious why the exponent is unchanged.

Shear modulus.Like the bulk modulus, the shear modulu
is also given by two derivatives of the energy. However,
do not find that the scaling exponent for the static sh
modulusg satisfiesg5a22. Rather, we findg'a21.5
@see Eq.~12!#. To gain insight into this discrepancy, we hav
examined the zero-time shear modulusG0 as well as the
static or infinite-time shear modulusG` . As with the bulk
modulus, to measureG0 we first apply an affine shear strai
and measure the resulting stress without allowing any of
particles to shift their positions. To measureG` , on the other
hand, we apply the conjugate gradient technique once
affine shear is applied and measure the resulting stressafter
the energy has been minimized. Since the shear modulu
the second derivative of the energy, we would expect
exponent forG0 to be g05a22. This is indeed what we
find, as shown in Fig. 14. The figure shows thatG`,G0, as
expected; the system relaxes to a lower value of the sh
stress than it has initially. Although Lacasseet al. @21# have
previously pointed out that nonaffine deformations can
6-11



th

re
is
on
om

s
-
ha
aw
wa
ffi
t

rg

-

h
i
g

g-
en-

he
-

ion,
ulk

,

t
t

n

-
av

e la-

O’HERN et al. PHYSICAL REVIEW E 68, 011306 ~2003!
duce the shear modulus in emulsions, they did not show
the effect of these deformations would be to produce
power-law dependence of the shear modulus upon comp
sion. Our results show that such a power-law scaling ex
for the static shear modulus and that the effect of the n
affine deformations is to shift the value of the exponent fr
g5a22 ~appropriate to thet50, affine situation! to g'a
23/2 ~appropriate to thet5` case where all relaxation ha
been allowed to take place!. The effect of nonaffine defor
mation is much more pronounced for the shear modulus t
it is for the bulk modulus. In the latter case, the power-l
exponent remained unaffected and only the prefactor
changed. In the case of the shear modulus, the nona
deformation changes the scaling exponent as well as
prefactor. As the critical densityfc is approached from
above, the nonaffine deformations play a larger and la
role so thatG0 /G` diverges atfc .

Coordination number.Figure 9 shows that the coordina
tion number scales asZ2Zc;(f2fc)

z, wherez is inde-
pendent of potential, polydispersity, and dimensionality. T
fact thatz is independent of potential is intriguing because
suggests thatz depends only on the geometry of the packin

FIG. 13. Zero-time (B0) ~closed symbols! and infinite-time
(B`) ~open symbols! bulk moduli vsf2fc for ~a! 2D bidisperse
systems,~b! 3D bidisperse systems, and~c! 3D monodisperse sys
tems with harmonic and Hertzian potentials. The solid curves h
slopes equal to 0 and 0.5.N51024 (N5512) particles were used
for the 2D ~3D! systems.
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The fact thatz is also independent of dimensionality su
gests that there is a property of the packing that is indep
dent ofd.

Recent results@42# for the pair correlation functiong(r )
of three-dimensional harmonic packings slightly below t
jamming threshold show thatg(r ) contains a power-law re
gion nearr 5s, wheres is the sphere diameter:

g~r !}~12r /s!21/2. ~19!

If one assumes an affine deformation upon compress
consistent with the scaling results for pressure and b
modulus, then one of the consequences of Eq.~19! is that the
coordination number should increase with the powerz
51/2, as we have observed. Thus, the scaling in Eq.~19! is
consistent with our resultz51/2. The origin of both results
however, is still not understood.

Height and width of first peak of g(r ). We find that the
height of the first peak ofg(r ) diverges with an exponen
h'1 @see Eq.~14!# and that the left-hand width of the firs
peak vanishes with an exponentD'1 @see Eq.~15!# as f
→fc

1 . The fact thath'D is consistent with our expectatio
that the area of the first peak is roughlyZc .

e

FIG. 14. Zero-time (G0) ~filled symbols! and infinite-time (G`)
~open symbols! shear moduli vsf2fc for ~a! and ~b! 2D bidis-
perse systems,~c! and~d! 3D bidisperse systems, and~e! and~f! 3D
monodisperse systems. Harmonic and Hertzian repulsions ar
beleda52 anda55/2, respectively. In~a!, ~c!, and~e!, the solid
curves have slopes equal to 0 and 0.5. In~b!, ~d!, and~f!, the solid
curves have slopes equal to 0.5 and 1.0.N51024 (N5512) were
used for the 2D~3D! systems.
6-12
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2. Discussion of finite-size scaling exponents

We have found that there are very strong system-size
fects. AsN diverges, the width of the distribution of jammin
thresholds vanishes asN2V, leaving ad-function distribu-
tion at pointJ. We find thatV is very close to 1/2@see Eq.
~16!#. It is not obvious that this result can be explained b
simple central limit theorem argument because the pack
density is a subtle property of the packing geometry. In
pendent of the explanation for this exponent, there are
correlations extending across the entire system once
jammed.

The peak position shifts toward the random-close-pack
density asL21/n. This result suggests that there is a lo
length scale appearing in the problem near the onset of j
ming, which scales as (f2fc)

2n. Note that our resultn
50.7160.08 is a typical value for a correlation length exp
nent.

I. Lack of self-averaging at point J

At point J, there is no self-averaging in the sense that
average properties of a very large system are not the sam
the average over an ensemble of many smaller systems a
same packing fraction. This property can be understood
considering a system of sizeN and the behavior asN di-
verges. For a finite-sized system, Fig. 6 shows that there
distribution of jamming thresholdsfc . Consider a given
packing fractionf which is within this distribution. Some o
the configurations at thisf will be jammed, and others wil
be unjammed withp50. For an unjammed configurationp
50 for every subregion of the configuration, as well.~This is
exact even in the infinite system-size limit.! However, at the
samef, there will exist jammed configurations for whic
p.0. For those configurations, we have foundp.0 for al-
most all subregions. There are only small clusters of ratt
that have zero local pressures. The number of such clus
decreases rapidly with the size of the cluster@see Fig. 10~c!#.
Thus, the value of the pressure averaged overall configura-
tions cannot be the same as the value of the pressure
aged over an arbitrary given configuration. As a result, th
is no self-averaging. As the system sizeN increases, the dis
tribution of jamming thresholds narrows. As a result, the la
of self-averaging will be observed over a smaller region of
that eventually narrows to a point~point J) in the infiniteN
limit.

The lack of self-averaging is evident in the distribution
interparticle normal forces between particles,P(F) @27#. For
a given configuration, the average interparticle force^F& is
directly proportional to the pressure of that configuration
shown in Fig. 15 for a 3D monodisperse system with h
monic repulsions. Depending on whether one normalizes
forces in a given configuration tôF&, the average within
that configuration, and then averagesP(F/^F&) over many
configurations, or whether one normalizes the forces of
configurations to the same global average force^̂ F&&, and
then calculatesP(F/ ^̂ F&&), one will get a different distribu-
tion function. This is shown in Fig. 16 for a 3D monodi
perse system with harmonic repulsions. Note that the dif
ence betweenP(F/^F&) and P(F/ ^̂ F&&) is largest nearf
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50.636, which is near the peakf0 of the distribution of
jamming thresholds for the three-dimensional system sho
(N51024). As the packing fraction is increased abovef0,
the curves forP(F/^F&) andP(F/ ^̂ F&&) look more and more
similar. This is consistent with the argument above that
lack of self-averaging is most pronounced near the peak
the distribution of jamming thresholds. A simple argume
for the shape of the tail ofP(F/ ^̂ F&&) was given earlier@27#.

FIG. 15. Pressurep vs average interparticle forcêF& for a 3D
monodisperse system (N5512) with harmonic repulsions. The
solid line has slope equal to 1.

FIG. 16. Distribution of interparticle normal forces for a 3
monodisperse (N51024) system with harmonic repulsions.~a!
P(F/^F&) vs F/^F& and ~b! P(F/ ^̂ F&&) vs F/ ^̂ F&&.
6-13
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J. Critical behavior near point J

In many ways, pointJ resembles a critical point. We hav
shown in Figs. 3, 4, 9, 11, 13, and 14 that there is power-
scaling near pointJ of quantities such as the pressure, sh
modulus, bulk modulus, coordination number, and the he
and width of the first peak of the pair correlation functio
@27#. We have also shown in Figs. 7 and 8 that there
finite-size scaling since the width and peak position of
distributions of jamming thresholds scale with the size of
system. This is reminiscent of behavior near an ordin
critical point. Finally, we demonstrated in Fig. 16 that pro
erties, such as the force distribution, do not self-average
point J. As the system size increases, the packing frac
must be tuned closer and closer to the peak of the distr
tion of jamming thresholds in order to see the breakdown
self-averaging. This is also what one expects near an o
nary critical point, where the temperature must be tun
closer and closer to the critical point as the system size
creases in order for the correlation length to exceed the
tem size.

The lack of self-averaging near pointJ and the power-law
scaling of the width and peak position of the jammi
threshold distribution with system size, all suggest that th
is a correlation length that diverges at pointJ. What might
this length scale be? We speculate that there is a transv
length scale that does diverge as pointJ is approached from
below. If the system is held at a packing fraction sligh
below the critical value, the system is unjammed and
particles can all move and rearrange. However, the num
of particles that must move in order to allow a rearrangem
will depend on how close one is to the transition. Thus, in
infinite system, if one applies a fixed, infinitesimal veloc
to a single particle, we would expect the particle to distu
the surrounding particles as it moves. This disturbance
extend to a distancejT

2 , the transverse length scale, in
direction perpendicular to the applied force. We expect t
jT

2 will diverge as one gets close to the transition becaus
the density approaches the close-packing value, more
more particles must rearrange to allow for the single-part
motion in the longitudinal direction. The idea behind th
transverse length scale is shown in Fig. 17. Similar ideas
currently being explored experimentally in granular syste
with friction @55# and in colloidal systems@56,57#.

FIG. 17. Sketch of the transverse length scale.
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One might estimate the transverse length scale by c
puting how many particles must move laterally in order
insert an extra particle. This is the parking lot model@58#.
According to this argument, the transverse length sc
should diverge asjT

2;(fc2f)21/(d21), for f,fc , where
d is the dimensionality. We note, however, that this res
does not agree with the correlation length exponent that
obtained from the finite-size scaling analysis@see Eq.~17!#,
which appears to be independent of dimensionality.

Although pointJ resembles a critical point, it has prope
ties unlike any other critical point ever studied. The exp
nents appearing in the scaling relations are independen
dimension, but do depend on the potential. The former
servation could be reconciled with a normal critical point
the upper critical dimension for jamming was less than 2,
then we would not expect different potentials to yield diffe
ent exponents. Likewise, if each different potential was in
different universality class and yielded different exponen
then the upper critical dimension should be above 3. Th
are other properties of pointJ which are unusual~although
not unheard of! for a critical point. At packing fractions be
low point J, the pressure, shear modulus, and contact num
are all zero and the energy is zero everywhere. There ar
fluctuations in these quantities, even infinitesimally close
point J, as f→f* from below. In addition, there is a dis
continuous jump in the value of the coordination numbeZ
from zero toZc at f* . We also note that we have identifie
a length scale that goes tozero at this point: the spacing
between particles that form the connected network in
jammed state. This is seen in the divergence of the first p
of g(r ) ~Fig. 11!. At a critical point, one expects a singl
divergent length scale and not a length scale going to ze

Perhaps, the most disturbing feature of pointJ, from the
point of view of ordinary critical phenomena, is the diffe
ence in the behavior at fixed pressure and fixed volume
fixed volume, we observe a finite-size rounding of pow
law scaling and finite-size effects such as the lack of s
averaging. This is because different states have different j
ming thresholds,fc . At a fixed f, different states are
averaged together and the clean power-law behavior we
serve as a function off2fc will be rounded. However, Fig.
3 shows that a fixed pressure corresponds to a fixed valu
f2fc . When we plot quantities as a function off2fc , we
do not see finite-size rounding of power-law behavior. Ev
for a finite-sized system, the behavior of the shear modu
etc. appears to be a clean power-law down to the sma
measurable values off2fc . Thus, we do not see measu
able finite-size effects at fixed pressure. The divergence
g(r ) also occurs even for a finite-sized system. These res
are very different from what one would expect for an ord
nary critical point.

It has been suggested also that pointJ might correspond
to the onset of rigidity percolation@59#. However, we note
that there are some significant differences. First, there ar
overlaps between particles below pointJ. At point J, the
number of overlaps jumps discontinuously from 0 toZc
52d ~where d is the dimensionality of space!. In rigidity
percolation, by contrast, the number of bonds increases
tinuously @60#. Second, in our case, the number of zer
6-14
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JAMMING AT ZERO TEMPERATURE AND ZERO . . . PHYSICAL REVIEW E68, 011306 ~2003!
frequency modes jumps discontinuously fromdN below
point J to d(11Nr) ~which accounts for the translation o
the entire system and theNr rattlers! above pointJ. This is
again different from rigidity percolation, where the numb
of floppy modes decreases continuously@60#. Third, above
point J, the spanning rigid cluster has a fractal dimension
d, the same as the space dimension, while in rigidity per
lation, the spanning rigid cluster has a fractal dimens
lower thand @60#. Finally, the correlation length exponen
that we extract from the finite-size scaling of the peak of
distribution of jamming thresholds,n'0.7, is significantly
lower than that calculated for rigidity percolation,n'1.2
@60#.

III. IMPLICATIONS OF POINT J FOR THE GLASS
TRANSITION

We have shown that pointJ marks a well-defined transi
tion from the unjammed to the jammed state. Because
conjugate gradient method allows us to probe the infin
time behavior of the system, we have been able to show
the system develops a truly static shear modulus at poinJ.
Where pointJ lies with respect to the jamming surface d
picted in Fig. 1 depends on one’s definition. Since the gl
transition line is usually defined as the temperature where
relaxation reaches some large but finite threshold va
point J in this definition strictly lies within the jammed phas
since the relaxation time there is infinite. Since pointJ lies
just below the jamming surface of the phase diagram,
might expect it to control behavior in its vicinity if it is
indeed a critical point. If so, it may be the long sought-af
phase transition underlying the glass transition. In this s
tion, we discuss why we suspect that the physics of poinJ
may hold clues for understanding the entire jamming surf
of Fig. 1, including the glass transition itself.

One might wonder why pointJ is important to real glass
forming liquids, where there are not only finite-ranged rep
sive interactions, such as those we have included in our
culations, but also longer-ranged attractions. The jamm
phase diagram for a real liquid would look quite differe
from the one depicted in Fig. 1. In addition to the jammi
surface, one has to consider the vapor-liquid phase coe
ence curve since particles can attract one another. In Fig
we have sketched the jamming phase diagram in theT-1/f
plane when attractions are present. For simplicity, we h
explicitly assumed that there is no possibility of crystalliz
tion. ~If crystallization were taken into account, then the li
uid that coexists with vapor could be metastable to the c
tal.! In Fig. 18, the glass transition temperature decrea
with increasing 1/f and eventually crosses the liquid-vap
coexistence region at (Tx,1/fx), as shown. Once the glas
transition curve crosses the left-hand side of the coexiste
curve, which represents the lowest accessible liquid den
a variety of states can be obtained depending on the qu
history. The dashed part of the glass transition curve, wh
ends at pointJ, is not necessarily accessible to systems w
liquid-vapor phase transitions.

Even though pointJ does not necessarily exist for re
liquids, it can still influence the glass transition. In syste
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with short-ranged repulsions and longer-ranged attraction
there is still a well-defined distance at which the repulsion
vanishes; this is the position of the minimum in the pair
potential. As with the theory of liquids, attractions are a
small perturbation to the strong repulsive core; they merel
hold the system at a sufficiently high density so that the
repulsions can come into play@61#. We therefore expect the
behavior we find near pointJ to be a good approximation to
the behavior of liquids down to the density at which the glas
transition line crosses the liquid-vapor coexistence curve.

A. Significance of divergence in pair correlation function

We noted above that the first peak of the pair correlatio
functiong(r ) diverges at pointJ. This has two consequences
that have been observed in studies of the glass transition. T
first has to do with the static structure factorS(k), measured
from scattering experiments, and the second has to do wi
the emergence of a peak in the distribution of normal forces
P(F), as measured experimentally in granular@62# and col-
loidal @63# systems, and numerically in previous work on
models of glass-forming liquids@10#.

At point J, the first peak ofg(r ) is infinitely high and
narrow. This property elucidates one heretofore puzzling as
pect of studies of supercooled liquids. The static structur
factor S(k) is related by a Fourier transform tog(r ) so the
d-function peak ing(r ) produces oscillations inS(k). There
will not be a divergence inS(k) at any wave vectork. This is
different from what one finds at a critical point where there is
a diverging susceptibility at some value ofk. ~In the case of
a ferromagnetic transition, this would be the magnetic sus
ceptibility at k50.! Thus, the signature of the transition at
point J is different from that observed in ordinary second-
order phase transitions. As one moves away from pointJ into
the jammed region, thed function in g(r ) broadens and de-
creases in height, but the oscillations inS(k) persist. Repre-
sentative plots ofS(k) at two different values off2fc are

FIG. 18. A sketch of the jamming phase diagram in theT-1/f
plane for a system with short-ranged repulsion and longer-range
attraction. For simplicity, we have assumed that crystallization doe
not occur. The jammed region lies underneath the curve markedTg .
Beyond (Tx,1/fx), where the glass transition curve crosses the liq
uid density at coexistence, the available states depend on quen
history.
6-15
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shown in Fig. 19. These are qualitatively similar to expe
mental results forS(k) at high k, which also show oscilla-
tions @64#. This clarifies why searches for structural sign
tures of the glass transition that have examined the shap
S(k), either at smallk or in the vicinity of the first peak,
have not found a divergent behavior.

It has long been recognized that the first peak ofg(r )
rises and sharpens as the temperature is lowered towar
glass transition. However, the change of behavior as
crosses the glass transition is only quantitative. A criter
suggested many years ago@65# that the glass transition oc
curs when the first peak reaches a threshold height, se
rather arbitrary. In a previous study@10#, we showed that
there is aqualitativechange in a quantity closely related
g(r ). This is the distribution of normal forcesP(F):

P~F !dF}r d21g~r !dr, ~20!

whered is the dimensionality of the system. This quant
has been measured experimentally at the boundaries of s
granular packings@62# and in the interior of colloidal glasse
@63#. In all these studies of jammed systems,P(F) was
found to contain a peak. Our previous studies show tha
peak develops inP(F) as the jamming surface is approach
by loweringT, increasingf, or decreasingS @10,66#. This
signature was observed for all the potentials we have stud
including the full Lennard-Jones interaction, the Wee
Chandler-Andersen~WCA! interaction@61#, harmonic repul-
sions, and Hertzian repulsions. Thus, the development
peak inP(F) provides a signature of the onset of jammi
from purely structural data. From Eq.~20!, one can show tha
P(F) develops a peak only if the first peak ofg(r ) is suffi-
ciently high and narrow. The criterion for a peak inP(F) is

d ln g

dr
5

12d

r
1

d2F/dr2

dF/dr
. ~21!

The fact that the onset of jamming is correlated with the fi
peak of g(r ) becoming high and narrow enough sugge
that the entire jamming surface may be controlled by poinJ.

In order for a system to jam, it must be able to supp
shear stress for a very long time. The stress is suppo

FIG. 19. Static structure factorS(k) at f2fc51021 and 1024

for a 3D monodisperse system with harmonic repulsions.
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through a network of interparticle forces, suggesting that
order parameter for jamming may be found in the nature
such a network. Forces on a particle must either be balan
by other forces or give rise to accelerations. At high tempe
tures, there is a lot of kinetic energy, and particles are c
stantly accelerated by unbalanced forces. At lower temp
tures, however, the forces on particles tend to balance m
because accelerations are smaller, and at zero tempera
forces on particles balance perfectly so that the system
mechanically stable at packing fractions above pointJ. The
resulting network of forces atT50 is shown just above the
onset of jamming in Fig. 20. The order parameter for t
glass transition presumably depends on at least a th
particle quantity in order to characterize the force netwo
However, P(F), which is only a two-particle quantity
clearly couples to the force network. A peak inP(F) reflects
the existence of the network because the forces on all
ticles can only balance if they are of roughly the same m
nitude. This intuition highlights the importance of pointJ to
the glass transition. AtT50, as the packing fraction is in
creased through pointJ, the number of overlaps jumps from
Z50 ~no force network! to Z52d ~a dense force network a
shown in Fig. 20!. Thus, pointJ marks the development of
force network that supports shear stress.

B. Significance of anomalous low-frequency modes in density
of states

Perhaps, the most striking evidence that the physics
point J may be related to the nature of glasses and the g
transition is to be found in the behavior of the density
vibrational states at low frequencies. In contrast to our
pectation that the density of states should vary asD(v)

FIG. 20. Network of interparticle forces for a 2D bidisper
system with harmonic repulsions atf2fc51024.5 and N5256.
The intensity of the line shading is proportional to the magnitude
the interparticle force.
6-16
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}v2 at low frequencies~in three dimensions!, we find that at
point J, the density of states approaches a nonzero cons
value asv→0 ~see Sec. II G!.

We suspect that these extra low-frequency modes are
marily transverse in nature. It is clear from the behavior
the zero- and infinite-time shear moduliG0 andG` that the
transverse modes must become increasingly soft due to
relaxation allowed by non-affine deformations asf ap-
proachesfc . The ratioG0 /G` diverges at this point~see
Sec. II H 1!. The bulk modulus, in contrast, does not sho
any particular softening due to nonaffine relaxations a
B0 /B` , is a constant asf approachesfc ~see Sec. II H 1!.
This suggests that the anomalous low-frequency modes
more transverse than longitudinal in character. Moreo
sinceG0 /G` diverges, and the difference betweenG0 and
G` arises from spatially inhomogeneous nonaffine rel
ations, we expect that there must be significant high-w
vector contributions mixed into the anomalous modes@67#.

As f→fc
1 , we also know that the normal modes a

becoming more anharmonic. This was shown in Fig. 2 wh
it is clear that the linear region of the stress versus st
curves becomes smaller asfc is approached. The effect o
this anharmonicity still needs to be determined.

Our results, that anomalous low-frequency vibration
modes proliferate and herald unjamming asf approaches
pointJ, are of clear relevance to a large body of experimen
data on excess vibrational modes in glasses. Two result
flect these excess states rather directly. The first is the bo
peak, measured by light andx-ray scattering@68# and in
simulations@69#, which indicates an excess of vibration
states at low frequencies, above those predicted by De
behavior@D(v)}v2 in three dimensions#. The second is the
low-temperature specific heat of glasses:

cv5ADebyeT
31BT1CexcessT

3. ~22!

In addition to the Debye term from long-wavelength sou
modes, there is a linear term in the specific heat and
excessT3 term above that predicted by the velocities
sound. The linear term has been ascribed to the existenc
a new type of mode: two-level tunneling systems@1,70#. We
note that a constant density of states as we have foun
point J, would, by itself, produce a linear term without th
necessity of assuming a new set of tunneling excitatio
However, since glasses exist well above pointJ, we would
not expect such a linear term to persist all the way down
zero temperature. Nevertheless, there is still a remark
excess density of states even far away from pointJ which
would contribute to both the excessT3 term and to the boson
peak—both strong signatures of glassy behavior.

IV. CONCLUSIONS AND CONJECTURES

We have demonstrated a number of remarkable prope
of one special point on the jamming phase diagram that
curs at zero temperature and zero applied shear stress
have shown that this pointJ is the onset of jamming in both
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the bulk and shear modulus, it is well defined in theN→`
limit and provides a clean definition of random close pac
ing. In many ways, it behaves as a critical point, while
others it has properties not normally associated with
second-order phase transition. For example, many quanti
such as pressure and shear modulus, scale as power
with f2fc , but the scaling exponents depend on the int
particle potential and not on dimension.

From the finite-size scaling results that we have report
one might also conjecture how quenched disorder impo
externally~such as from pinning sites in a flux lattice or fro
optical traps in a colloidal suspension! would affect the na-
ture of the jamming phase diagram. If we assume that
spacing between defects limits the correlation length in
system, instead of the finite size of the box that we emplo
in these studies, then we would expect that the jamm
threshold at pointJ would be smeared out in much the sam
way as we find in finite-sized systems. Thus, if we were
add a ‘‘quenched disorder’’ axis to the jamming phase d
gram, one of the implications of our work would be that
more quenched disorder is added, the distribution in ja
ming thresholds will broaden.

Our studies here have been confined to purely frictionl
particles. We suspect that for systems with frictional inter
tions, the distribution of jamming thresholds should broad
as well. This would be in accord with experimental observ
tions that static frictional packings can exist over a wi
range of densities.

Perhaps, most significant is that at pointJ many of the
properties of disordered glassy systems have their most
nounced expression. Just as a crystal is the most ordere
states, pointJ may be considered to be the most disorde
of states. As at a critical point, where the correlations acr
the entire system are most easily observable, at pointJ the
nature of the disordered phase is most plainly seen. The
stant density of low-frequency normal modes and the div
gence in the first peak ing(r ) are two extraordinary ex-
amples. Both are sensitive to global properties of the syst
D(v) because it deals with the longest wavelength mode
the system andg(r ) because the overlap between all pa
ticles simultaneously goes to zero. In addition, both of th
observations have implications for how real glassy syste
behave. It is tempting to think that pointJ may provide a key
to understanding the nature of the entire surface in the j
ming phase diagram and to argue that the properties of o
glassy states should be understood as a perturbation ar
this ‘‘most disordered’’ of states. Thus, one might say th
point J represents the epitome of disorder and the essenc
glassiness.
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